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Transitions in QFT

4 In analogy with QM let us look for bounces solutions
V(o)
Transition rate is I/V =eB(1+0O(h))
again given by
> where B = Sp(¢v) — Se(ér)
PF ¢T
Se= [ drds | 007 + LV +V(6)
A
—~V(¢) Bounce 0(3,1) — O(4)

[Coleman 1977,
Coleman and Callan 1978 ]
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Including gravity

e |t is straightforwards to find an O(4) bounce with gravity

ds® = d&€? + p(£)?dQ3 In the thin wall limit

Gravity is present through friction term.

By
(1 £ (po/2A)2)?

It can make the transition more or less likely B =

V A
[Coleman and de Luccia, 1978]
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De Sitter transitions

5 1
What is the geometry after the transition v /2o
0(4) bounce — 0(3, 1) ds?* = d€? + p?(€)(—do? + cosh? od3)
ds® = d&” + p*(€)(dyp® + sin® dQ3)
ng Po
. br OF
§ §

[Coleman and de Luccia 1981,
Freivogel and Susskind 2002]



Open universes

: . — /241
What is the geometry after the transition Y= m/2+ 10

O(4) bounce — O(3,1) ds* = d&? + p?*(€)(—do? + cosh? od23)

To describe past the light cone

o—im/24 X £ — it b

ds* = —dt® + p*(t)(dx? + sinh® xdQ3)

FRW with open slices

[Coleman and de Luccia 1981,
Freivogel and Susskind 2002]



CdL

* |t reproduces the right decay rate as WKB and allows for
a direct extension to QFT and gravity

e After bubble nucleation Euclidean continuation implies an
open universe, but it is an educated guess

* Negative modes problem

[Lavrelashvili, Rubakov and Tinyakov 1985]
[Sasaki and Tanaka 1992]



Vacuum transitions in QM

Transition rate is computed
using WKB method

2
T ~ ‘Z‘Qiga;ls N e—B/h
re

Lo

1
L1

Where BZ/ dz'/2m(V (z') — E)

Integral over the forbidden region



WKB approach

* |s possible to generalise the guantum mechanics
computation to gravity at least in the case of a brane.

* |nstead of founding the instanton we would like to use a
WKB approach

 Time shouldn’t play any role HW¥ = (0 WdW equation



Probabilities from WdW

Using the classical
solution is possible to HY =0
solve the WdW equation

U — Aeis + Be_is We need to keep both solutions

P(B—)N) EFB—U\/’

P(B — N) ~exp [2 Re (Iiot(N) — I(B))

P(A - A/B&W) = \xw‘xézaa; 2W)l2 [Hawking & Page 1984]
[de Alwis et al 2019]




WKB approach

If we consider a system of gravity + matter

H = %GMN((I))T(MTI'N -+ f((I))

Field metric
. . . _ »#S[®]
We would like to find solutions ¥ = ¢€

S[®] = So[®] + 1S, [D] + O(h2)

Hamiltonian EGMN 050 050 | f[q)] — ()  +other equations

constraint 2 ydn fom

See also Gervais and Sakita 1977, Bitar and Chang 1978



WKB approach

Introducing a set of integral Ao _ oMN 92 05
curves (on a selected spatial slice) C(S) ds SON

o[ we [

For instance, picking
:/ dr’ —2/ f|®
X

(dT)Q L, _2( )/ &
dS - C S + f[ ]
So[®] = /T dr'\/2(E — U(o(7"))

In QFT this
reduces to the
usual expression




Minisuperspace

 Mini superspace approximation

ds? = —NQ(t)dtz 4+ aQ(t)(dr2 + sin? TdQ%) Metric non positive definite
/
The Hamiltonian | M, T 3
e Hamiltonian Is N _ ~
H = 790 T 9,3 3a 4+ a’V(9) 0

By writing W ~ exp(iSy/h) f(a, @)

Sy 0Sp Hamilton Jacobi

_GMN SOM 5ON T fl®]=0 equation

N

Defining C(s)di GMN;;& Sol®] = -2 /s ds'C~(s") F1®(s")]

[SC et al 2020]



Hartle-Hawking

 For constant potential

So[®] = —127T2/O ds'C(s)™* (—a+ a?’?)

2
From the constraints —6a (%) = —2C7%(s)(=3a + a’V})
S
a:\/ésin(\/%T) for ¢’V < 3a
3 Vv
CL:\/;COSh (\/;t> for a3V > 3a ‘\IJ‘Q N 6:|: 12‘?2

P g 4 + Hartle Hawking

R . |
H\ |
h :
Q /S
N 5

— Vilenkin/Tunneling

Imaginary
Time T

< L
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Quantum transitions




CDL

If we define the probability

\Ij(a()? ¢Ba Amax, ¢A)
\Ij(a()a ¢A7 Umax ¢A)

P(A—>B)_‘

Va
: —
¢F ¢a ¢b ¢T
3/2
+— = 1277 {i (1 — (@ —da) @> ~1
Vb
+ o2r%a’T
Thin wall

approximation

2

—B



CdL?

e |f we add an scalar fields we can also obtain CdL

s [ (WA HR) 4T (R4 HR)pa
B ATHZHZ 2

(Hg® — H,?)

* This approach works because CdL instanton is basically
an Euclidean minisuperspace computation

e After nucleation the minisuperspace computation is not
valid

CdL boundary conditions are not consistent
with a closed universe



CdL?

e |f we add an scalar fields we can also obtain CdL

{(H - H3)" + 12 (B3 + HE) }a

2 —2 -2
B = +8n NENT 5 (52 - 1)

* Nevertheless there are another allowed decays

B = 247%{ F ! + !
Ve Va

Transitions between
two de Sitter

[SC, de Alwis, Muia and Quevedo 2020]



Other solutions

 There are other solutions in the case of a potential

In the case there is an initial kinetic energy
the field can move classically between

vacua
042 -+
0.11" ] 0.015}
0.10\\—/\ 0.010"
0.09+ 0.005
~ 008 0.0 ity
0-07;‘ ~0.005
0.06¢ | ~0.010"
Pl i Lams odon ases sor O R e A
[0) t

[SC, de Alwis, Muia and Quevedo 2020]



Beyond minisuperspace

e First let us study the motion of a brane between two dS

dST

Imposing junction conditions at the wall
we can obtain equations of motion for
the brane

dSO AKab — AKhab — —lisab

Spacetime metric )

dr
2 2 .2 742 2 102
ds® = —(1 H; ,r )dt® + ] HZOTQ + r2df2

Wall metric

ds* = —dr* + R*(1)d?

[Blau, Guendelman and Guth 1987]



Classical solutions

e First let us study the motion of a brane between two dS

Imposing junction conditions at the wall

we can obtain equations of motion for
the brane |
O \I
A[(ab — A[(hab — _KvSab V(R) Fo
drR\® | R
dr R?
Classically bubble has R

minimum radius Ko
from where it starts expanding



Hamiltonian analysis

In order to include the wall we use the following metric

ds®> = —N2(t,7)dt> + L2(t,r)(dr + Nydt)? + R2(t,r)d3 S50(3)
R R/Q 1/2
Wall Tension L= G [ﬁ - Aa] ) a=0,I,n==l
8
Stot — SEH + SK + Smat + SW Ag=1- H§R2> H, = TAa

Gravity
Wall

Solution to constrains

+ #w

Junction conditions

[Fishler, Morgan & Polchinksi 1989, 1990]



|w(dS/dS @ W))2
15, P(dS — dS/dS @ W) = STESTE

- (‘ (1+ <HB§O/2>2>2)

dS 4 Same as CDL!
_§ L 0 p’ .
[Fishler, Morgan, Polchinsky 91,
Spacetime tunnels from one Brown and Teitelboim 88,
de Sitter to two Bachlechner 2017,

de Sitter separated by a wall de Alwis et al 2019]



Wall dynamics

T 0 @
.
By solving the junction conditions
In global coordinates
_ 1 .
T ds® = T2 oo T (—dT2 + dp? + sin? deQ)
Trajectory of the wall is given by
Eq of an hyperboloid with cos(p) = \/ 1 — H2R3 cosT Same as CDL!

SO(3,1) symmetry

[SC et al 2020]



Curvature of spacetime was not given as a solution of the
WdW equation. Computation only assumed SO(3)
symmetry

Using an open slicing is possible to find a homogenous
constant time foliation

There are more general cases when open slicing might
not be possible.

This approach (FMP) has not been generalised to include
scalar fields.



Conclussions

There are important aspects of vacuum decay with gravity
that needs more scrutiny

CdL simple picture is very intuitive but it might not be the
end of the game

Is it possible to distinguish a closed from an open

niverse?
unive [Aavis et al 2019]

There are concrete applications for this, eg quantum

criticality to explain the mass of the Higgs  [Khoury et al 2020,
Giudice et al 2021]



Negative modes

Including subheading terms wave function is

S
S

"R
:/ ds’\/—Q/ f|®s]ds’ 4 constant ,
o X

 Formula is a generalisation of QM and refactor is given by the VanVleck determinant

2 :
4/G \/de 0 SO ] eﬁso[@s]\lf[q)o],

* Decay rate is not necessarily related to the negative modes



Going beyond
minisuperspace

e |tis possible to add perturbations

V= ¢(G)X(aa ¢)

1 530 5)( ,(5230

6a oa da T da? X+ Hax =0
T ——— Schrodinger equation
0 H =0 :
Using the classical oy T2 )X = Under the barrier

solutions is possible

to reintroduce time 9
<z’— — 7—[2) x =10 Over the barrier



Going beyond
minisuperspace

e |tis possible to add perturbations

U = y(a)x(a, )

_ B N Secn (I 4 2)
This naturally selects X = exp (z I Eyer 5T cosy — sy Pmelon
the Bunch-Davies vacuum

lm

H2
T

Writing  p(z) = ¢i(t)Yim(Q) (%) ~
[,m



Observable effects

e |nflation washes out the curvature

* The density perturbations depend on the curvature,



Observable effects

e |nflation washes out the curvature

* The density perturbations depend on the curvature,

19 k

——2) L o)

P(q) = Agq™ P73 (1 -
(9) q 3

* This might effect the low | CMB modes

4 19 kr?
W+ G = 554 (1 TR3—-0(+ 2))




