原子核物理でつむぐ r プロセス

r-process元素組成比の 宇宙時間進化

Contribution from Supernovae and Neutron Star Merger

Isotopic abundance
✓ r-process sites
✓ Event rate
Evolution
✓ Isotopic abundance
✓ universality
NSM delay time

Yuta Yamazaki University of Tokyo, NAOJ

In Collaboration with T.Kajino, G.Mathews

May 24, 2019

The origin of heavy elements

TOP 11 GREATEST UNANSWERED QUESTIONS OF PHYSICS¹

- 1. What is dark matter?
- 2. What is dark energy?
- 3. How were the heavy elements from iron to uranium made?
- 4. Do neutrinos have mass?
- 5. Where do ultrahigh-energy particles come from?
- 6. New light and matter theory needed at ultra-high energies?
- 7.New states of matter at ultrahigh temperatures and densities?
- 8. Are protons unstable?
- 9. What is gravity?
- 10. Are there additional dimensions?
- 11. How did the universe begin?

¹ Discover Magazine, February 2002.

r-process study (in terms of astroph.)

r-process yields from each site

Event Rate

原子核物理でつむぐ r プロセス May 22-24, 2019

Event Rate

Galactic Chemical Evolution

Formulation

Gas Evolution σ_X : density of X in gas (X = gas, heavy element) = Inflow $\cdot \delta_{X,gas} - rac{\sigma_X}{\sigma_{gas}} \cdot StarBirth + StellarEjection$ $\dot{\sigma}_X$ event number $= Inflow \cdot \delta_{X,gas} - \frac{\sigma_X}{\sigma_{gas}} \cdot B(\xi_{gas}) + \int B(t - \tau_*(m)) \phi(m) E_X(m) dm$ Ejection of X From 1 Event **Contribution Ratio** X = r-process nuclei normalized by MHDJ (main process) $2 \cdot 10^{-5}$ M_{\odot} ^[1] NDW σ_{r} *** : amount of r-process isotopes $6 \cdot 10^{-3}$ MHDJ $M_{\odot}^{[2]}$ which originate from *** $2 \cdot 10^{-2}$ $M_{\odot}^{[3]}$ NSM $\sigma_{r,NDW}$ $\sigma_{r,NSM} \over \sigma_{r,MHDJ}$ f_{NDW} $f_{NSM} =$ [1] (Wanajo 2013, ApJL) [2] (Winteler+ 2012, ApJL) $\sigma_{r,MHDJ}$ [3] (Korobkin+ 2012, MNRAS)

Evolution of r-process abundance

Universality of r-Process Abundance

Coalescing time delay

(this 'ratio evolution' is independent from models of each sites)

For the shorter coalescing timescale,

 $f_{\rm NSM}$ appear from earlier / more metal-poor region

$$f_{NSM} \rightarrow 1/10$$
; t = 0.5 — 1 Gyr, [Fe/H] = -1.0 — -0.5

Summary and Future Prospects

- r-process abundance is explained by 3 component
 - Weak, Main and Fission
- Abundance pattern have changed with ER of SN and NSM.
- Fission can change abundance pattern dramatically
- More accurate nuclear data is highly needed
 - Fission fragment distribution
 - Nuclear reaction @2nd peak ~ hill for evaluating 'universality'
- GW and ELT observations are really prospective

Thank you.