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@ Given a scale-invariant power spectrum of adiabatic
fluctuations on "super-horizon" scales before teq, i.€.

Introduction

Challenges

Bt standing waves.

i o — "correct" power spectrum of galaxies.

Commor @ — acoustic oscillations in CMB angular power
spectrum.

Conclusions

@ — baryon acoustic oscillations in matter power
spectrum.
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Fig. la. Diagram of gravitational instability in the ‘big-bang” model. The region of instability is

located to the right of the line M (¢); the region of stability to the left. The two additional lines of

the graph demonstrate the temporal evolution of density perturbations of matter: growth until the

moment when the considered mass is smaller than the Jeans mass and oscillations thereafter. It is

apparent that at the moment of recombination perturbations corresponding to different masses
correspond to different phases.
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_ o Inflationary Cosmology is the first scenario based on
egmalegy causal physics which yields such a spectrum.

@ But it is not the only one.
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Challenges isotropy of the CMB.

Ekpyrosis 5 0 . . . .

e o Scales of cosmological interest today originate inside
Cosmology the Hubble radius at early times in order for a causal
- generation mechanism of fluctuations to be possible.

@ Mechanism for producing a scale-invariant spectrum of
curvature fluctuations on super-Hubble scales.
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Ekpyrosis inflation.

U o — motivgtes the searc_:h for realizations of alfrernative
early universe scenarios from quantum gravity.

o Realization of bouncing scenario by means of an

Conclusions S-Brane [RB and Z. Wang, arXiv:2001.00638].

o Realization of emergent scenario from BFSS matrix
model [S. Brahma, RB and S. Laliberte,
arXiv:2108.11512].
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Successes of Inflation
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Introduction problems of SBB cosmology

Challenges o Classical matter redshifts — matter vacuum remains
Ekpyrosis

e @ Quantum vacuum fluctuations: seeds for the observed

Cosmology density fluctuations [Chibisov & Mukhanov, 1981] and

gravitational waves (Starobinsky, 1978).

o Approximately scale-invariant spectra of density
fluctuations and gravitational waves.

o Small red tilt of the spectrum of density fluctuations.

o Prediction: Small red tilt of the spectrum of
gravitational waves.
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Introduction o Assumption: Space-time described by General
Challenges Relat|V|ty

Ekpyrosie o — require matter with p < —1p.
String

Cosmalogy o Consider scalar field ¢ as matter.

o In contrast to other matter fields, scalar fields have a
potential energy term V().

o Potential energy has an equation of state p = —p.
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Obtaining Inflation Il
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R Branden. o Other forms of energy have equations of state with
p > —%p which do not yield inflation.

o Thus one needs to ensure that potential energy

Introduction

Challenges q
e dominated over other forms of energy!
pyrosis
String o Require a slowly rolling scalar field:
Cosmology
4 < 1
74 Mpy ’

Conclusions

o Require rolling over large distances

Ap > my.
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A Large field inflation is a local attractor in initial condition
Challenges space (J. Kung and RB, 1990; RB, arXiv:1601.01918).

Ekpyrosis
U Fine tuning of initial conditions required for small field
: inflation (D. Goldwirth and T. Piran 1992).

Gonciislons Note: Tuning of the initial spatial curvature required (also for
large field inflation).

22/95



Problems of the Inflationary Scenario

String
Cosmology

R. Branden-
berger

@ Singularity problem persists.

Introduction

Challenges @ How does one obtain inflation?
=iz e o Inflation takes place at energy scales close to the
. Planck scale.
o At this scale quantum effects of gravity should be
important.

Conclusions

o Effective field theory analysis of inflationary
cosmology is unable to handle this problem.
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o Success of inflation: At early times scales are inside

CoEisne the Hubble radius — causal generation mechanism is
possible.

o Problem: If time period of inflation is more than 70H~1,
then \p(t) < Iy at the beginning of inflation.

o — breakdown of effective field theory; new physics
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Ekpyrosis @ — Cauchy problem not well defined for observer

Shring external to black holes.

osmology

Goanol o Evolution non-unitary for external observer.

o Conjecture: ultraviolet physics — external observer

shielded from the singularity and non-unitarity by
horizon.
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Introduction

Challenges o Position space — momentum space.

Ekpyrosis . . .

e o Singularity — trans-Planckian modes.
oo o Black Hole horizon — Hubble horizon.

CemE ST Observer outside of Hubble horizon must be shielded from
the trans-Planckian modes.
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o Recall: non-unitarity of quantum field theory in an

inieduction expanding universe (N. Weiss, Phys. Rev. D32, 3228

Challenges (1 985)).

E:Z;OS‘S o H is the product Hilbert space of a harmonic oscillator
Cosmology Hilbert space for all comoving wave numbers k

o Fixed Kmin, time dependent Kmax : Kmax(t)a(t)=" = my
Conclusions o Demand: classical region be insensitive to

non-unitarity.
@ — no trans-Planckian modes ever exit Hubble horizon.
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Implications for Dark Energy

Dark Energy cannot be a bare cosmological constant.
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Constraints on Inflation from String Theory /
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Introduction o There is a vast landscape of effective field theories.

G @ Any space-time dimension, and number of fields, any
Ekpyrom shape of the potential, any field range.
tring

ology o Superstring theory is very constraining.

@ Only a small subset of all EFTs is consistent with
string theory.

Conclusions

o The rest lie in the swampland.

36/95



String
Cosmology

R. Branden-
berger
Introduction
Challenges

Ekpyrosis

String
Cosmology

String Theory

Energy scale (Quantum Gravity)

Set of consistent low-
energy effective
Quantum Field Theories

SWE] m\pla nd

37/95



String
Cosmology

R. Branden-

berger

Introduction
Challenges
Ekpyrosis

String
Cosmology

Conclusions

What are conditions for habitable islands sticking out from
the swamp?

38/95



String
Cosmology

el \What are conditions for habitable islands sticking out from
berger the swamp?

Introduction

o The effective field theory is only valid for Ay < dmy,
Ekpyrosis (field range condition).

String @ The potential of ¢ obeys (de Sitter conjecture)

Cosmology
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1
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Note: d, ¢y, c> constants of order 1.
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Introduction

Challenges o No canonical single field inflation.

Ekpyrosis @ No bare positive cosmological constant.
String . o
Cosmology o Dark Energy is not a bare cosmological constant.

o Quintessence dark energy is constrained (L.
Heisenberg et al, arXiv:1808.02877).
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@ Bouncing cosmologies are consistent with the TCC (as
_ long as the energy scale at the bounce is lower than
Coeolcay the Planck scale).

o Emergent cosmologies are consistent with the TCC.
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Bottom Line

o TCC — limitations on EFT description of the very early
universe.

o — improved description of the early universe needs to
be based on physics beyond the usual EFT.
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o Ekpyrotic Scenario: Bouncing cosmology with a
Introduction phase of very slow contraction.

Sl o Among bouncing models the Ekpyrotic scenario has
:}T;S'S distinct advantages:

Cosmolagy o Dilutes anisotropies.

o Creates spatial flatness.

Conclusions o Attractor in initial condition space.

o Thus, the Ekpyrotic scenario shares the same nice
features with large field inflation.
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Conclusions p

q= 1i-p
This can be obtained using GR plus scalar field matter with
a negative exponential potential

V(p) = _Voe—\/Z/pw/mp/
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R Branden- @ How is the bounce realized?
@ How does one obtain a spectrum of almost
scale-invariant cosmological perturbations?

Ekpyrosis o Are gravitational waves produced with a significant
String amplitude on cosmological scales?

Cosmology

Introduction

Challenges

Note: Previous realizations of Ekpyrosis

o Require extra/new matter fields to obtain a non-singular
bounce.

o Require extra matter fields to obtain cosmological
perturbations with an approximately scale-invariant
spectrum.

o Predict a vacuum spectrum of gravitational waves.

Conclusions
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Our work:

Introduction

T o S-brane mediates a continuous bounce.

Ekpyrosis o Gravitational waves passing through the brane

T, acquire a scale-invariant spectrum.

Commor o If the S-brane has zero shear, then a scale-invariant
spectrum of curvature fluctuations is generated.

o Two consistency relations among the four basic
cosmological observables.

Conclusions

49/95



Motivation for an S-Brane

String
Cosmology

R. Branden-
berger
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SIEeges becomes comparable in mass to the usual low energy
Ek| i
: S degrees of freedom;
rng . . . .
gosrﬁowgy — they must be included in the low energy effective action.

The new term is localized on a space-like hypersurface:
S-Brane.
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iecieien o Vanishing T perpendicular to the surface — p =0
E::;Ej:s o Relativistic object — tension in space-like directions
S - p<0

S o — violation of the Dominant Energy Condition.

i @ — it is possible to obtain a non-singular cosmology
Conesons o — itis possible to obtain a bouncing cosmology
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berger freedom which string theory provides to construct a new
theory of the very early universe.
SN Assumption: Matter is a gas of fundamental strings
Ekpyrosis Assumption: Space is compact, e.g. a torus.

String Key pOIntS

Cosmology

e o New degrees of freedom: string oscillatory modes

o Leads to a maximal temperature for a gas of strings,
the Hagedorn temperature

@ New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
equivalent to physics at small R

Introduction
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T-Duality
@ Momentum modes: E, = n/R

Winding modes: E;, = mR

Duality: R —1/R (n,m) — (m, n)

Mass spectrum of string states unchanged

Symmetry of vertex operators

Symmetry at non-perturbative level — existence of
D-branes
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String Gas Cosmology and the Dimensionality
of Space

String
Cosmology
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berger

@ Winding modes prevent space from expanding.
@ Momentum modes prevent space from shrinking.

Introduction

E::;‘Z]j: : o Expansion of space requires decay of winding modes.
U o Since winding strings are two-dimensional world

g cas sheets, their interaction rate vanishes in more than four
space-time dimensions.

Conclusions o — only three spatial dimensions can become large.

61/95



String Gas Cosmology and the Dimensionality
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berger

@ Winding modes prevent space from expanding.
@ Momentum modes prevent space from shrinking.
o Expansion of space requires decay of winding modes.

Introduction
Challenges

Ekpyrosis

Sl @ Since winding strings are two-dimensional world

osmology . . . . .

Sting Gas sheets, their interaction rate vanishes in more than four
space-time dimensions.

Conolusions @ — only three spatial dimensions can become large.

Note: string gases can play a key role in the stabilization of
both size and shape moduli.
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Structure formation in string gas cosmology

N.B. Perturbations originate as thermal string gas
fluctuations.



Method
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berger

o Calculate matter correlation functions in the Hagedorn
ieduston phase (neglecting the metric fluctuations)

e o For fixed k, convert the matter fluctuations to metric
String fluctuations at Hubble radius crossing t = (k)

St o Evolve the metric fluctuations for t > t;(k) using the

Cosmology
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: o Calculate matter correlation functions in the Hagedorn
ieduston phase (neglecting the metric fluctuations)

Challenges

: o For fixed k, convert the matter fluctuations to metric

String fluctuations at Hubble radius crossing t = (k)

Cosg;'ogy o Evolve the metric fluctuations for t > t;(k) using the
usual theory of cosmological perturbations

Ekpyrosis

Conclusions

Note: The matter correlation functions are determined by
the partition function of the system.
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Extracting the Metric Fluctuations

String
Cosmology

gl Ansatz for the metric including cosmological perturbations
and gravitational waves:

Introduction

Challenges

Ekpyrosis d32 — 32(1’]) ((1 —+ 2¢)d7’]2 — [(1 — 2¢)6’/ aF h,/]dXIde) .
String
Cosmology

Inserting into the perturbed Einstein equations yields

Conclusions <|¢(k)‘2> = 167T2G2k_4<6T00(k)5T00(k)>7

(Ih(K)[?) = 1672 GPKk=*(5T' (K)o T';(K)) .
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String
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berger

Key ingredient: For thermal fluctuations:

Introduction

Challenges T2
Ekpyrosis <5p2> = ﬁcv
G Key ingredient: For string thermodynamics in a compact
space
COIWC\U;ioHs Rz 3
oy~ 2Pl
T(1—=T/Th)
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Conclusions

Power spectrum of cosmological fluctuations

Po (k)

8G?k~ 1 < |op(k)|? >
8G?k? < (6M)? >
8G?k~* < (6p)? >R

T 1
ol 1
Sl
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Conclusions

Power spectrum of cosmological fluctuations

Po(k) = 8G?k™' < |dp(k)|? >
= 8G?k? < (0M)? >R
= 8G*k* < (6p)? >R

T 1
_ 2 1
- &G B1-T/Ty

Key features:

o scale-invariant like for inflation
o slight red tilt like for inflation
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Introduction = 1 67T2 sz_4 < | TI/( R) |2 >

Challenges

2

Ekpyrosis

167r262€13(1 —~T/Ty)
S

String
Cosmology

Key ingredient for string thermodynamics

: T
onclusions m 2 — —
= <ITYR)P >~ g1 = T/Ty)

>ay

Key features:

o scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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Introduction o String Gas Cosmology appears to be an alternative to
Challenges inflation for generating the structures we see in

S cosmological observations.
String . . o
Cosmology o String Gas Cosmology: nonsingular, solves the horizon

String Gas

Cosmology ’ problem .

@ Achilles heel: how do we describe the emergent phase
mathematically?

Conclusions
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Matrix Theory Cosmology

String
Cosmology

R. Branden-

berger Starting point: BFSS matrix model at high temperatures.

iredueion @ BFSS model is a quantum mechanical model of 10
SN N x N Hermitean matrices.

Ekpyrosis

String o Note: no space!

Cosmology

@ Note: no singularities!

o Note: BFSS matrix model is a proposed

Conclusions non-perturbative definition of superstring theory: 10
dimensional superstring theory emerges in the N — oo
limit.
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Introduction
Challenges _ 1 1 \2 1 ' 2
Ekpyrosis L — 2_92[Tr<§(Dt)(l) - Z[)([,)(/] )]

String
Cosmology Where

o X;,i=1,..9are N x N Hermitean matrices.
Conclusions o Dy: gauge covariant derivative (contains a matrix Ap)
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o Consider a high temperature state.
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Introduction

Challenges

— o Consider a high temperature state.

String o At high temperatures, the bosonic sector of the
ey (Euclidean) BFSS model is equivalent to the bosonic
sector of the (Euclidean) IKKT matrix model.

Conclusions
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IKKT Matrix Model

String
Cosmology

R. Branden- Proposed as a non-perturbative definition of the 11B
peraer Superstring theory.

Introduction
Challenges Action:
Ekpyrosis

String
Cosmology 1

1 4 7 ocra
S = — G Te(41A% AllAa. A + 500(CT)aslAa. 5]

Conclusions

Partition function:

z - / dAdype’S
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Introduction

Challenges @ Work in the basis in which Ay is diagonal.
Ekpyrosis

. o Eigenvalues of Ay become emergent time, continuous

trin 5 . .

Cosn?ology In N — 0 I|m|t.

o A; matrices become block diagonal — emergent space,
continuous in N — oo limit.

Matrix Theory
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Conclusions

73/95



String
Cosmology

R. Branden-
berger

Introduction

Challer

Matrix Theory
Cosmology

74/95



Matrix Theory Cosmology

String
Cosmology

R. Branden-

berger o Eigenvalues of Ay become emergent time, continuous
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S become block diagonal — emergent space, continuous
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Matrix Theory Cosmology

String
Cosmology

R. Branden-

berger o Eigenvalues of Ay become emergent time, continuous
Introduction in N — oo limit.
Cilieges o Work in the basis in which Ag is diagonal: X; matrices
S become block diagonal — emergent space, continuous

String . oo
o in N — oo limit.

o Extent of space:

Matrix Theory
Cosmology

Conclusions

(02 = (SRR

o Local Lorentz invariance emerges in N — oo limit.
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Matrix Theory Cosmology

J. Nishimura, PoS CORFU 2019, 178 (2020) [arXiv:2006.00768 [hep-lat]].

Costagy o Eigenvalues of Ay become emergent time, continuous

R. Branden- in N — oo limit.
berger

@ Work in the basis in which Ay is diagonal: X; matrices
Introduction become block diagonal — emergent space, continuous
SilargEs in N — oo limit.

Ekpyrosis o Extent of space:

String
Cosmology

X2 = (SRR

conclsions o In a thermal state there is spontaneous symmetry
breaking: SO(9) — SO(6) x SO(3): three dimensions
of space become larger, the others are confined.

[J. Nishimura and G. Vernizzi, JHEP 0004, 015 (2000);
]S.-W. Kim, J. Nishimura and A. Tsuchiya, Phys. Rev.
Lett. 109, 011601 (2012)]
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gggﬂ?ology mOde|
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S. Brahma, R.B. and S. Laliberte, arXiv:2108.1152

String
Cosmology

R. Branden-

berger o We assume that the BFSS-IKKT correspondence
Introduction extends to the full model (not just the bosonic sector).

Challenges o Or else that the spontaneous symmetry breaking
ERDVEES observed in the IKKT model also holds in the BFSS

String
Cosmology mOdeI 0

o Thermal correlation functions calculated in the high
temperature state of the BFSS model (follow from the
partition function of the matrix model in analogy of the
formalism developed in String Gas Cosmology).

@ — curvature fluctuations and gravitational waves.

Conclusions
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@ Scale-invariant spectrum of curvature fluctuations
@ With a Poisson contribution for UV scales.
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Matrix Theory Cosmology: Results
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R. Branden- Results:

berger

@ Scale-invariant spectrum of curvature fluctuations
Challenges o With a Poisson contribution for UV scales.

Ekpyrosis @ Scale-invariant spectrum of gravitational waves.

String
Cosmology

Introduction

vy — BFSS matrix model yields emergent space, emergent
e time and an emergent early universe phase, generating
cosmological fluctuations and primordial gravitational waves
consistent with observations..

Conclusions

Note: Horizon problem automatically solved.
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Open Problems
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Introduction o Understand phase transition to the expanding phase

Challenges of Big Bang Cosmology.

E;"":;“‘S o How is the flatness problem addressed?

G o Can we obtain sufficiently large spatial sections?
e @ What are the tilts of the spectra of curvature

Cosmology

fluctuations and gravitational waves?
Qo ...

Conclusions
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Conclusions |

String
Cosmology

R o We have lots of data about the cosmos, and much
more data is expected soon.

o Cosmological data can only be explained using new

Ekpyrosis fundamental physics operating in the very early

String universe.

e o Current paradigm: effective field theory (EFT)

description of cosmological inflation.

Conclusions o Alternatives to cosmological inflation exist, e.g. the
Ekpyrotic Bounce.

Introduction

Challenges
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Conclusions |

String
Cosmology

R o We have lots of data about the cosmos, and much
more data is expected soon.

o Cosmological data can only be explained using new

Ekpyrosis fundamental physics operating in the very early

String universe.

e o Current paradigm: effective field theory (EFT)

description of cosmological inflation.

Conclusions o Alternatives to cosmological inflation exist, e.g. the
Ekpyrotic Bounce.

Introduction

Challenges

@ Quantum Gravity — EFT analysis of inflation suffers
from conceptual problems.
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Conclusions Il

e @ Challenge for Quantum Cosmology: need to go beyond

R Branden. an EFT analysis to describe the very early universe.
@ Quantum Gravity — new ideas to obtain promising
alternative scenarios.

Introduction

E::;Z?:s o S-Brane (motivated from string theory) mediates

String continuous transition from contration to expansion and
ey provides a realization of the Ekpyrotic bouncing

: scenario.

Conclusions o Matrix Theory (nonperturbative candidate formulation

of superstring theory) — emergent space, time and
early universe cosmology.

o Thermal fluctuations in the high temperature state of
matrix theory — scale-invariant spectrum of
curvature fluctuations and gravitational waves.

82/95



Gravitational Waves during Ekpyrotic

Contraction

o ting Spatial metric including a gravitational wave travelling in
osmology . .
x-direction:

R. Branden-
berger

1 0
Introduction fYI] = 32(7—) <O 1 -+ heab> ’

Challenges
Ekpyrosis

String
Cosmology

Conclusions

83/95



Gravitational Waves during Ekpyrotic

Contraction

Rl Spatial metric including a gravitational wave travelling in

Cosmology

R. Branden- x-direction:
berger
' 2 1 0
Introduction ")/,] — g (T) < ) 7
Challenges O 1+ heab
Ekpyr . ) . . )
Stpy'm Eq. of motion in terms of the canonical variable h = ah:
ring
Jology a//
Fl"—l—[k2—;]71:0'

Conclusions

83/95



Gravitational Waves during Ekpyrotic

Contraction

Rl Spatial metric including a gravitational wave travelling in

Cosmology

R. Branden- x-direction:
berger
1 0
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Challenges

Ekpyr . ) . . )
. Eqg. of motion in terms of the canonical variable h = ah:

!
Fl"—l— [k2_%]h:0'

Gonclusions Dominant solution on super-Hubble scales (leading order in
p)

String
ology

h(r) ~ 7P decreasing as 7 — 0.
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Gravitational Waves during Ekpyrotic
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o ting Spatial metric including a gravitational wave travelling in
osmology . .
x-direction:

R. Branden-
berger

1 0
Introduction ’Yl] = 32(7—) <O 1 -+ hﬁab> ’

Challenges

Ekpyr g 0 . . Ind
e Eq. of motion in terms of the canonical variable h = ah:

!
W+ k- 29h =0,

String
Cosmology

Conclusions Dominant solution on super-Hubble scales (leading order in
p)

h(r) ~ 7P decreasing as T — 0.

Conclusion: An initial vacuum spectrum remains
approximatelv vacuum with a sliaht blue tilt. 83/95
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Phase |

Sl Metric including cosmological perturbations ®(x, 7):

Cosmology

R. Branden-

berger d32 = 3(7)2 [(1 + 2¢)d7’2 = (1 = 2¢)dx2] ;
Introduction
Challenges Canonical variable

Ekpyrosis 3
String vV = 3(590 + %q)) I

ology
' Equation of motion in Fourier space (assuming equation of
state of matter is constant)

Conclusions

&

Vi + (K? - -

)Vk = 0,
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Ekpyrosis

String
ology

Conclusions

Cosmological Perturbations in the Contracting

Phase |

Metric including cosmological perturbations ®(x, 7):

ds? = a(r)?[(1 +20)dr? — (1 — 29)dx?]

Canonical variable
%0
v =a(é —o
a(0p + ),
Equation of motion in Fourier space (assuming equation of
state of matter is constant)

&

Vi + (K? - -

Jvk = 0,
Conclusion: Same equation as for the canonical
gravitational wave amplitude — initial vacuum spectrum

remains vacuum with a slight blue tilt.
84/95



Cosmological Perturbations in the Contracting

Phase Il

String A second view:

Cosmology

R. Branden-
" u=""a0

prm— H .
Introduction It Obeys the mode equa’[lon
Challenges
Ekpyrosis a/,

7 2 2

o W+Q—Q%—;ﬁm:&

ology
: On super-Hubble scales this becomes

Conclusions U;(, — q(_T)_z Ug = 07
growing mode with

— —1
ug ~ (=7)"9 ~ a(r)™",
Conclusion: Vacuum initial spectrum is transformed to a

scale-invariant spectrum with a slight red tilt.
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Key Question

String
Cosmology

Which variable passes through the bounce continuously?

R. Branden-
berger

Some previous results:

Introduction

Challenges o At the reheating transition in inflationary cosmology it is
SPIOSE the variable v which is continuous, and ¢ jumps (by a

Strir
Cosmology large factor).

o In models with a smooth bounce mediated by matter
which violates the Null Energy Condition the variable v
is continuous, and not ®.

Conclusions

o For a space-like matching surface, most choices of the
location of the surface lead to ¢ being continuous
(Durrer and Vernizzi, Phys. Rev. D 66, 083503 (2002)).
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Mathematical Aside

Stril q -
Gy Consider the equation

R. Branden-
berger X”k(T) L [kz + m5(7' — TB)] XK(T) = 0.

Introduction

©

Solutions: plane waves for 7 < 7g and for 7 > 7.
Ekpyrosis Positive frequency solutions fx and negative frequency
String ones f.

e Bogoliubov mode mixing across the transition
surface.

Pure positive frequency before 75 can be written for

T > 7B as

Challenges

©

©

©

Conclusions

Xk = akfy + Brfy

@ where ax and g are the Bogoliubov mode matching

coefficients.
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Mathematical Aside I
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berger

By integrating over time 7 against a test function (a smooth
function which decays exponentially at 7 — +o00) f(7) it can
be easily shown that

Introduction
Challenges

Ekpyrosis

String
Cosmology lBk . T

Conclusions

This is the factor which transforms a vacuum spectrum into
a scale-invariant one.
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Gravitational Waves Passing Through the
S-Brane

String
Cosmology

R. Branden-
berger 7/

W+ [k% - % — kam,P5(r — )| = 0.

Introduction

Challenges

Ekpyrosis o Spectrum before passage through the S-Brane is a
String vacuum spectrum with a small blue tilt.

olo
i o — Spectrum after passage through the S-brane is
scale-invariant with a slight blue tilt!.

Concllsions o Power spectrum of gravitational waves;

1 _
Pn(k) ~ ﬁﬁzmp/s(km)zq-
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Curvature Fluctuations Passing Through the
S-Brane |

String
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berger

Solution for ® on super-Hubble scales in the contracting
Introduction phase

Challenges

Ekpyrosis _ ﬂ
String q)_(k? T) - A—(k) a2 + B_(k) s
Cosmology
Solution for ® on super-Hubble scales in the expanding

phase:

Conclusions

©.(k,7) = Ac(K) 75 + By (K).
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Matching Conditions

Strin
Gosmalogy o Continuity of the induced metric fluctuations.

R. Branden-

berger o Extrinsic curvature jump given by the fluctuations of the
tension of the S-brane.

Introduction
Challenges Matching conditions for a zero shear S-brane (R. Durrer and
Ekpyrosis F. Vernizzi, Phys. Rev. D 66, 083503 (2002)):

String
ology

AL = —A +-BB_-B
Conclusions - %‘f' H+ ( +)
Hy(H_ /Mo —H) —Hy +H 2 Ho
B+ _ ( +( / 5 ) - ar aF )?A_
2H " —Hy B
_Hy —HL?
+(1+—% T B,

2H 2 — M,/
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Introduction azB Sq

Challenges

Ekpyrosis Using vacuum initial conditions to determine A_(k):

String
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A_(K) ~ 2"T(pymy k=32 (krg) =9,
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Curvature Fluctuations Passing Through the

S-Brane i

String Result of the matching:

Cosmology

R. Branden-
Hi 1
berger B (k) ~ __+_A (k)
_|_ —_— - .
Introduction aZB Sq
Challenges
Ekpyrosis Using vacuum initial conditions to determine A_(k):

String
Cosmology

A_(K) ~ 2"T(pymy k=32 (krg) =9,

Conclusions

Power Spectrum of Cosmological Perturbations:

T

Hye 2 1
27r2 )

a2my, ngzzur(ﬂ)z-
B""'p

Po(k) ~ (ktg) 29 (55—

Scale-invariant spectrum with a slight red tilt.
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Consistency relation for r

String
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berger

Comparing the results for the GW spectrum and the
Introduction spectrum of cosmological perturbations yields

Challenges

Ekpyrosis r ~ 144(chB)4qz—2,u|—(M)—2q2 )
String
Cosmology

Since the value of g is given by the scalar tilt g = (1 — ns)/2
we get

Conclusions

r~ (1-ng)?.
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Consistency relation for the tilts
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R. Branden-

berger Consistency relation for the tilts:

Introduction
Challenges nt = (1 — ns) :
Ekpyrosis
String

Cosmology

Recall:

(;nclusions Ph(k) ~ knt

Py (k) ~ kM's—!

95/95



	Introduction
	Challenges for Inflationary Cosmology from Quantum Gravity
	S-Brane Ekpyrosis: A Bouncing Scenario from Quantum Gravity
	Models of Emergent Cosmology motivated by String Theory
	String Gas Cosmology
	Matrix Theory Cosmology

	Conclusions

