Is asymptotically safe inflation eternal?

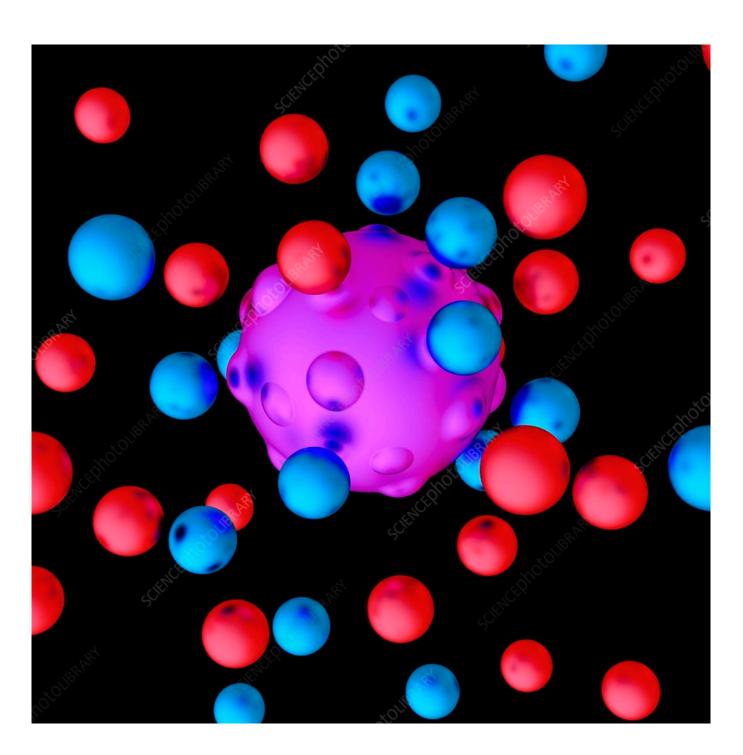
Recent Progress of Quantum Cosmology 09/11/2021

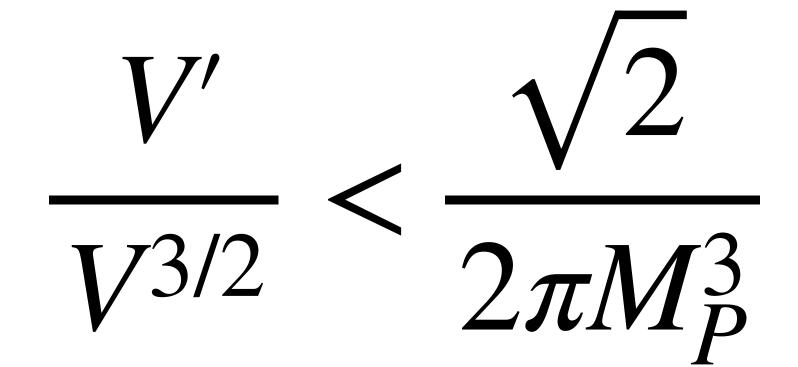
Jan Kwapisz University of Warsaw, visitor at CP3-Origins

NARODOWA AGENCJA WYMIANY AKADEMICKIEJ

Talk based on 2101.00866, and partly on 2102.13556

Eternal inflation and swampland





Rudelius 2019; Rudelius 2021

 (\mathbf{I})

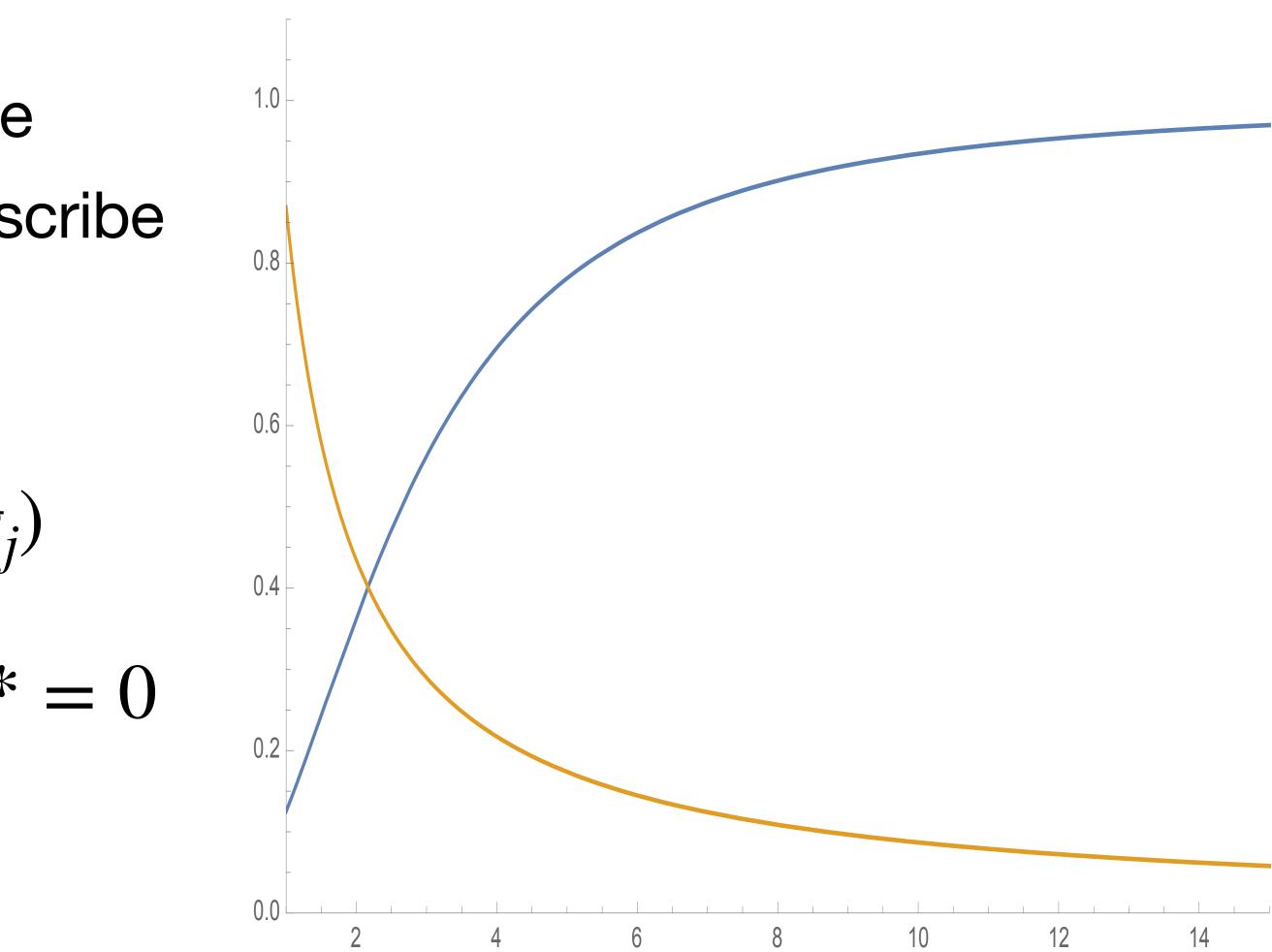
• Einstein gravity is nonrenormalizable

- Einstein gravity is nonrenormalizable
- Finite amount of experiments to describe a theory

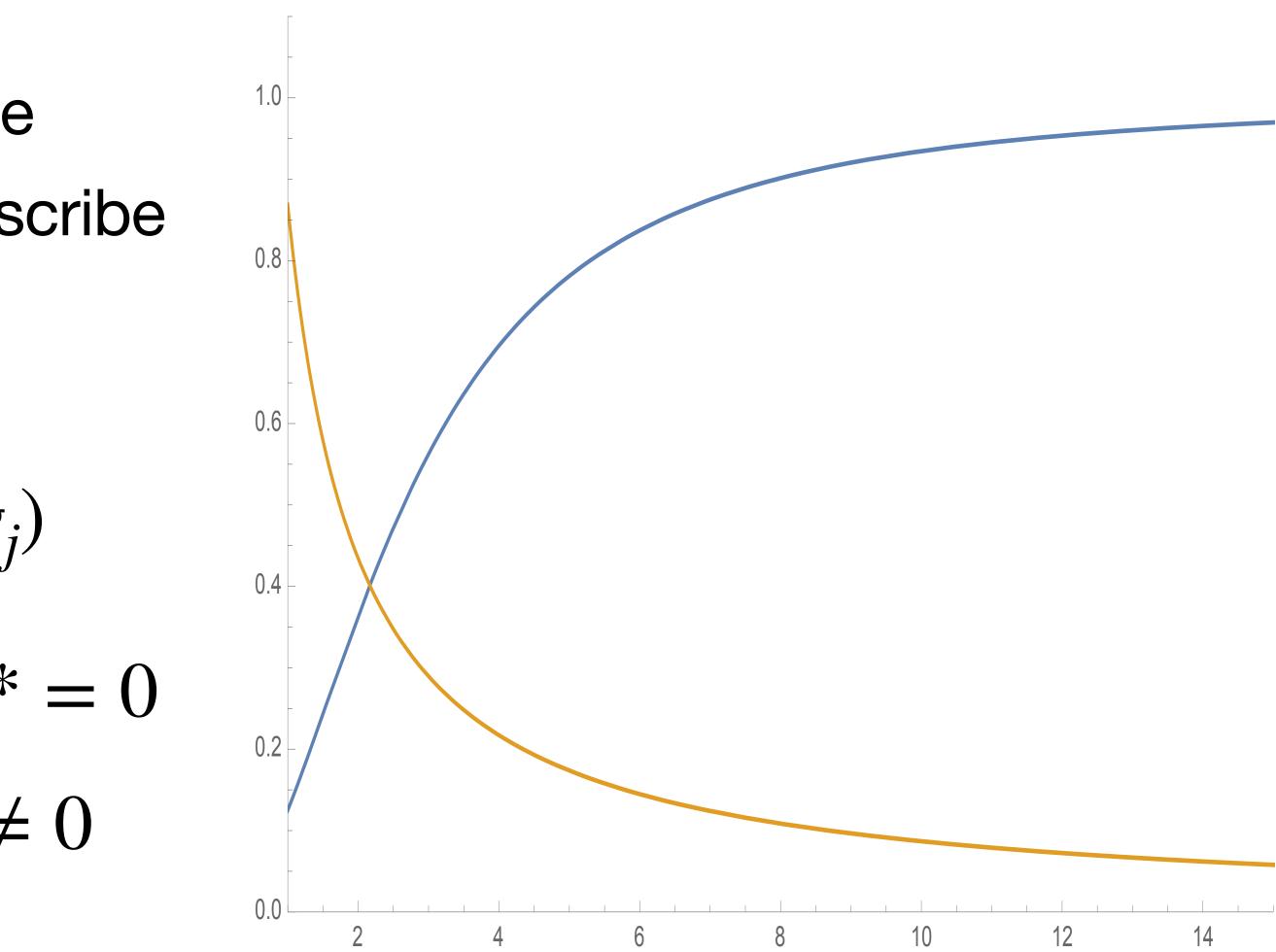
e scribe

- Einstein gravity is nonrenormalizable
- Finite amount of experiments to describe a theory
- The couplings change with renormalisation scale: $\mu \frac{\partial g_i}{\partial \mu} = \beta_i(g_j)$

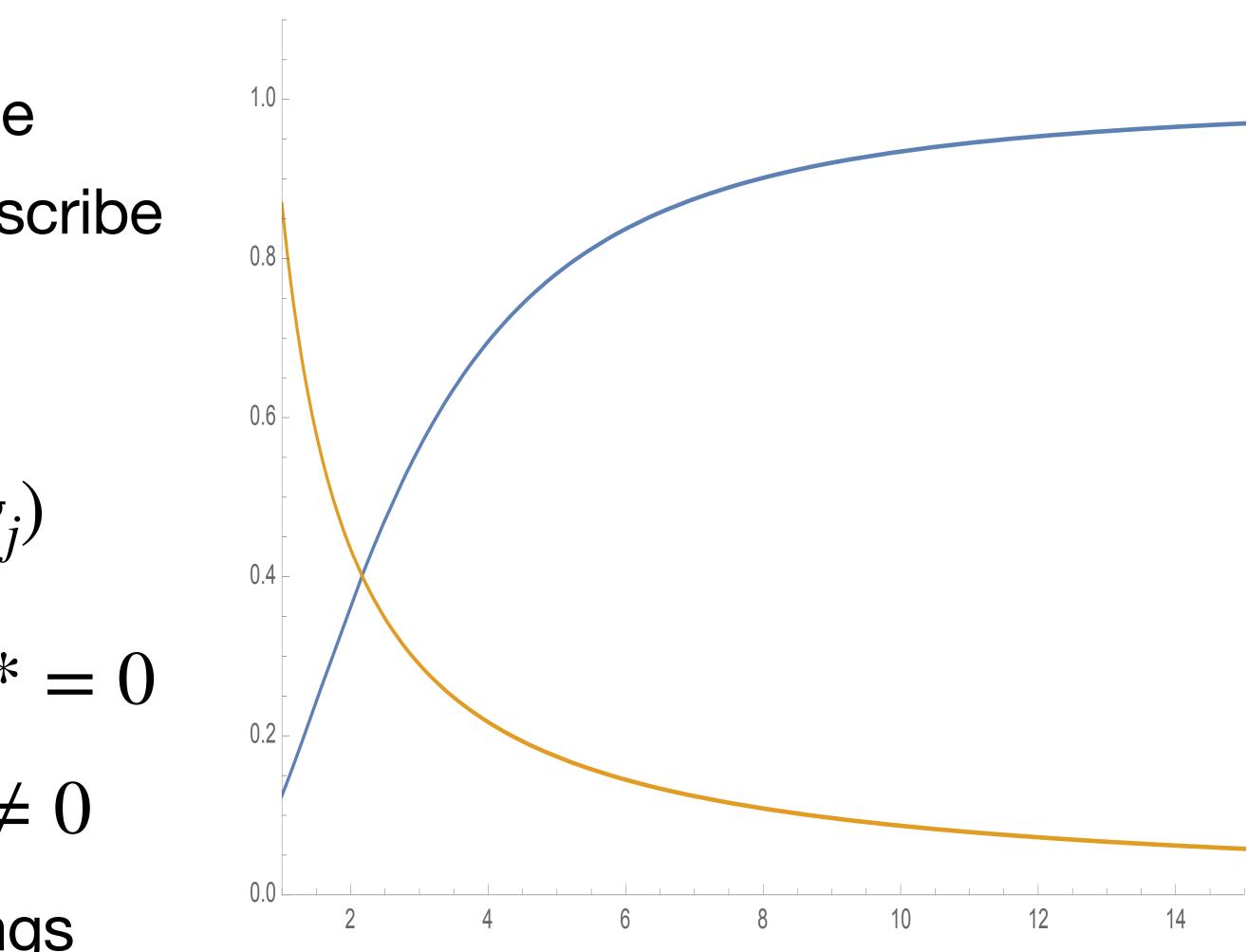
- Einstein gravity is nonrenormalizable
- Finite amount of experiments to describe a theory
- The couplings change with renormalisation scale: $\mu \frac{\partial g_i}{\partial \mu} = \beta_i(g_j)$
- Asymptotic freedom: $\beta_i = 0$ and $g_i^* = 0$



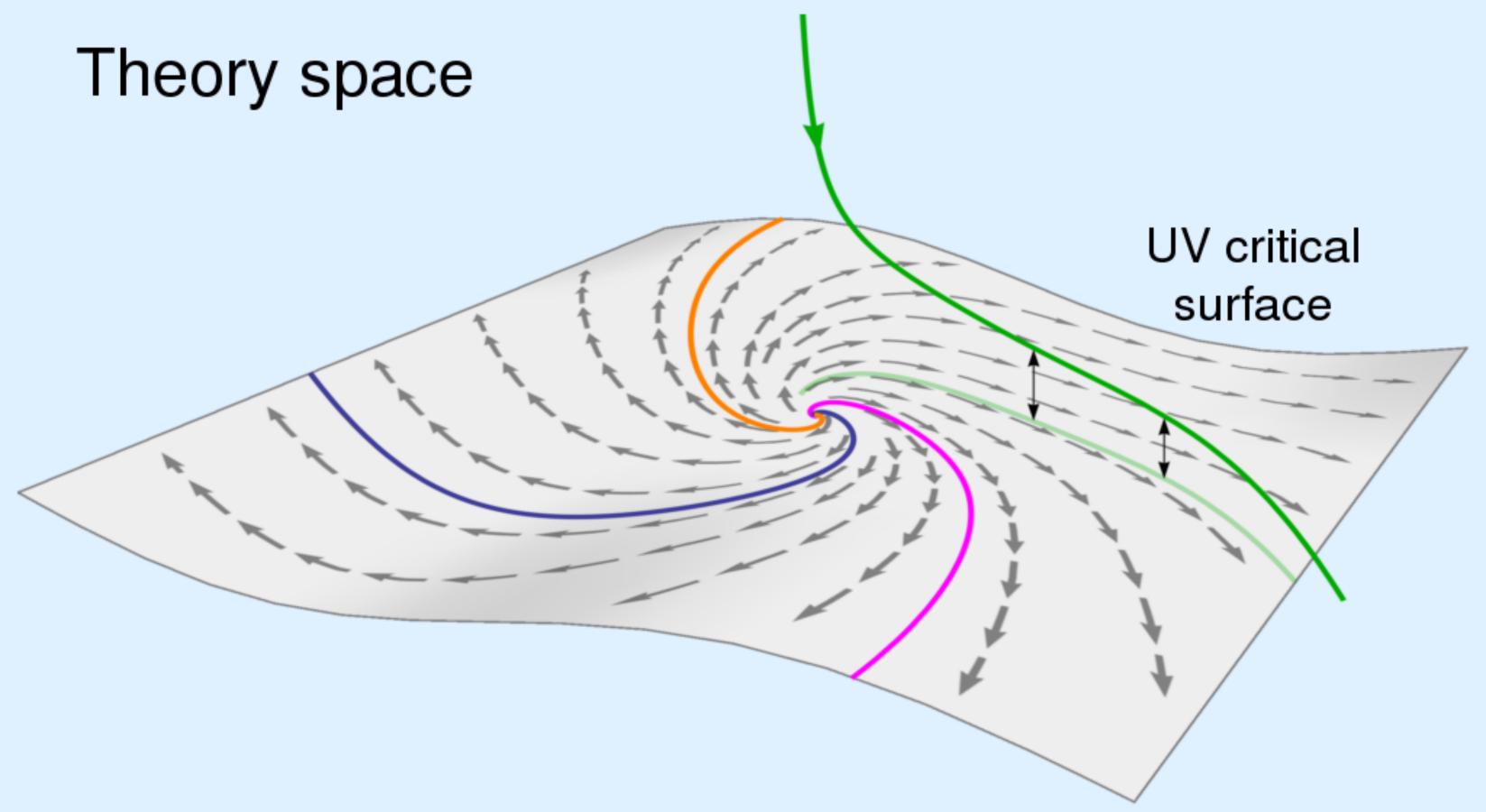
- Einstein gravity is nonrenormalizable
- Finite amount of experiments to describe a theory
- The couplings change with renormalisation scale: $\mu \frac{\partial g_i}{\partial \mu} = \beta_i(g_j)$
- Asymptotic freedom: $\beta_i = 0$ and $g_i^* = 0$
- Asymptotic safety: $\beta_i = 0$ and $g_i^* \neq 0$



- Einstein gravity is nonrenormalizable
- Finite amount of experiments to describe a theory
- The couplings change with renormalisation scale: $\mu \frac{\partial g_i}{\partial \mu} = \beta_i(g_j)$
- Asymptotic freedom: $\beta_i = 0$ and $g_i^* = 0$
- Asymptotic safety: $\beta_i = 0$ and $g_i^* \neq 0$
- Constraints on higher-order couplings



Asymptotic safety **Three dimensional hypersurface:** g_N , λ , β

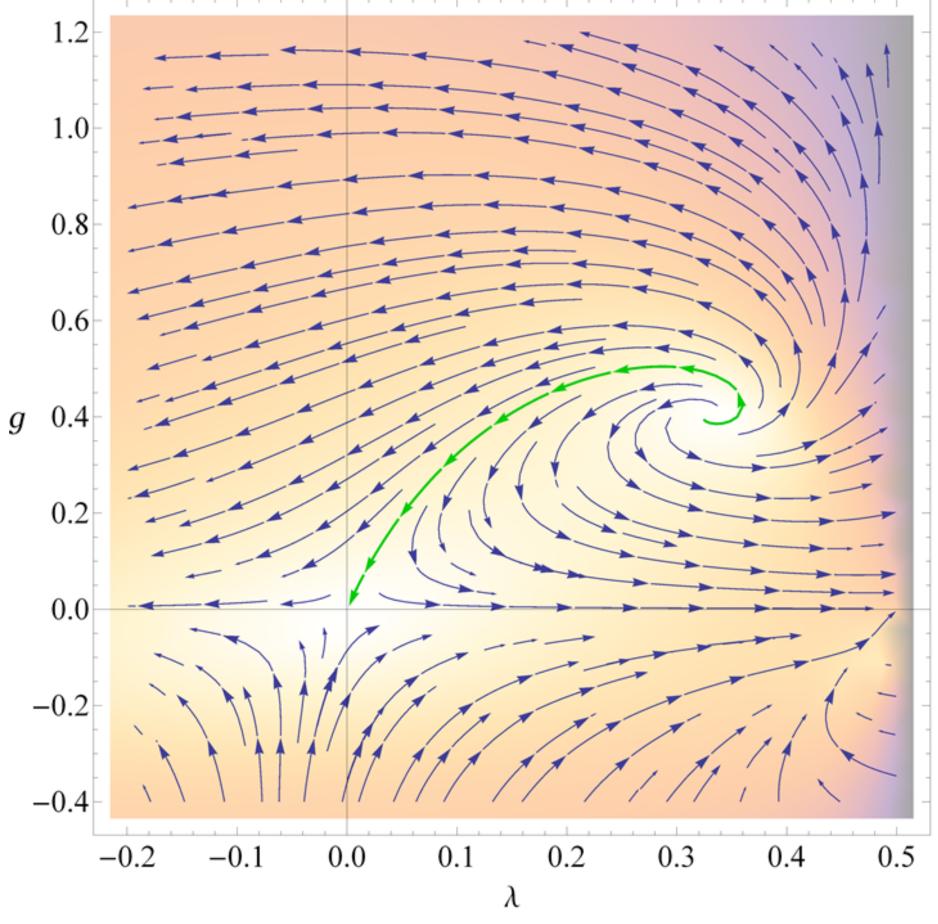


Asymptotic safety in Quantum Gravity Weinberg's hypothesis

The RG flow for the Einstein-Hilbert action (see Bonanno et al 2004.06810)

 $\beta_{g_N} = 2g_N - bg_N^2$

+ Effects on matter: $\beta_i \sim \frac{1}{M_P^2(\mu)} g_i$



Inflation **Period of accelerated expansion in the Early Universe**

The problems solved by inflationary theory:

- flatness problem
- Homogeneity and isotropy problem
 Eternal inflation (this talk)
- Small abundance of cosmological
 Reheating defects
- CMB temperature differences of order $\delta T/T \approx 10^{-5}$

- Inflation has its own theoretical problems
- Initial conditions

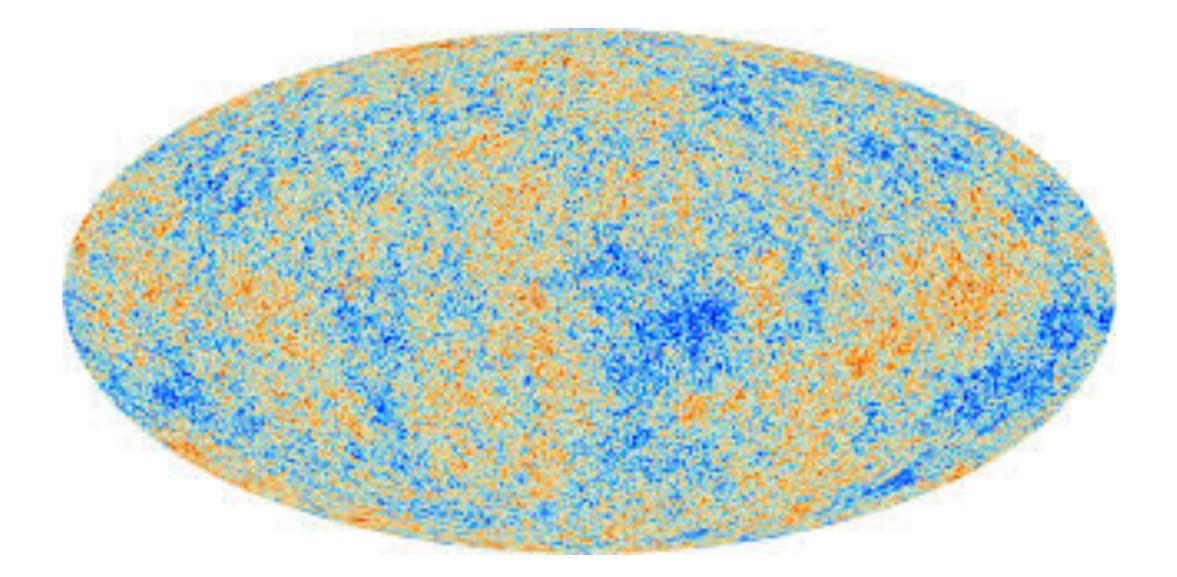
Inflation **Slow roll**

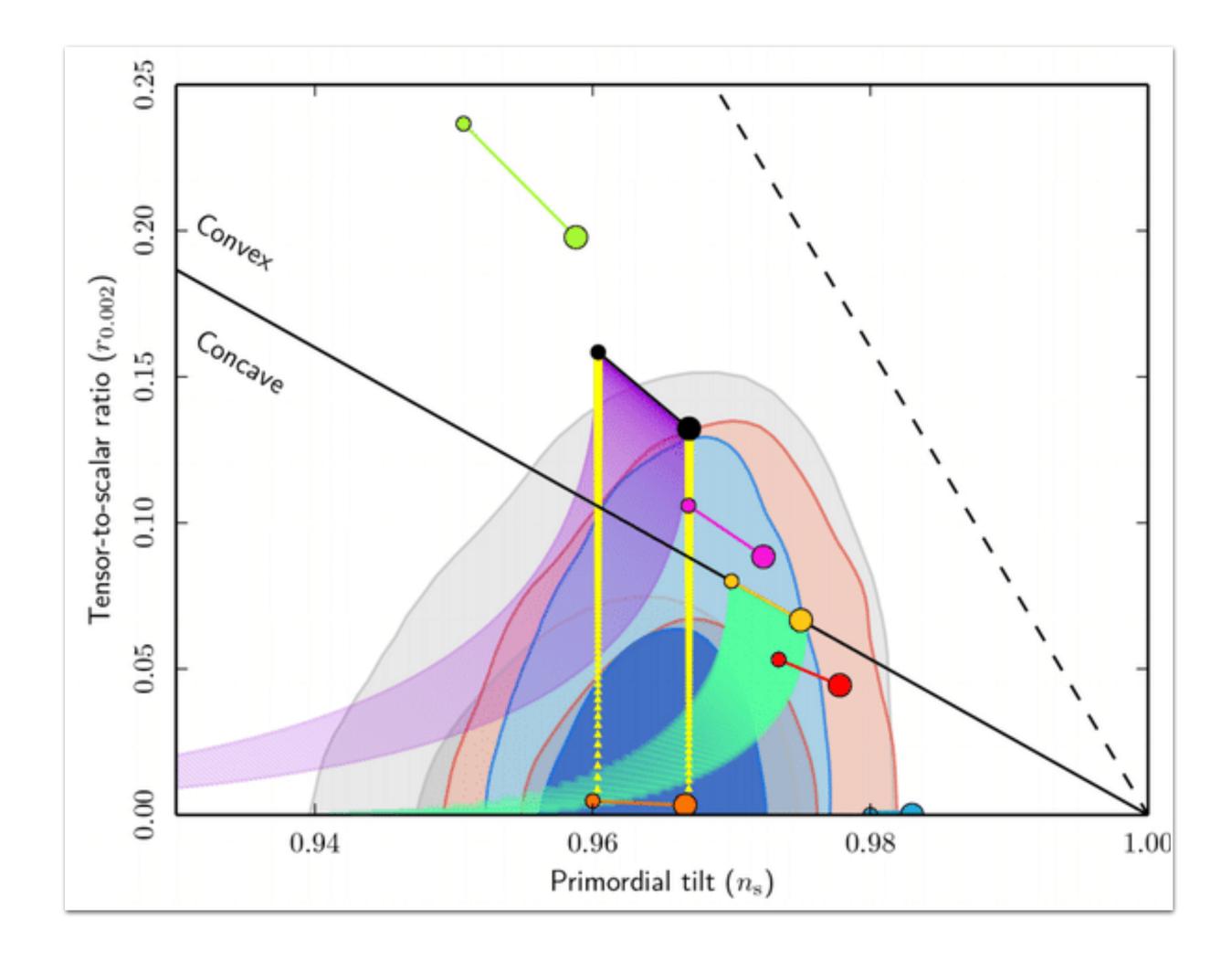
• The equation of state $\rho \approx -p$ and $\ddot{a} > 0$.

Inflation Slow roll

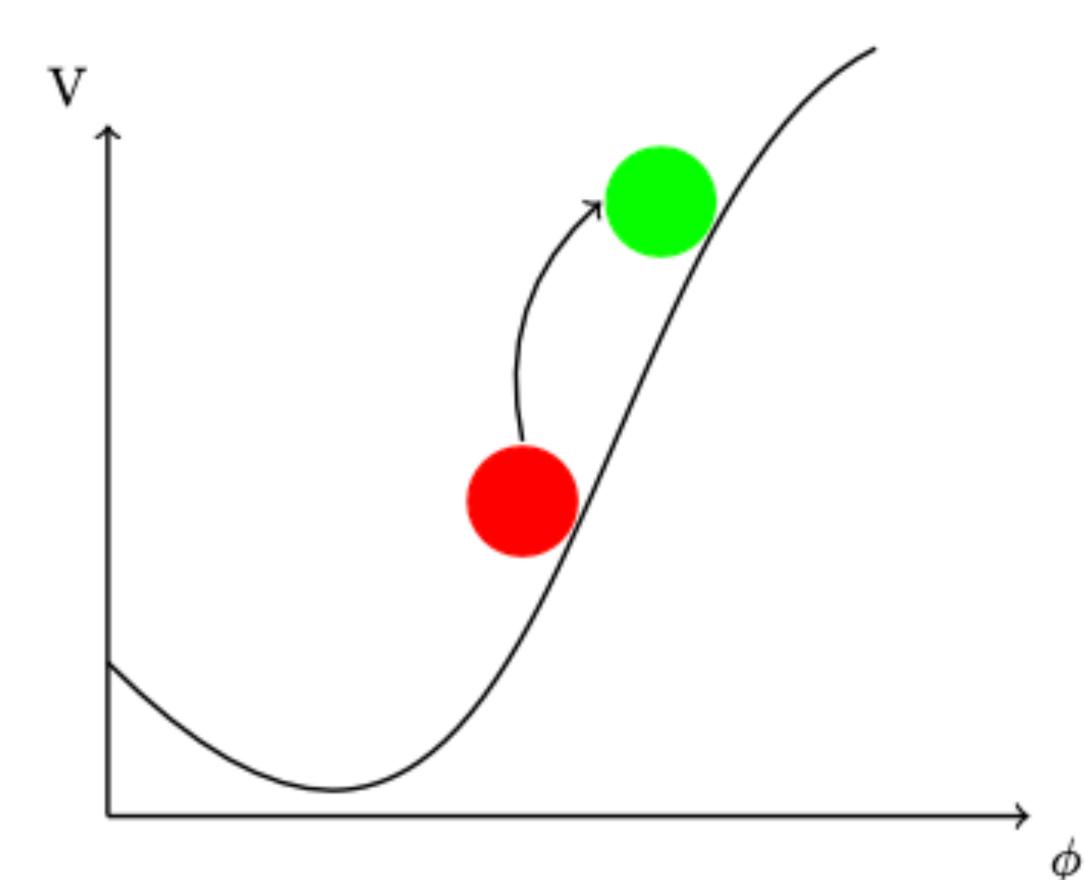
- The equation of state $\rho \approx -p$ and $\ddot{a} > 0$.
- Inflation driven by scalar field ϕ with potential $V(\phi)$.

Inflation Quantum fluctuations

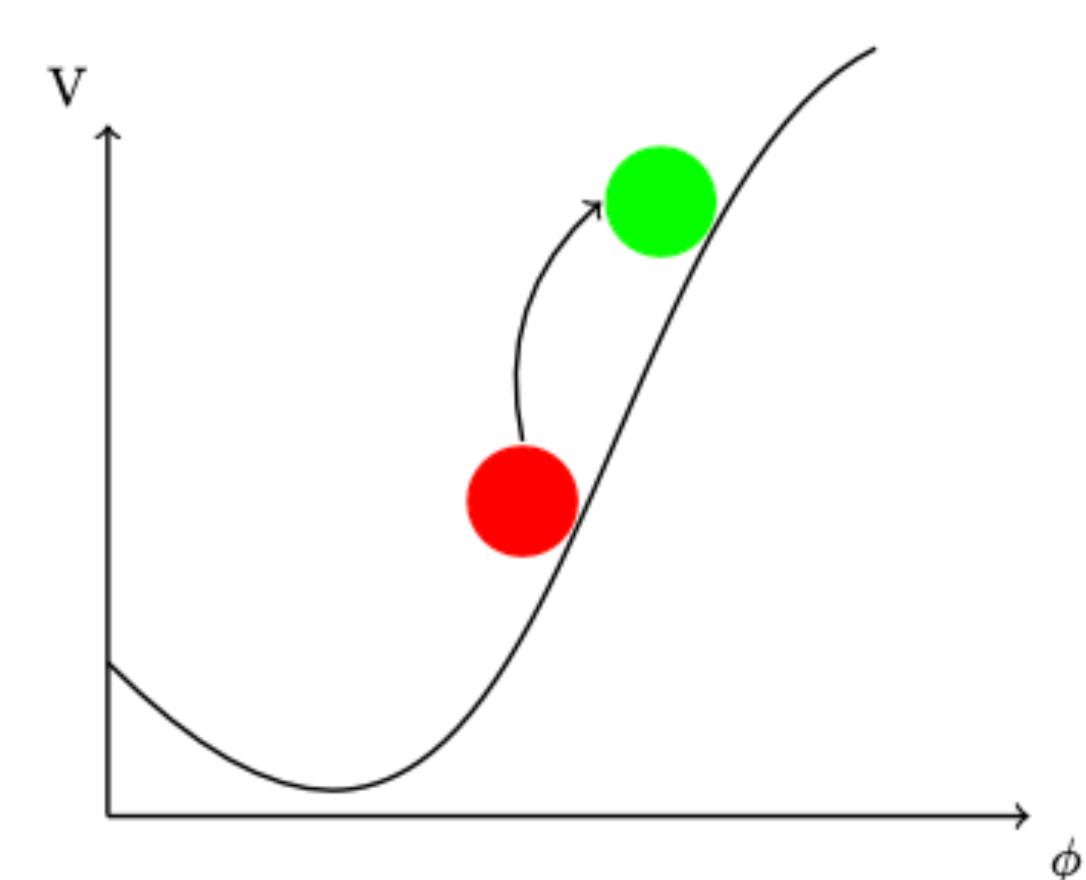


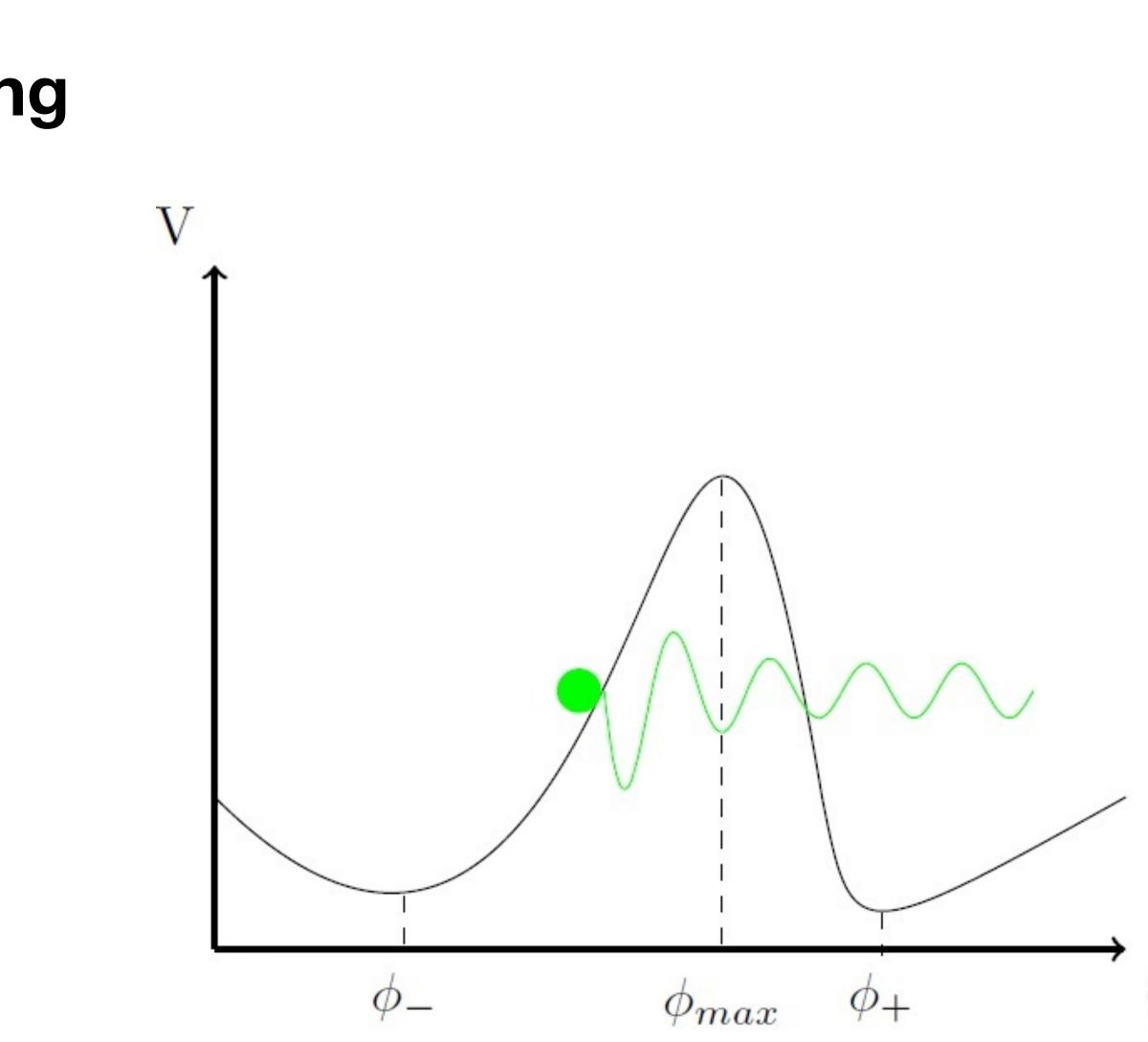


Inflation Quantum "jumps" and tunnelling



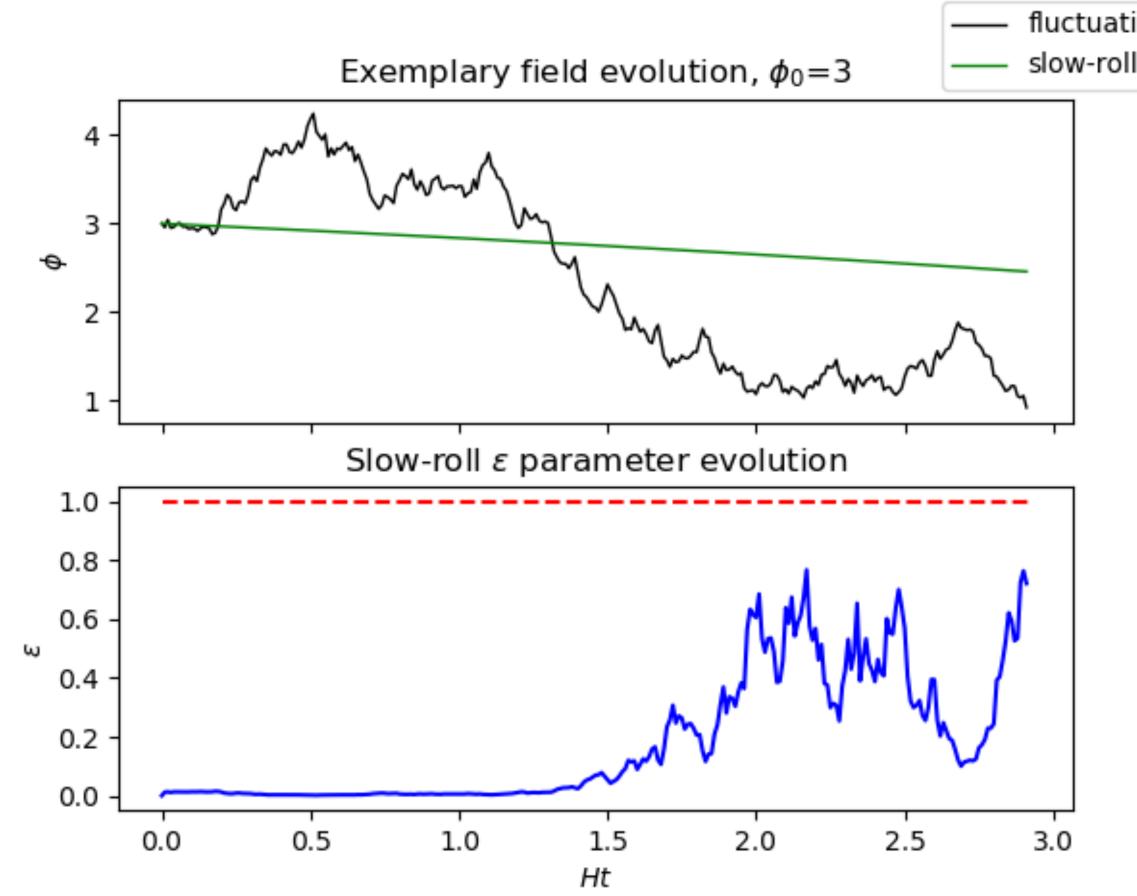
Inflation Quantum "jumps" and tunnelling

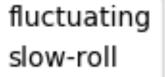




 Split into background and fluctuations

 $\phi(t, \vec{x}) = \phi_{cl}(t, \vec{x}) + \delta\phi(t, \vec{x})$

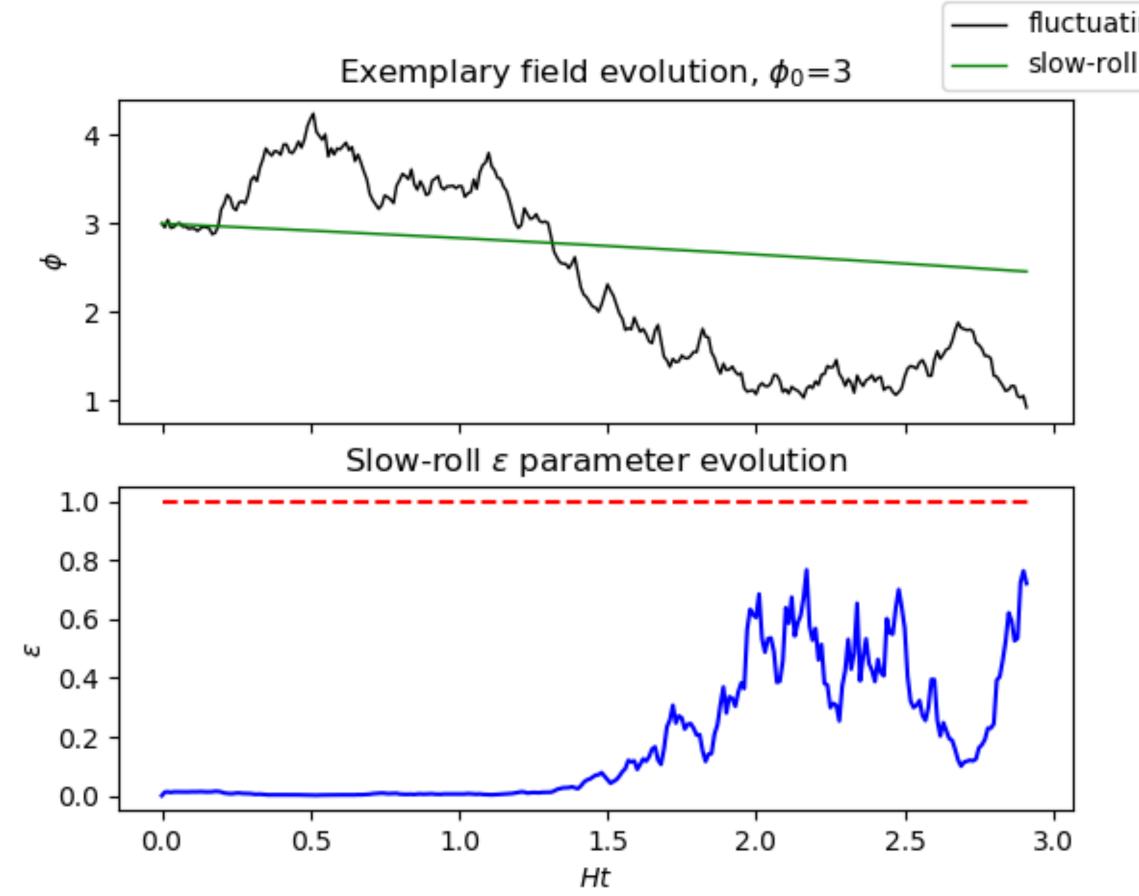


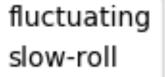


 Split into background and fluctuations

$$\phi(t, \vec{x}) = \phi_{cl}(t, \vec{x}) + \delta\phi(t, \vec{x})$$

 Slow roll with stochastic term $-\frac{\partial V}{dt} = \mathcal{N}(t).$ 3H

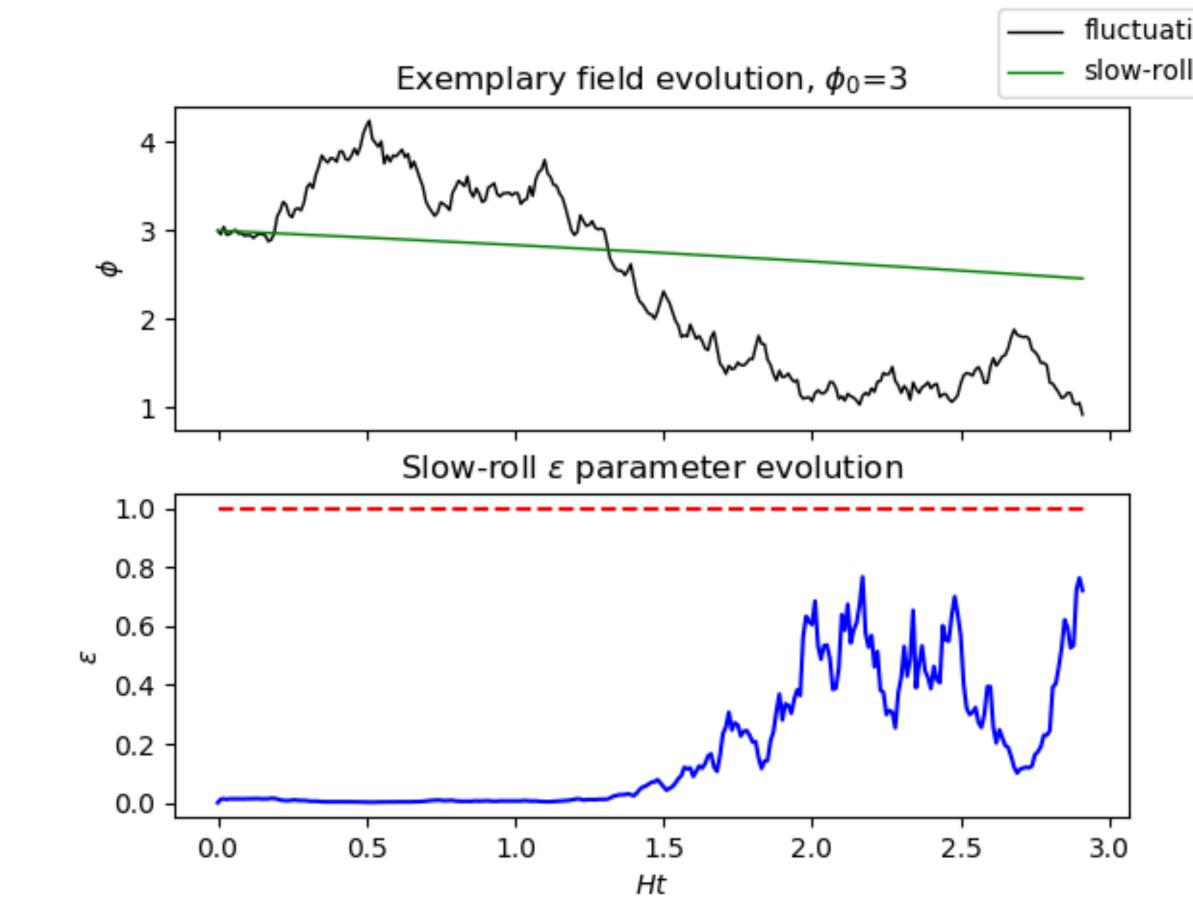


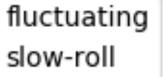


 Split into background and fluctuations

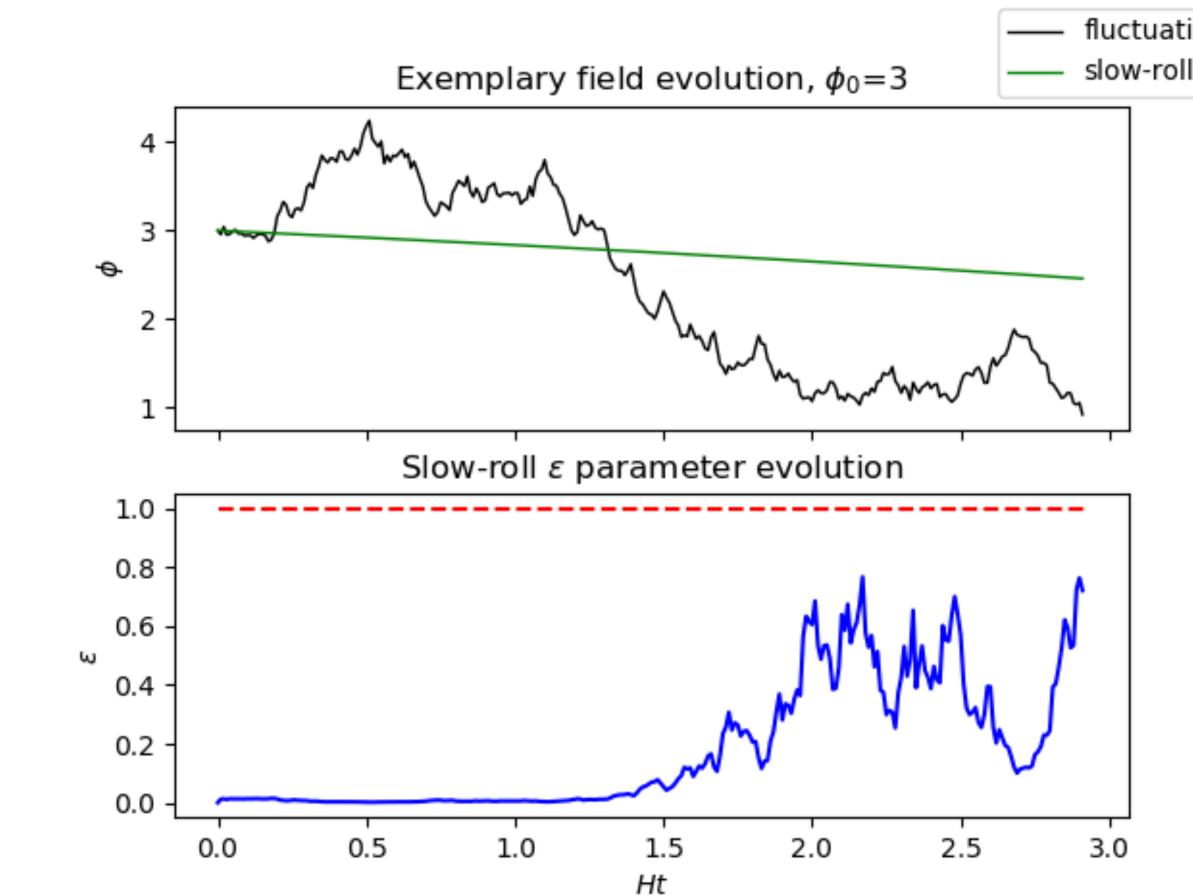
$$\phi(t, \vec{x}) = \phi_{cl}(t, \vec{x}) + \delta\phi(t, \vec{x})$$

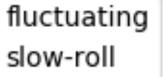
- Slow roll with stochastic term $+\frac{\partial V}{\partial t} = \mathcal{N}(t).$ 3*H*(
- The $\mathcal{N}(t)$ is Gaussian with mean 0 and variance $\sigma = H^3 t / (4\pi^2)$.





- Split into background and fluctuations $\phi(t, \vec{x}) = \phi_{cl}(t, \vec{x}) + \delta\phi(t, \vec{x})$
- Slow roll with stochastic term $+\frac{\partial V}{\partial t} = \mathcal{N}(t).$ 3*Η*φ
- The $\mathcal{N}(t)$ is Gaussian with mean 0 and variance $\sigma = H^3 t / (4\pi^2)$.
- To find $P[\phi, t]$ we histogram.





Eternal Inflation How inflation becomes eternal

• Probability that $\phi > \phi_{end}$ after time

t:
$$\Pr[\phi > \phi_{end}, t] = \int_{-\infty}^{\phi_{end}} P[\phi, t],$$

Eternal Inflation How inflation becomes eternal

- Probability that $\phi > \phi_{end}$ after time
- The error function approximated by exponent function

 $\Pr[\phi > \phi_{end}, t] \sim \exp(-At),$ lim F $t \rightarrow \infty$

$$t: \Pr[\phi > \phi_{end}, t] = \int_{-\infty}^{\phi_{end}} P[\phi, t],$$

$$\Pr[\phi > \phi_{end}, t] = 0,$$

Eternal Inflation How inflation becomes eternal

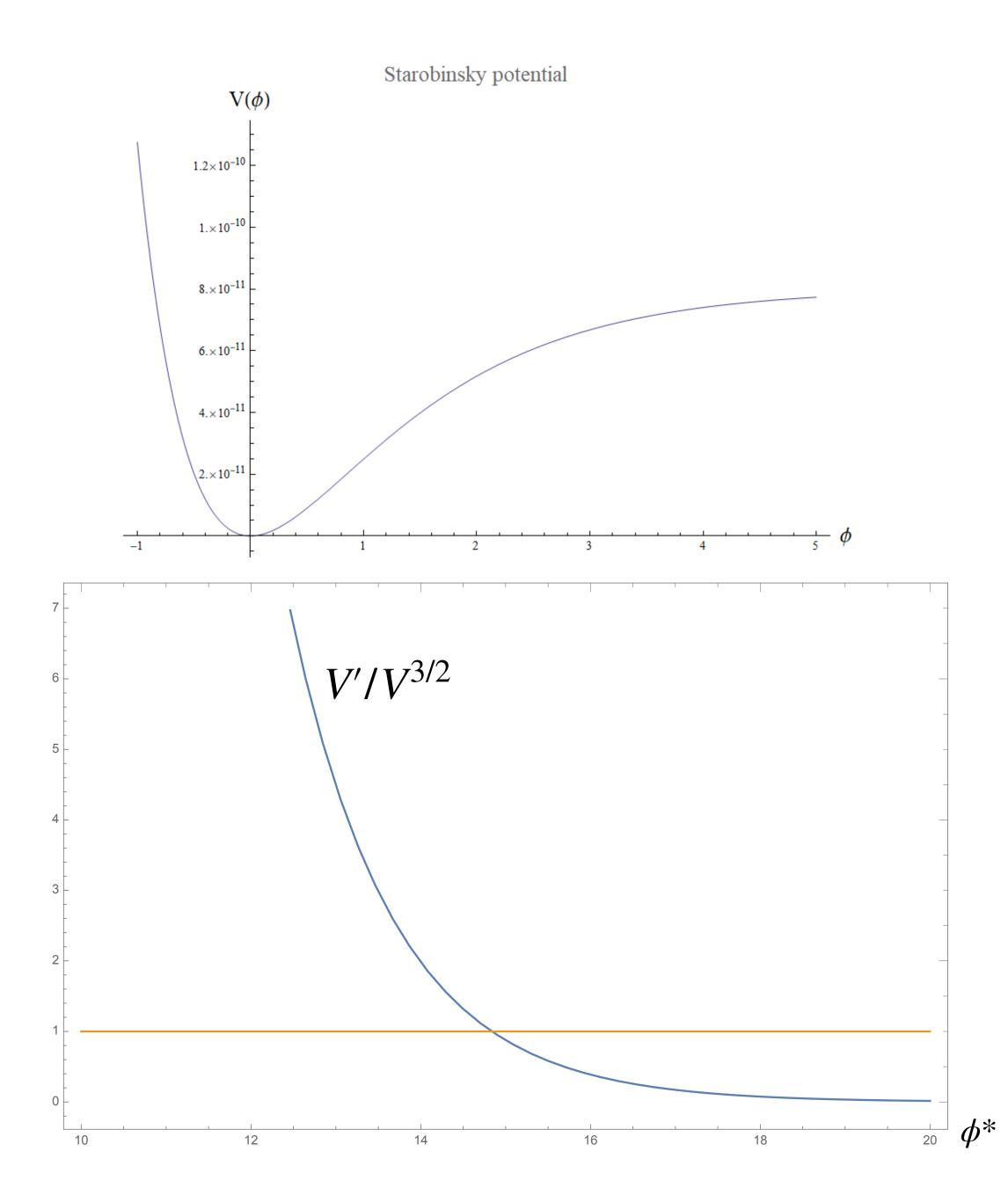
- Probability that $\phi > \phi_{end}$ after time
- The error function approximated by exponent function
- $\Pr[\phi > \phi_{end}, t] \sim \exp(-At),$ lim $t \rightarrow \infty$
- Take into account the exponential expansion of the Universe $U(\phi > \phi_{end}, t) = \Pr[\phi > \phi_{end}, t] \times U_0 e^{3Ht}$

t:
$$\Pr[\phi > \phi_{end}, t] = \int_{-\infty}^{\phi_{end}} P[\phi, t],$$

$$\Pr[\phi > \phi_{end}, t] = 0,$$

Eternal Inflation Starobinsky inflation

• Starobinsky action: $S = \frac{1}{2} \int \sqrt{g} d^4 x \left(M_{Pl}^2 R + 1 \frac{1}{6M^2} R^2 \right).$ effective Starobinsky potential $V(\phi) = V_0 \left(1 - \exp\left(-\sqrt{\frac{2}{3}} \frac{\phi}{M_P}\right) \right)^2,$ with $V_0 \approx 8 \times 10^{-11} M_{Pl}.$



Eternal Inflation RG improved Starobinsky inflation

- effects
- Quadratic gravity Lagrangian can be RG-improved $L_k = \frac{k^2}{16\pi g_k} (R - 2\lambda_k k^2) - \beta_k R^2$

Transplanckian values of the fields requires taking into account quantum gravity

Eternal Inflation RG improved Starobinsky inflation

- effects
- Quadratic gravity Lagrangian can be RG-improved $L_k = \frac{k^2}{16\pi g_k} (R - 2\lambda_k k^2) - \beta_k R^2$
- $\lim_{k \to \infty} (g_k, \lambda_k, \beta_k) = (g_*, \lambda_*, \beta_*) \neq (0, 0, 0),$ $k \rightarrow \infty$

Transplanckian values of the fields requires taking into account quantum gravity

Eternal Inflation RG improved Starobinsky inflation

- effects
- Quadratic gravity Lagrangian can be RG-improved $L_k = \frac{k^2}{16\pi g_k} (R - 2\lambda_k k^2) - \beta_k R^2$
- $\lim_{k \to \infty} (g_k, \lambda_k, \beta_k) = (g_*, \lambda_*, \beta_*) \neq (0, 0, 0),$ $k \rightarrow \infty$

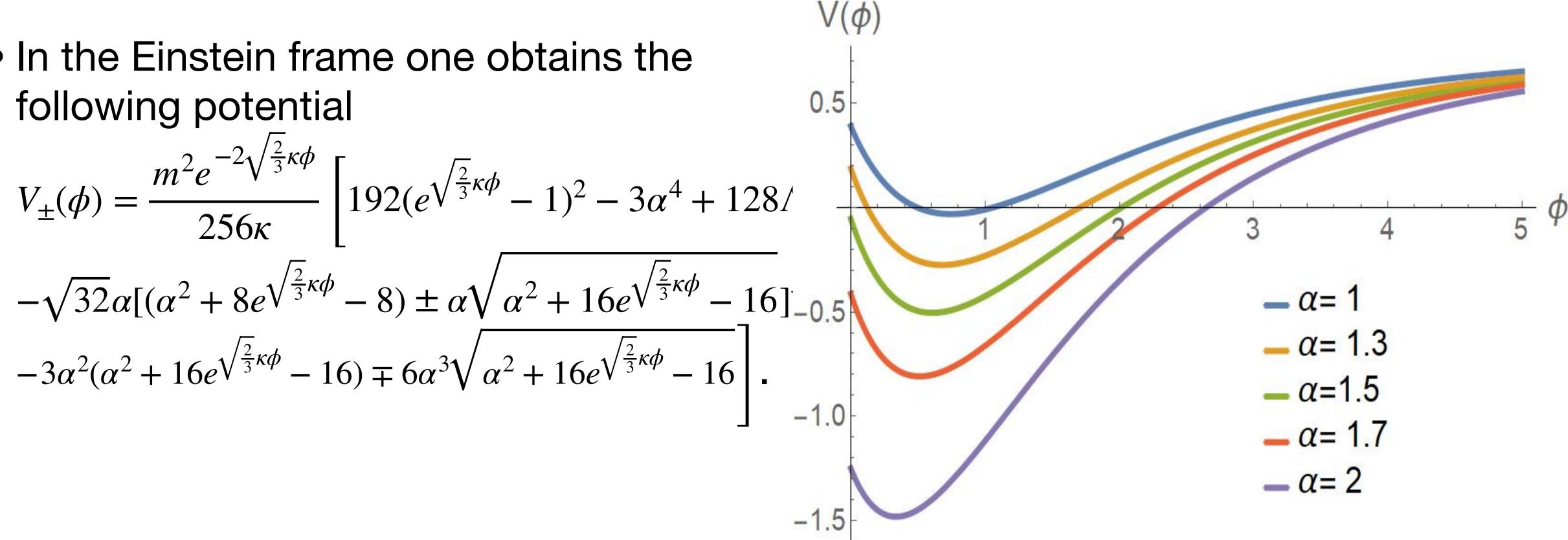
•
$$\beta = \beta^* + b_0 \left(\frac{k^2}{\mu^2}\right)^{-1/2}$$
, $k^2 \to \xi R$

Transplanckian values of the fields requires taking into account quantum gravity

and $\alpha = -2\mu^{\theta_3} b_0 / M_{PI}^2$.

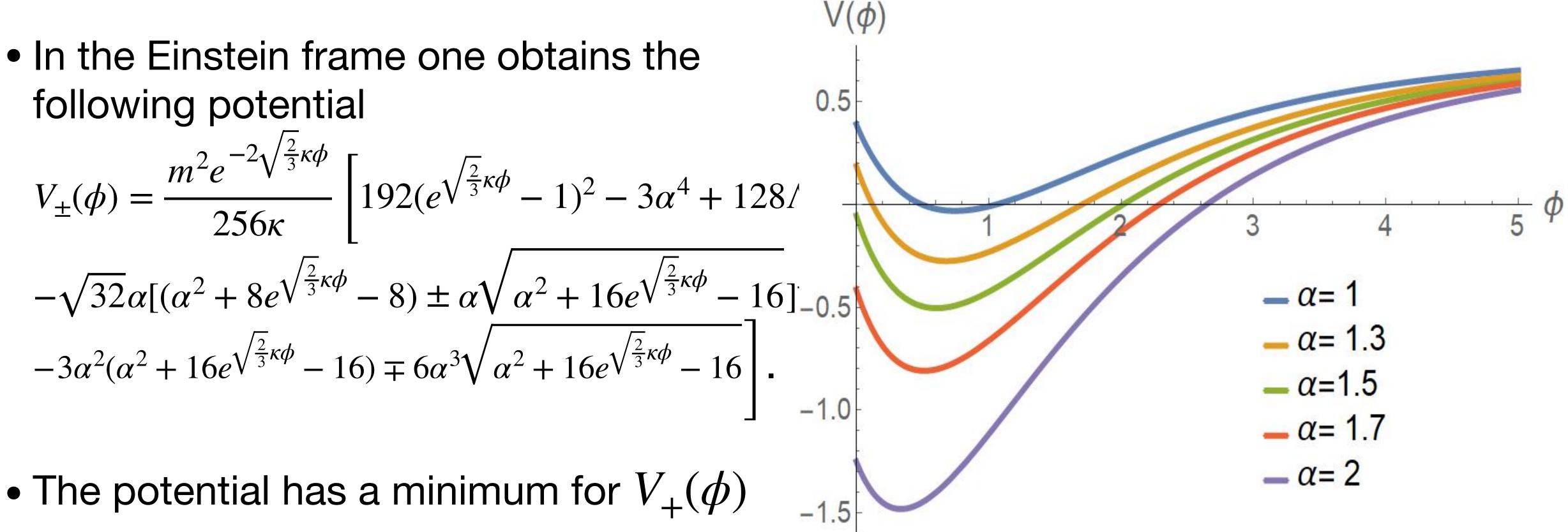
Eternal Inflation RG improved potential

 In the Einstein frame one obtains the following potential



Eternal Inflation RG improved potential

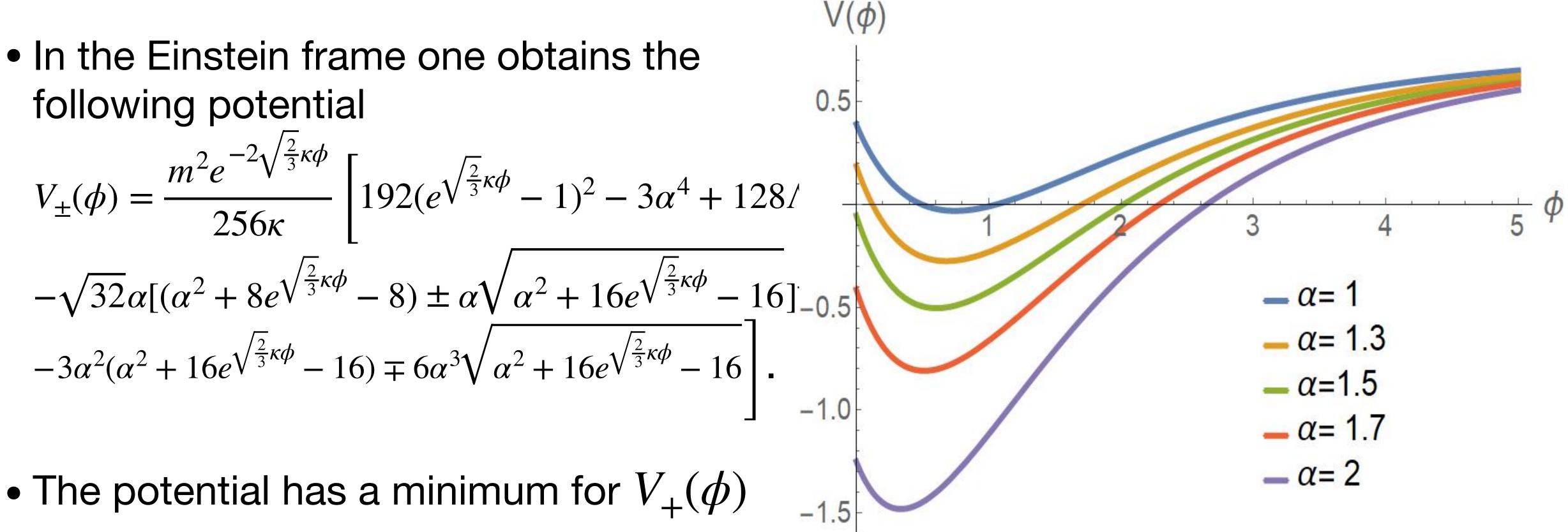
 In the Einstein frame one obtains the following potential



for $\alpha \in [1,3]$ and $\Lambda \in [0,1.5]$.

Eternal Inflation RG improved potential

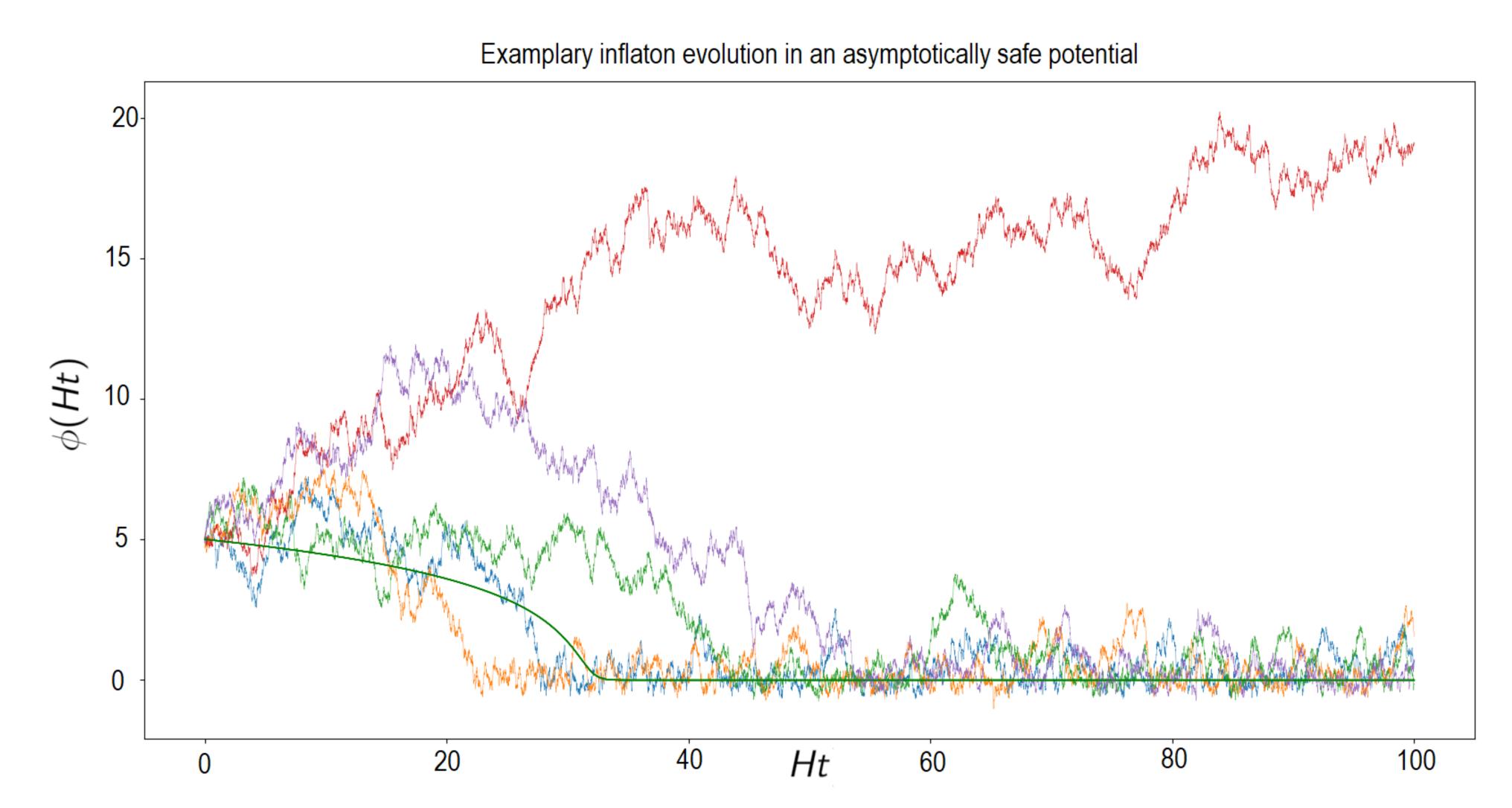
 In the Einstein frame one obtains the following potential



for $\alpha \in [1,3]$ and $\Lambda \in [0,1.5]$.

•
$$\alpha \rightarrow 0, \Lambda \rightarrow 0$$
 Starobinsky.

Eternal inflation Stochastic evolution

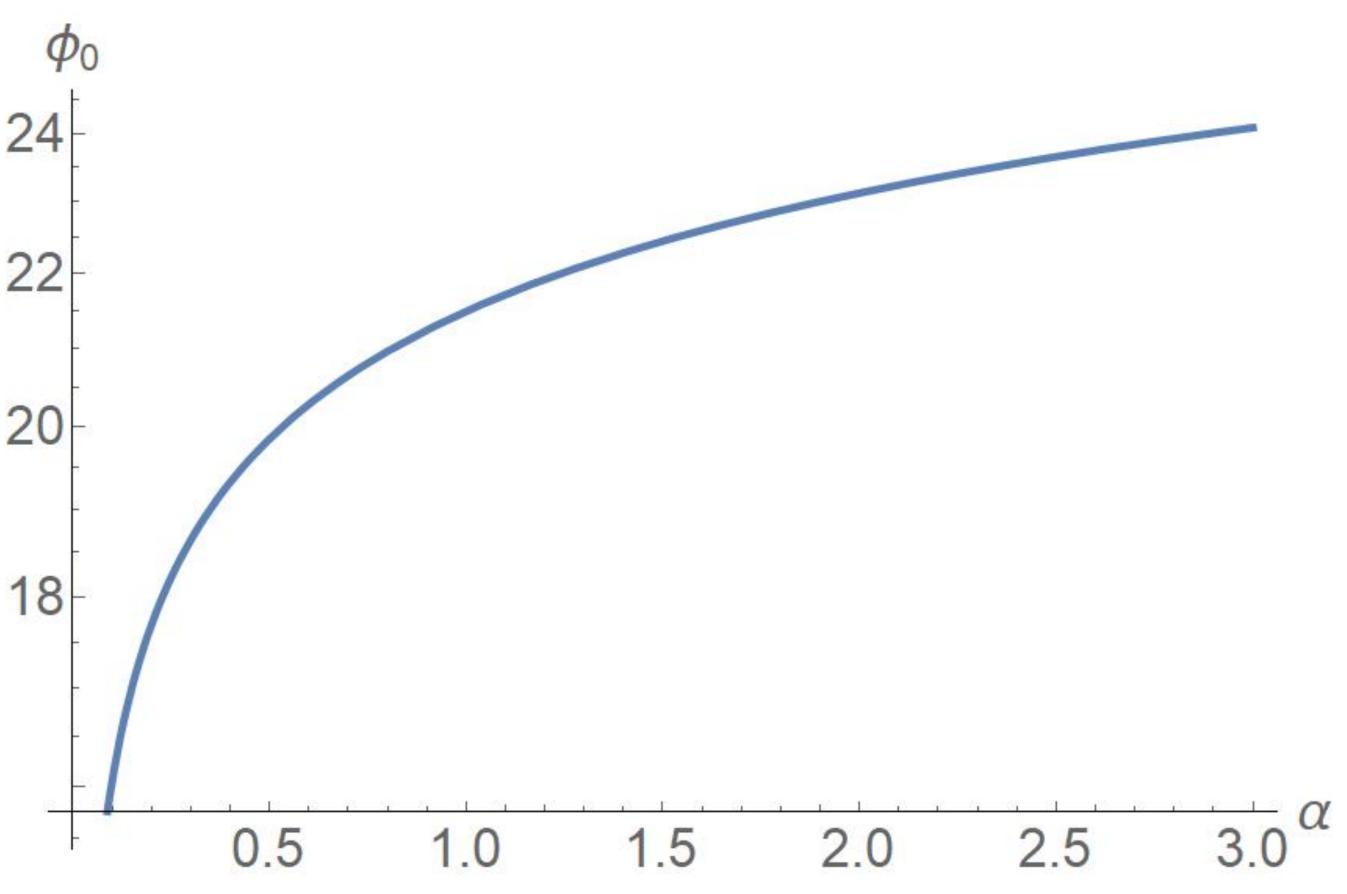


Eternal inflation Asymptotic safety

• $\phi_0 \propto \log(\alpha)$, since $V_+(\phi) \sim \alpha^4 e^{-\sqrt{\frac{2}{3}}\kappa\phi} m^2/\kappa^2$, 22 20

• No Λ dependence

18

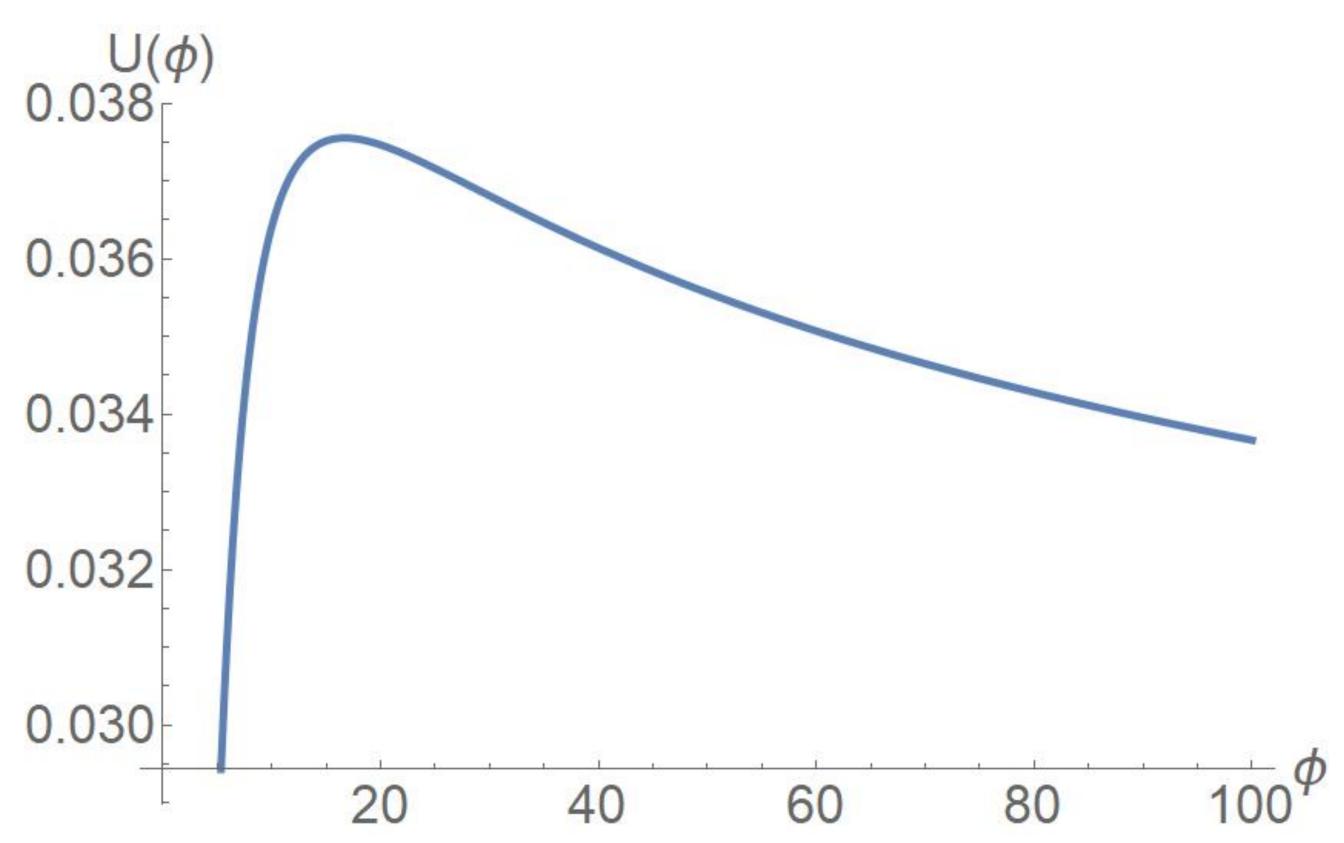


Eternal Inflation Asymptotic Safety in Veneziano limit of Yang Mills

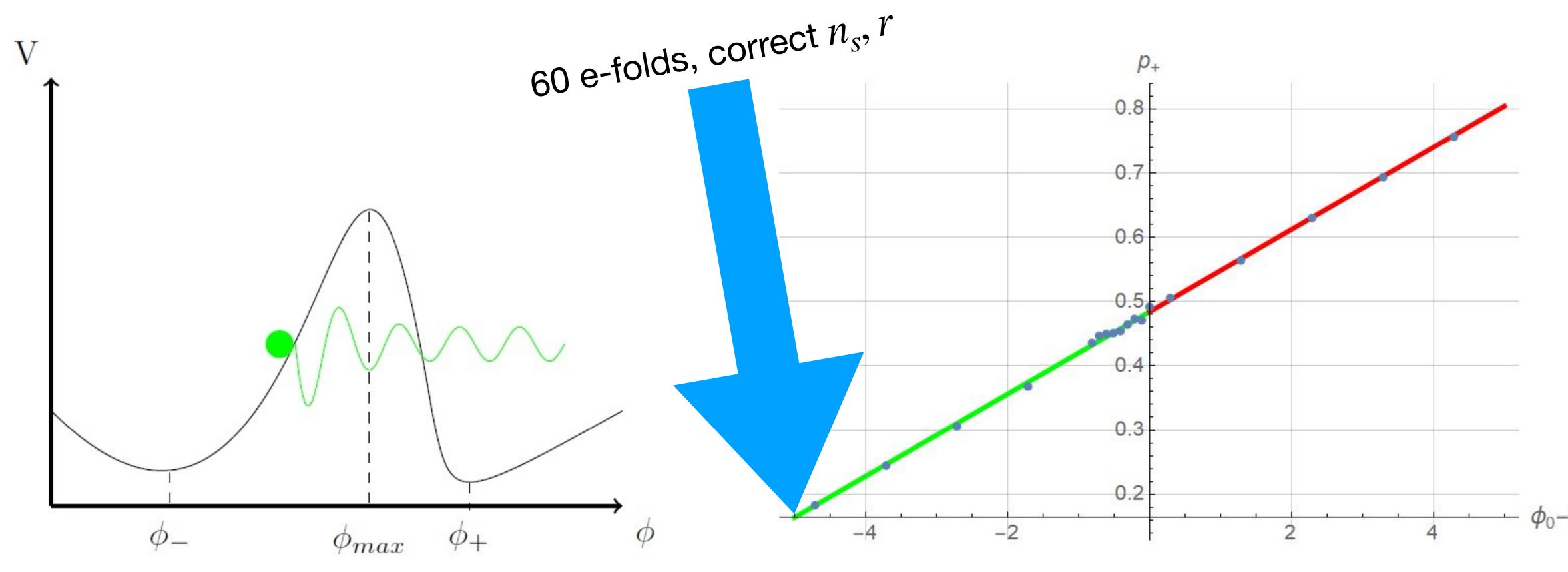
•
$$\frac{N_F}{N_c} - \frac{11}{2} = \delta$$
, N_F , N_c large

•
$$\mathscr{L} \ni \xi \phi^2 R$$

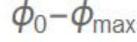
- RG improvement gives the Lambert W function potential
- Inflation matching observables with $\xi \approx 1$ and $N_F \approx N_{SM}$
- Potential too steep for El



Eternal Inflation Tunnelling effects



$$N_F = 10, \quad \xi = \frac{1}{6}, \quad \delta = 0.1$$



Eternal inflation Summary

- The existence of FP generically flattens the potential giving rise to eternal inflation
- Tunneling effects also can give rise to eternal inflation
- Finite action and eternal inflation: 2102.05550
- If you want to find out more see: 2101.00866 and 2102.13556

Eternal Inflation Fokker Planck equation

- In infinitesimal time δt : $\delta\phi = -\frac{1}{3H}V'(\phi)\delta t + \delta\phi_q(\delta t), \quad \delta q$
- $\dot{P}[\phi,t] = \frac{1}{2} \frac{H^3}{4\pi^2} \partial_{\phi} \partial^{\phi} P[\phi,t] + \frac{1}{3H} \partial_{\phi} \left((\partial^{\phi} V) P[\phi,t] \right).$
- For $V(\phi) \approx V_0$ solution is given by I

$$\phi_q \sim \mathcal{N}(0, H^3(\delta t)/(2\pi)^2),$$

• the probability distribution of ϕ at time t is given by Fokker Planck equation

$$P[\phi, t] = \frac{1}{\sigma(t)\sqrt{2\pi}} \exp\left[\frac{-\phi^2}{2\sigma(t)^2}\right]$$