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Space and time in quantum gravity

General relativity determines dynamics and structure of
space-time.

1. Background independence.

Space-time structure may be non-classical.

It may happen that no consistent quantum space-time structure
exists, not even semiclassically.

2. Problem of time.

Time transformations and evolution.
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Hamiltonian constraint

Friedmann equation implies constraint

C = −6πGV p2V + V ρmatter = 0

for “volume” V = a3 and its momentum pV in isotropic models.

→ How is evolution derived from Wheeler–DeWitt equation
after quantization, replacing pV ∝ ȧ with −i~∂/∂V ?

→ Can quantum corrections in C be consistent with larger
algebra including diffeomorphism constraint?

Is there a consistent space-time line element

ds2 = −dτ2 + ã(τ)2(dx2 + dy2 + dz2)

where ã solves a quantum corrected Friedmann equation?
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Examples in loop quantum gravity

1. Dressed-metric approach for cosmological inhomogeneity.
[Agulló, Ashtekar, Nelson: PRL 109 (2012) 251301]

2. Partial Abelianization of spherically symmetric models.
[Gambini, Pullin: PRL 110 (2013) 211301]

3. “Transfiguration” of black holes.
[Ashtekar, Olmedo, Singh: PRL 121 (2018) 241301]

4. “Covariant polymerization” in spherically symmetric models.
[Benítez, Gambini, Pullin: arXiv:2102.09501]

Attempted justification of model of critical collapse.
[Benítez, Gambini, Lehner, Liebling, Pullin: PRL 124 (2020) 071301]

None of these claims are based on consistent space-time
structures.
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Models of loop quantum gravity

Hamiltonian constraint quantized, but also modified:

Cmod = −6πGV f(pV )
2 + V ρmatter = 0

with bounded function f(pV ) (holonomy modification).

Solutions: Energy density ρmatter ∝ f(pV )
2 bounded.

May avoid singularities and suggest new physical effects.

Open questions:

→ Interplay between modification and other quantum
corrections, such as fluctuations?

→ Consistency with covariance conditions?
Modification by f(pV ) not of standard higher-curvature form.

→ Special way to deal with problem of time
(deparameterization) may be restrictive.
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Dressed-metric approach

[Agulló, Ashtekar, Nelson: PRL 109 (2012) 251301]

Treat cosmological inhomogeneity as two independent systems:
Perturbations evolving on homogeneous background.

−→ Insert ã(τ) solving modified Friedmann equation in

ds2 = −dτ2 + ã(τ)2(dx2 + dy2 + dz2)

No obvious violation of covariance in homogeneous setting.

−→ “Gauge-invariant” curvature perturbations available for
inhomogeneity. [Bardeen: PRD 22 (1980) 1882]

Proposal:
Quantized perturbations subject to wave equations on modified

background geometry ds2 = g̃αβdx
αdxβ.
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The metric’s new clothes

Bardeen variables invariant under small coordinate changes.
[Stewart: CQG 7 (1990) 1169]

Relevant for perturbative inhomogeneity, but not sufficient:

Also need large background transformations.

Not independent (semidirect product): [MB: PRD 102 (2020) 023532]

[

f(t)
∂

∂t
, ξα

∂

∂xα

]

= fξ̇α
∂

∂xα
− ḟ ξ0

∂

∂t

Covariance requires precise algebra. Violated by independent
treatment in dressed metric: implicitly assumes direct product.

Line element ds2 = g̃αβdx
αdxβ based on modified metric

components g̃αβ meaningless as a background for perturbations:

g̃αβ and dxαdxβ not subject to dual transformations.
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Homogeneity in Schwarzschild geometry

Homogeneous geometry (Kantowski–Sachs)

ds2 = −N(t)2dt2 + a(t)2dx2 + b(t)2
(

dϑ2 + sin2 ϑdϕ2
)

realized in Schwarzschild interior: t < 2M in

ds2 = −
dt2

2M/t− 1
+ (2M/t− 1)dx2 + t2

(

dϑ2 + sin2 ϑdϕ2
)

−→ Can apply minisuperspace quantization to interior.

−→ Homogeneous timelike slices in exterior:

ds2 =
dr2

1− 2M/r
− (1− 2M/r)dt2 + r2

(

dϑ2 + sin2 ϑdϕ2
)

(Kantowski–Sachs after complex canonical transformation.)
[Ashtekar, Olmedo, Singh: PRL 121 (2018) 241301]
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No local covariance

ct

x

X

cT

Timelike homogeneity remains intact with modified dynamics,
implies static spherical symmetry if part of covariant theory.

All low-order local covariant 1+1-dimensional theories known:
generalized dilaton gravity.
[Kunstatter, Maeda, Taves: CQG 33 (2016) 105005]

[Takahashi, Kobayashi: CQG 36 (2019) 095003]

No holonomy modified dynamics of Kantowski–Sachs-style
models can be part of a covariant space-time theory.

[MB: PRD 102 (2020) 046006]
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Effective line element

[with Brahma, Reyes: PRD 92 (2015) 045043]

Meaningful line element ds2 = g̃αβdx
αdxβ must be independent

of coordinate choices:

gα′β′ =
∂xα

∂xα′

∂xβ

∂xβ′
gαβ

if coordinates xα transformed to xα
′

.

Canonical quantization does not modify xα,
but alters equations for spatial metric qij in

ds2 = −N2dt2 + qij(dx
i +M idt)(dxj +M jdt)

Modifications of lapse N and shift M i follow more indirectly.
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Hypersurface deformations

[Hojman, Kuchař, Teitelboim: Ann. Phys. 96 (1976) 88]

Non-linear coordinate changes — non-linear deformations.

N1

w

N2

N2

N1

Hypersurface-deformation brackets

[S(~w1), S(~w2)] = −S((~w2 · ~∇)~w1 − (~w1 · ~∇)~w2)

[T (N), S(~w)] = −T (~w · ~∇N)

[T (N1), T (N2)] = S(N1
~∇N2 −N2

~∇N1)

represent general covariance in canonical/algebraic form.
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Structure functions

Canonical realization of hypersurface deformations:

Hamiltonian and diffeomorphism constraints, H[N ] and D[M i].

{D[M i
1],D[M j

2 ]} = D[[M1,M2]
i]

{H[N ],D[M i]} = −H[M i
1∇iN ]

{H[N1],H[N2]} = D[qij(N1∇jN2 −N2∇jN1)]

→ qij as well as D and H to be turned into operators.

→ Requires specific ordering/regularization/. . . for brackets to
remain closed.

→ Even if closed, quantized structure functions may be
quantum corrected. Non-Riemannian unless field
redefinition leads to effective line element.

[with Brahma, Yeom: PRD 98 (2018) 046015]

→ Effective equations not of higher-curvature form.
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Simple model

Scalar field φ(x), momentum p(x), one spatial dimension.

H[N ] =

∫

dxN

(

f(p)−
1

4
(φ′)2 −

1

2
φφ′′

)

, D[w] =

∫

dxwφp′

Spatial diffeomorphisms:

δwφ = {φ,D[w]} = −(wφ)′ , δwp = {p,D[w]} = −wp′

H-bracket:

{H[N ],H[M ]} = D[β(p)(N ′M −NM ′)]

with β(p) = 1
2
d2f/dp2.

Lorentzian-type hypersurface deformations for f(p) = p2.
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Signature change

“Holonomy” modifications f(p) bounded, β(p) = 1
2
d2f/dp2

negative around local maxima, such as

{H[N ],H[M ]} = D[−(N ′M −NM ′)]

→ Gauge transformations from modified bracket consistent
with effective line element of Euclidean signature.

→ Elliptic field equations. Consistent space(-time) structure
but no deterministic evolution through high curvature.

Several gravity models available and being analyzed. [Brahma,

Reyes; Barrau, Cailleteau, Grain, Mielczarek; Aruga, Ben Achour, Lamy, Liu, Noui]

Could generalize higher-curvature effective actions.
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Status of covariance in loop models
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→ Non-local effects could evade restrictions from generalized
dilaton gravity.

But modified minisuperspace dynamics implicitly assumes
locality.

Non-locality often pathological.

→ Non-Riemannian space-time structure (β 6= ±1)
may be consistent.
Unknown in general, other than perturbative
inhomogeneity or spherical symmetry.

In some cases, Riemannian after field redefinition.

Have to deal with signature change at high curvature.
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Problem of time

Friedmann constraint with scalar field φ, momentum pφ:

C =
1

2

p2φ
V

+
1

2
V m2φ2 − 6πGV p2V

= (−pφ +H(V, pV , φ)) (pφ +H(V, pV , φ))

implies relational Hamiltonian

H(V, pV , φ) = ±
√

12πGV 2(p2V −m2φ2)

for evolution of (V, pV ) with respect to φ.

Simplifies for popular case of m = 0 (deparameterization).

Not generic as fundamental field φ: no mass or self-interactions.

Unitarity if φ might run back and forth for m 6= 0?
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Global evolution

[Amaral, MB: Ann. Phys. 388C (2018) 241]

Choosing single factor C = ±pφ +H = 0 implies dφ/dt = ±1,

presupposes direction of φ.

Construct monotonic effective time τ by unwinding periodic
clock φ if m 6= 0.

Schrödinger equation with respect to τ :

i~
∂ψ

∂τ
= i~

dφ

dτ

∂ψ

∂φ
=

dφ

dτ
Ĥψ

Stability for τ -Hamiltonian: (dφ/dτ)H does not change sign.
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Unwinding time: C = −p2φ − λ2φ2 +H2
0

φ

τ

n=−1 n=0 n=1 

→ Solve i~∂ψk/∂φ = ±
√

E2
k − λ2φ2ψk where Ĥ0ψk = Ekψk.

→ For given clock Hamiltonian, construct piecewise linear φ(τ)
alternating between φ+(τ) = τ + A+ and φ−(τ) = −τ +A−.

→ Insert φ(τ) in φk(φ). Alternate signs for constant

sgn(dφ/dτ)H, where H = ±
√

H2
0 − λ2φ2.

→ Obtain ψ(τ) as superposition of Ĥ0-stationary states ψk(τ)
according to desired initial state.
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Lost coherence: Harmonic oscillator
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[Wendel, Martínez, MB: PRL 124 (2020) 241301]
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Regained coherence: short clock period
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Standard deviation of system periods

10
4

10
5

10
6

10
7

10
8

10
-12

10
-10

10
-8

10
-6

10
-4

Numerical

Analytical

Space-time – p. 21



Upper bound

TC ≈ 9.7σTS based on theory of fundamental clock.

If TS can be measured with accuracy σ, then TC cannot be
greater than 9.7σTS.

Latest atomic clocks: σ ≈ 10−19 at system period of TS ≈ 2 fs.
[Campbell et al. Science 358 (2017) 98]

Therefore,

TC < 2 · 10−33 s ≈ 0.5 · 1011tP

Smallest direct measurement: Photon travel time across
hydrogen molecule, 247 · 10−21s. [Grundmann et al. Science 370 (2020) 339]

Particle accelerators probe spatial distances of 10−20m ≈ 1016ℓP.

Corresponds to ≈ 10−28 s.
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Implications

→ Deparameterization (λ = 0) approximates an oscillating
clock as long as system period larger than clock period.

→ New effects when system scales are Planckian.

→ Background independence: Space-time structure to be
derived. Inserting modified solutions in classical-type line
elements not always consistent.

→ Hypersurface deformations in space-time provide powerful
algebraic means to analyze space-time without strong
assumptions about geometry.

→ No-go results in models of loop quantum gravity:
Do not require specific form of modifications,
use only qualitative features related to discreteness.
Largely independent of specific approach.
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