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Preamble
• Space-like singularities are taken to be the absolute beginning or end of
space-time. Geodesics of test particles end there. Tidal forces between them
become infinite. But what if one uses quantum probes? It has been long argued
that they may be tamer for physically more realistic probes. Examples:

Horowitz and Marolf (1995): In certain static space-times with time-like singularities: Dynamics

of test quantum particles well-defined in some cases.)

Ishibashi & Hoyasa (1999); Stalker& Tahvildar-Zadeh (2004): Dynamics of classical fields

well-defined across certain time-like singularities.

Hofmann and Schneider (2015): The Schwarzschild space-like singularity probed with test

quantum fields. Found to be tame. But the arguments are formal; infinite number of degrees of

freedom did not receive due care.

• Goal: Revisit the issue for the physically most important dynamical singularities
with precision required to handle the infinite number of DOF of QFT carefully.
Due to time limitation, this talk focuses on the Big Bang/Big Crunch singularities
in the FLRW models. But the approach is more general.

• Main Question: Do test quantum fields φ̂(x) and observables constructed from
them such as 〈φ̂(x) φ̂(x ′)〉, 〈φ̂2(x)〉ren, 〈T̂ab(x)〉ren remain regular in the sense of QFT
across the big bang? Surprisingly, the answer is in the affirmative!
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Nature of Quantum Fields: Minkowski Space

• The Quantum Field in Minkowski space (M̊, g̊ab) is an operator-valued
(tempered) distribution (OVD) :

φ̂◦(x) =
∫

d3k
(2π)3

[
Â(~k) e

−iωη
√

2ω
+ Â†(−~k) e

iωη
√

2ω

]
ei
~k·~x with x ≡ (~x, η)

satisfying (�̊ −m2)φ̂◦(x) = 0. That is,

φ̂◦(f) =
∫
M̊ d4V̊ φ̂◦(x)f(x) is a SA operator on the Fock space F̊ satisfying∫

M̊ d4V̊ φ̂◦(x)(�−m2)f(x) = 0, for all test functions f(x) ∈ S, the Schwartz space.

• The distributional character is not a mere technicality but is conceptually
important. For example in

[φ̂◦(x), φ̂◦(x ′) ] = i~ (Gad −Gret)(x, x ′) Î and
〈φ̂◦(x) φ̂◦(x ′)〉◦ = ~

4π2
1

|~x−~x ′|2−((η−η ′)−iε)2

the right sides are genuine distributions; not functions. Meaning of iε: first
integrate 〈φ̂◦(x) φ̂◦(x ′)〉◦ with iε with the test functions and then take the limit.

More importantly, products φ̂2(x) have to be regularized precisely because φ̂(x) is
an OVD. The textbook terminology of ‘field operators’ and ‘2-point functions’
(and Dirac ‘δ function’) can be very misleading if taken literally.
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FLRW space-times
• So the question is: Do quantum fields φ̂(x) continue to be well-defined across
the big-bang as OVDs ? For example, in 3-d, 1/r is singular as a function but C∞ as a

tempered distribution (satisfying the well-known equality ~∇2(1/r) = 4πδ3(~r)).

• Recall that the Friedmann, Lemâıtre, Robertson, Walker (FLRW) space-time
(M, gab) is conformally flat:

gabdx
adxb = a2(η) g̊abdx

adxb ≡ a2(η) (−dη2 + d~x2) with a(η) = aβ η
β ; β ≥ 0.

η > 0 on M , and the big bang corresponds to η = 0. We can extend a2(η) and
hence gab to the full Minkowski manifold M̊ with η ∈ (−∞, ∞) as a continuous
tensor field (albeit degenerate at η = 0). Systematic Rationale:

• There is a generalization of the ADM framework for the initial value problem of
full GR (based on ‘connection dynamics’ in which the metric arises as an emergent, secondary

field), which is equivalent to the ADM framework when the 3-metric is
non-degenerate, but which does not break down if it becomes degenerate. (AA,

Henderson & Sloan). In FLRW (as well as Bianchi models and the Schwarzschild solution) it
enables one to evolve across the singularity unambiguously (Koslowski, Mercati &

Sloan; Mercati; AA & Valdes). (Recall: ‘Hubble-normalized variables’ used in cosmology.) In
FLRW models, the extension yields just the simple prescription given above. As a
tensor field, gab is C0 at η = 0 & smooth if η 6= 0.

4 / 12



QFT in FLRW Space-times

• For definiteness, consider the massless scalar field: �φ̂ = 0.
On M , φ◦ = a(η)φ(x) satisfies a simple equation with respect to the Minkowski
metric g̊ab in presence of a ‘universal’ time dependent potential:

(�̊− V (η))φ◦(x) = 0 with V (η) = β(β − 1)/η2.

Rigorous Result: Because of the form of the potential, one can introduce a
canonical ± frequency decomposition (i.e. a canonical Kähler structure) on the
space of classical solutions and write the general solution as

φ◦(x) =
∫

d3k
(2π)3

[
z(~k)̊e(k, η) + z?(−~k)̊e?(k, η)

]
ei
~k·~x

where e̊(k, η) are the positive-frequency modes and z(~k) are regular coefficients (in

S). Then the putative OVD on FLRW space-time is given by:

φ̂(x) = 1
a(η)

φ̂◦(x) = 1
a(η)

∫
d3k

(2π)3

[
Â(~k)̊e(k, η) + Â†(−~k)̊e?(k, η)

]
ei
~k·~x.

• The mode functions e̊(k, η) are explicitly known. Generically they diverge at
η = 0. For example, for dust (β = 2), they are (eikη/

√
2k)(1− i/kη). As functions,

they diverge at the big bang. And there is another 1/a(η) overall factor in φ̂(x).

The question is: Is φ̂(x) nonetheless well-defined as an OVD across the big bang
on full M̊?
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Radiation-filled Universe
• Is φ̂(f) =

∫
M̊ d4V φ̂(x)f(x) satisfying

∫
M̊ d4V φ̂(x)(�f) = 0 ∀f ∈ S well-defined on

the extended space-time, i.e. for all η ∈ (−∞,∞) ?

• Radiation-filled universe: a(η) = a1η (i.e. β = 1) ⇒ V (η) = 0, whence,
φ̂◦(x) = a(η) φ̂(x) now satisfies �̊φ̂◦ = 0 in Minkowski space! Hence mode functions
e̊(k, η) same as in Minkowski space; trivially regular for η ∈ (−∞,∞). But the
physical field on FLRW space-time is φ̂(x) = a−1(η) φ̂◦(x) and a(η) = 0 at η = 0!
How could it then be regular on Minkowski Fock space?

Answer: The physical volume element is d4V = a4 d4x. Hence:

φ̂(f) =
∫
M̊ d4V φ̂(x)f(x) =

∫
M̊ d4x φ̂◦(x) (a3(η)f(x))

and a3(η)f(x) ∈ S if f ∈ S. Hence φ̂(f) is in fact a well-defined operator on the

Minkowski Fock space ⇒ φ̂(x) well defined OVD for all η ∈ (−∞,∞)!

Next, the expectation value of the product of fields

〈φ̂(x) φ̂(x ′)〉 = 1
a21ηη

′ 〈φ̂◦(x) φ̂◦(x ′)〉◦ = 1
a21ηη

′
~

4π2
1

r2−(t−iε)2

(where r = |~x− ~x ′| and t = η − η ′) is also a well-defined bi-distribution because
d4V = a4

1η
4 d4x and d4x is well defined on all of M̊ . Furthermore 〈φ̂2(x)〉ren = 0 and

〈T̂ab(x)〉ren is a well-defined, non-zero distribution on all of the extended manifold
M̊ . So the theory is not trivial.
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Dust-filled Universe
• More interesting case: Dust-filled universe where a(η) = a2η2. Hence

(
1/a(η))

diverges faster at η = 0 and mode functions (eikη/
√

2k)(1− i/kη) also diverge at
the big bang (unlike in the radiation-filled case).

• The 1-particle Hilbert space is built out of solutions:

φ(x) = 1
a(η)

∫
d3k

(2π)3

[
z(~k)̊e(k, η) + z?(−~k)̊e?(k, η)

]
ei
~k·~x with z(~k) ∈ S̃

and they all diverge at η = 0. So how can there be a well-defined Fock space?
There is, because the 1-particle norm ||φ(x)|| is perfectly finite (and non-zero) at
η = 0 because the divergence in the value of φ(x) is precisely compensated by the
vanishing of the 3-volume element there!

||φ(x)||2 = 1
~
∫

d3k
(2π)3

|z?(~k)|2.

This is analogous to the QM fact that while Ψ(~x) := (1/r)e−αr is divergent as a function, it

represents a well-defined state in H := L2(R3), because the volume element d3x goes as r2.

• Since d4V = a4
2η

8 d4x, φ̂(f) is a well-defined OVD. ( However, there is an infrared

subtlety (Ford and Parker (1977)). Already for η > 0, the action of φ̂(x) is well-defined on a

co-dimension 1 subspace S1 of S and there is a 1-parameter freedom in extending its action on

full S, representing an infrared cutoff `. But this cutoff has nothing to do with the big bang.

Once φ̂(x) defined for η > 0, it continues to be well-defined for η ≤ 0 ).

7 / 12



Dust filled Universe: ‘BKL Behavior’

• The expectation value of the product of fields is given by
〈φ̂(x) φ̂(x ′)〉 = ~

4π2
1

a22η
2η′ 2

[
1

(r2−(t−iε)2)
+ 1

2ηη ′ [2(1− γ) + ln
r2−(t−iε)2

`2
].

It is a well-defined bi-distribution, i.e.,
∫
M̊ d4V d4V ′ 〈φ̂(x) φ̂(x ′)〉 f1(x)f2(x) is

well-defined because d4V = a4
2η

8d4x, and d4x is well-defined on all of M̊ .

For space-like and time-like separated points, one interprets 〈φ̂(x) φ̂(x ′)〉 as as a
correlation function. In Minkowski space, correlations decay as 1/Dist2 for both
space-like and time-like separations.

• Now, there is an interesting space vs time asymmetry as one approaches the
singularity: Consider points that are space-like or time-like separated by a fixed
proper (geodesic) distance D. As one approaches the big bang, but space-like

correlations dominate over but time-like ones: limη◦→0
〈φ̂(~x,ηo) φ̂(~x ′,η◦)〉
φ̂(~x◦,ηo)φ̂(~x◦,η)

=∞ (as

2D/a2η3). Strong correlations ∼ smaller variations ⇒ smaller derivatives.
Therefore, “time derivatives dominate over space-derivatives” as in the well-known
BKL behavior of GR. But one has to keep in mind that conceptually these are
quite different statements: this behavior refers to test quantum fields on a given
FLRW background while the BKL behavior refers to the gravitational field itself.
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Dust filled Universe: Operator-Products
• φ̂(x) is a ‘dimension 1’ OVD, while 〈φ̂2(x)〉ren is a ‘dimenmsion 2’ OVD and
〈T̂ab(x)〉ren a ‘dimension 4’ OVD. So, a priori the fact that φ̂(x) is well-behaved
across the big bang does not mean that these operator-products would be
well-defined. Are they?

• Old works (Bunch, Davies, . . . ) imply 〈φ̂2(x)〉ren = ~R
288π2 (5− 2 ln 2R

3a2`3µ3 ). At the
big bang, R ∼ 1/η6 is divergent as a function but a C∞ tempered distribution:
d4V = a4

2η
8d4x and η8〈φ̂2(x)〉ren(x) is in fact a C2 function! Unlike in the

radiation-filled case, it does not vanish because R 6= 0.

• Old works also provide the expression of 〈T̂ab(x)〉ren. Being a ‘dimension 4’ OVD,
it involves products and second derivatives of curvature tensors. The explicit
expression is long but has the simple form 〈T̂ab(x)〉ren = T1(η)∇aη∇bη + T2(η)̊gab,
where the most divergent term in T1 and T2 go as (η−8 ln |η|). Now, d4V ∼ η8 and

η8T1 ∼ η8T2 ∼ ln |η|, which is a locally integrable function and hence in particular, a
C∞ tempered distribution!

• Summary: Dynamics of φ̂ is much more non-trivial in the dust-filled case: It
represents the generic case where the scalar curvature does not vanish. Still, φ̂ is
a well-defined OVD in every sense one asks in QFT in CST!
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Summary and Generalizations
• Summary: There is a long history of probing classical GR singularities with classical fields

and quantum particles. But most analyses were for (conformally) static space-times with

time-like singularities.

• Here we considered time-dependent space-times with space-like singularities,
which are also physically far more interesting. But time-dependence forces one to
consider quantum fields as probes. Somewhat surprisingly, the big bang and big
crunch singularities are remarkably tamer when probed with observables
associated with quantum fields, when one keeps in mind that these are OVDs.

Classical fields φ(x) that define 1-particle states do diverge at the big bang singularity. But their

norm in the 1-particle Hilbert space is finite because the shrinking of the volume element exactly

compensates for this divergence. Similar to the fact that the wave function Ψ(~r) = (1/r)e−r/ro

diverges at the origin but is a well-defined element of the Hilbert space H = L2(R3) in QM.

Similarly, the mode functions that enter the expansion of φ̂(x) diverge but it is a well-defined

OVD: smeared operators φ̂(f) are well defined. 〈φ̂(x) φ̂(x ′)〉 –and even 〈φ̂2(x)〉ren and

〈T̂ab(x)〉ren– are well defined tempered distributions, just as they are in Minkowski space.

• Generalization: The main result on tame behavior of linear, test quantum fields
extend to other FLRW models with β > 0. I used Radiation and dust filled cases
because the mode functions are sufficiently simple to display explicit results.
Extension has also been made to closed and open K = ±1 cases (in preparartion).10 / 12



Generalizations: Contd
• Higher spins: Since FLRW space-times are conformally flat, quantum (as well
as classical) Maxwell fields are trivially regular across the big bang and big crunch.
Results on the massless scalar field imply that tameness persists also for spin 2
(i.e. linearized gravitational) fields.

• What about black hole singularities? (Work in Progress)

The 2-D CGHS BH: (spherically symmetric reduction of a string inspired theory):
In this case, classically, we have an analytic solution for a scalar field collapse. For
test quantum fields, singularity seems completely tame.

The Schwarzschild singularity: One can focus on the ‘interior’ region inside the
horizon (Kontowski-Sachs metric). We have analytic expressions of mode functions as
infinite convergent series. But do not have a theorem of uniqueness of (the Kähler
structure, or) the positive and negative frequency decomposition. If one uses an
‘obvious notion’, one can construct a Fock representation on which smeared field
operators are well defined. Work in progress to find the notions that correspond to
the Unruh and Hartle-Hawking vacua of the (right) asymptotic region and
compute 〈φ̂(x) φ̂(x ′)〉, 〈φ̂2(x)〉ren, 〈T̂ab(x)〉ren in these states at the singularity. Good
control on calculations. Vaidya collpase also within reach.

Generic BH singularities: Expected to be null (Cauchy horizon instability) rather
than space-like. Much more difficult. But there is no ‘in principle obstacle’. 11 / 12



Broader Perspective
• Key conceptual and mathematical point of this analysis is: Quantum fields φ̂(x)
are operator-valued distributions not operators; and it is important to keep in mind
the distributional nature of associated observables such as 〈φ̂2(x)〉ren, 〈T̂ab(x)〉ren.

• In particular:
(i) Every locally integrable function f(η) (such as ln |η|) is a tempered distribution:
S 3 t(η)→

∫
R dη t(η) ln |η| is a continuous map from S to R; and, (ii) Every tempered

distribution is infinitely differentiable. Hence, 1/xm is a tempered distribution.

This is why even when the expectation values 〈φ̂(x) φ̂(x ′)〉, 〈φ̂2(x)〉ren, 〈T̂ab(x)〉ren diverge as

functions, they can be well-defined tempered distributions. Recall: Even in Minkowski

space-time, observables of quantum fields are tempered distributions, not functions. Cannot ask

them to be better at singularities!!

• These results provide hints for a full quantum gravity theory: to obtain a
self-consistent theory that allows matter and geometry to interact quantum
mechanically, geometry should also have a distributional character at the micro
level. This feature arises in diverse approaches to quantum gravity where, in the
Planck regime, excitations of quantum geometry have support in 2 (space-time)
dimensions (see, e.g., Carlip’s 2009 short review). A concrete example is provided by
the distributional nature of quantum geometry in loop quantum gravity and
spinfoams. Therefore, these investigations open up the possibility of bridging QFT
in CST with full quantum gravity. 12 / 12


