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The Hamiltonian of General Relativity (GR) is a sum of constraints:

H[N,N] = S[N] + V[N] :/deNC’+/ BxN - C
b >

In the quantum case, the constraints are promoted to self-adjoint operators.

—

In homogeneous quantum cosmology only the scalar constraint C’ remains.
Action of the operator is defined on the kinematical Hilbert space Hiin .

Following the Dirac quantization of constrained systems, the physical Hilbert
space thys IS constructed by solving the Wheeler-DeWitt (WDW) equation:

CC‘|\IJ> = O)

so that ker C' = Hphys © Hiin .

Solutions to the WDW equation are known for certain minisuperspace models.

New methods of solving the WDW equation for more complex configurations
are worth seeking...



Outlook of our method of solving the WDW equation
on a quantum computer:

1. Regularize theory to make the Hilbert space finite.

a) Replace the flat (affine) phase space for every classical degree of
freedom with a sphere. The spherical phase space is a phase space of
angular momentum (spin). The flat phase space case is recovered in
the large spin limit.

b) Construct regularized quantum kinematics for the system under
consideration.

c) Express the Hamiltonian constraint in terms of the spin variables.

d) Quantize the regularized Hamiltonian constraint.

e) Represent the spin operators in terms of qubits.

2. Apply Variational Quantum Eigensolver (VQE) to
find the states minimizing ,Hamiltonian” C?:

Cltpo) = 0 <= (1ho|C?|tho) = 0

3. Study the large spin limit to recover the affine case.



Compact phase space -* Finite Hilbert space

Compact phase spaces arise in the semiclassical description of
quantum systems with finite dimensional Hilbert spaces.
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We are focused on the compact case rather on the phase space with boundaries.



Spherical phase space

The spherical space is consider here because
of its relation to spin. It is also a non-trivial
case since the 2-sphere is not a cotangent
bundle, but is equipped with symplectic form
and is a well defined symplectic manifold.

Symplectic form on 2-sphere:
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One can introduce the vector Z

B f
S =(S.,8,,5-)

with the following components:
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Poisson bracket: {/f.g} = COS(;/R2) (ag azgo - 8_1125_2)

Employing the above, the su(2) algebra is obtained: @Si, Sj} = Eijkskj

The g s, therefore, the angular momentum (spin) vector with the norm S.



The symplectic for the system of m DOFs is:

m m
W = Zwi — dei A dg;
i=1 i=1

By performing compactification for every canonical pair the system’s
phase space changes as follows:

@Qm N SQm)

In consequence, the regularized kinematical Hilbert space for the system is:

@kin — H?m)

where H, = span{s, —s),...,|s, s)}, so that:

S2|s,s,) = s(s+1)|s, s,)

S.ls,s.) = s.|s, s5)



Compactified flat de Sitter cosmology

Kinematics (symplectic form)

Affine 2-sphere

w = dp A dq ——— w:cos(}g>dp/\dq
2

Dynamics (scalar constraint)
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The affine case is recovered in the R, Ro — oo limit.




Polymer limit

In the B> — oo limit the so-called R o o
polymerization of momentum is obtained. G T
This is the case of loop quantum cosmology. ql‘*
The su(2) algebra reduces to the Ry — o R
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Cosmological evolution 2= 2 (Sin<q/32>>2 [0082 (a/R2) — 5]
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pp2 = Ao @(1 +26) (&@ o) de Sitter expansion may terminate...
and the effective phantom can be a sign of it.

The leading correction
behaves as a phantom matter with the equation of state: Ps = —3ps



Rescaled classical constraint:
457
/ ?)IiRl

The quantum constraint

C C = S352 — §528;.

The symmetrized quantum scalar constraint:

!

We have shown that the WDW has always solutions for any ¢) for the bosonic
representations. For the fermionic representations the solutions do not exist,
except some particular values of ().
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( The simplest non-trivial case is s=1, for which:
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The constraint squared in general case:
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The action of the spin operators on n-qubit (spin-1/2) quantum register
IS given by:

1 | .
Si =5 YI'ew. .V 'es ol . .1,
\_ =1 _/

where n = 2s. We need n=2s qubits to represent spin s.

For convenience, we introduced:
P, (0;) := Zﬂl .V 1ledeoltlg..I,
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Because (f 2is a unitary operator, the expectation values cannot be evaluated
directly with the use of quantum computing. For this purpose the operator has to
be expanded into unitarities (here, the Pauli matrices):

[ =36 @4

(C) =) ci(@aiy)
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so that

Similarly for 02

Every contributing expectation value has to be evaluated individually. The
so-called Hadamard test can be used for this purpose:

0) —H T 2(04) = (U)y
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The variational procedure

We iteratively search for the minimum of the cost function:
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The second contribution fixes the spin-s
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where:
a,b e (0,1)
a+b=1

subspace of a quantum register.

Acting iteratively we find:

Qimin = argmin, c(a)
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Quantum circuit

Classical algorithm g |




Quantum chip

The expectation values are evaluated
Oon a quantum processor.

Here, the IBM 5-qubit Yorktown
superconducting quantum chip

has been used. The connectivity

of the quantum processor is the following:
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The s=1 case Cost function during minimalization
for 10 runs, with randomly initialized

Here: parameters:
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The Hadamard test becomes:
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Averaged (over 10 runs) amplitudes of the final state:
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In the simulations, 1024 shots for each circuit have been made.
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The quantum fidelity of the found state is: ( 0.997 = 0.003 )




Summary

A method of solving WDW on quantum computers exists.

The method employs the compact phase space regularization.
The method generates physical states on a quantum register. The
states can be further used to e.g. evaluate transition amplitudes.
Degeneration of the kernel can be extracted employing the Gram-
Schmidt procedure. In has been tested for the s=2 case.

The method is not effective (compared to the classical methods) for
small number of degrees of freedom (small m).

The method becomes theoretically advantageous over classical
methods (exponential speedup) for large number of interacting
degrees of freedom (large m).

The method is not yet useful because of limitations of the existing
quantum resources.

The approach opens an opportunity to investigate models of
gquantum cosmology and quantum gravity in the lab.
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