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• Constraints on higher-order couplings
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Asymptotic safety 
Three dimensional hypersurface: gN, λ, β



Asymptotic safety in Quantum Gravity
Weinberg’s hypothesis

The RG flow for the Einstein-Hilbert action 
(see Bonanno et al 2004.06810)


+ Effects on matter: 

βgN
= 2gN − bg2

N

βi ∼
1

M2
P(μ)

gi



Inflation

The problems solved by inflationary 
theory:


• flatness problem


•Homogeneity and isotropy problem


•Small abundance of cosmological 
defects


•CMB temperature differences of 
order δT/T ≈ 10−5

Inflation has its own theoretical 
problems


• Initial conditions 


•Eternal inflation (this talk)


•Reheating

Period of accelerated expansion in the Early Universe
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Inflation
Slow roll 
• The equation of state  and .


• Inflation driven by scalar field  with potential .

ρ ≈ − p ··a > 0

ϕ V(ϕ)
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Eternal Inflation
Quantum fluctuations
• Split into background and 
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• Slow roll with stochastic term 

.


• The  is Gaussian with mean 
0 and variance .


• To find  we histogram.

ϕ(t, x ) = ϕcl(t, x ) + δϕ(t, x )

3H ·ϕ +
∂V
∂ϕ

= 𝒩(t)

𝒩(t)
σ = H3t/(4π2)

P[ϕ, t]
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Eternal Inflation
How inflation becomes eternal

• Probability that  after time : ,


• The error function approximated by exponent function


,


• Take into account the exponential expansion of the Universe 

ϕ > ϕend t Pr[ϕ > ϕend, t] = ∫
ϕend

−∞
P[ϕ, t]

Pr[ϕ > ϕend, t] ∼ exp(−At), lim
t→∞

Pr[ϕ > ϕend, t] = 0

U(ϕ > ϕend, t) = Pr[ϕ > ϕend, t] × U0e3Ht



Eternal Inflation
Starobinsky inflation 

• Starobinsky action: 

effective Starobinsky potential 

 


with .

S =
1
2 ∫ gd4x (M2

PlR + 1
1

6M2
R2) .

V(ϕ) = V0 (1 − exp (−
2
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ϕ
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Eternal Inflation
RG improved Starobinsky inflation 

• Transplanckian values of the fields requires taking into account quantum gravity 
effects
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Eternal Inflation
RG improved Starobinsky inflation 

• Transplanckian values of the fields requires taking into account quantum gravity 
effects


•Quadratic gravity Lagrangian can be RG-improved 




• ,


•   ,  and .

Lk =
k2

16πgk
(R − 2λkk2) − βkR2

lim
k→∞

(gk, λk, βk) = (g*, λ*, β*) ≠ (0,0,0)

β = β* + b0 ( k2

μ2 )
−1/2

k2 → ξR α = − 2μθ3b0/M2
PL



Eternal Inflation
RG improved potential

• In the Einstein frame one obtains the 
following potential 

 

 
.
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Eternal Inflation
RG improved potential

• In the Einstein frame one obtains the 
following potential 

 

 
.


• The potential has a minimum for  
for  and .


•   Starobinsky.

V±(ϕ) =
m2e−2 2

3 κϕ

256κ [192(e
2
3 κϕ − 1)2 − 3α4 + 128Λ

− 32α[(α2 + 8e
2
3 κϕ − 8) ± α α2 + 16e

2
3 κϕ − 16]3

2

−3α2(α2 + 16e
2
3 κϕ − 16) ∓ 6α3 α2 + 16e

2
3 κϕ − 16]
V+(ϕ)

α ∈ [1,3] Λ ∈ [0,1.5]

α → 0, Λ → 0



Eternal inflation
Stochastic evolution



Eternal inflation
Asymptotic safety

• , since 




• No  dependence

ϕ0 ∝ log(α)

V+(ϕ) ∼ α4e− 2
3 κϕm2/κ2,

Λ



Eternal Inflation
Asymptotic Safety in Veneziano limit of Yang Mills

• ,   large


• 


• RG improvement gives the 
Lambert W function potential


• Inflation matching observables 
with  and 


• Potential too steep for EI

NF

Nc
−

11
2

= δ NF, Nc

ℒ ∋ ξϕ2R

ξ ≈ 1 NF ≈ NSM



Eternal Inflation
Tunnelling effects

NF = 10, ξ =
1
6

, δ = 0.1

60 e-folds, correct ns, r



Eternal inflation
Summary

• The existence of FP generically flattens the potential giving rise to 
eternal inflation


• Tunneling effects also can give rise to eternal inflation

• Finite action and eternal inflation: 2102.05550

• If you want to find out more see: 2101.00866 and 2102.13556



Eternal Inflation
Fokker Planck equation

• In infinitesimal time : 

,


• the probability distribution of  at time  is given by Fokker Planck equation 

.


• For  solution is given by .

δt
δϕ = −

1
3H

V′￼(ϕ)δt + δϕq(δt), δϕq ∼ 𝒩(0,H3(δt)/(2π)2)

ϕ t
·P[ϕ, t] =

1
2

H3

4π2
∂ϕ∂ϕP[ϕ, t] +

1
3H

∂ϕ ((∂ϕV)P[ϕ, t])

V(ϕ) ≈ V0 P[ϕ, t] =
1

σ(t) 2π
exp [ −ϕ2

2σ(t)2 ]


