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Transitions in QFT
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In analogy with QM let us look for bounces solutions

Bounce
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O(3, 1) ! O(4)

[Coleman 1977, 
Coleman and Callan 1978 ]



Including gravity

• It is straightforwards to find an O(4) bounce with gravity
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ds2 = d⇠2 + ⇢(⇠)2d⌦2
3
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B =
B0

(1± (⇢0/2⇤)2)2

In the thin wall limit

Gravity is present through friction term.


It can make the transition more or less likely

[Coleman and de Luccia, 1978]

which guarantees in general that there is no local minimum value for a(t) (ȧ = 0 =) ä < 0)
and that there should be at least one point for which a = 0 (the coordinate singularity).

After a critical time of order t⇤ ⇠ (↵V )�1/2 with ↵�1 = 3/8⇡G = 3M2
p , the potential starts

to dominate, and the curvature term becomes less important as the universe expands. This
could mark the onset of inflation as long as the slow roll conditions are satisfied.

There are some conditions on the potential in order to achieve this scenario. In particular, it
is required to have that V 00/V > 1 to be able to have a solution that satisfies the instanton
boundary conditions [62] (see fig.12). This being the opposite of the slow-roll condition, there
has to be a curvature change in the scalar potential to eventually give rise to inflation.

We may be more quantitative and follow the scale factor a(t) and �(t) for times smaller
than t⇤. In this case we can expand around the initial points V (�(0) + ��) ⇠ ⇤ + ��� with
� = V 0(�(0)) and find

a(t) =
sinh(�t)

�
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⇤

3M2
p

, (5.35)

and the scalar field:
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From here we can explicitly verify that for the domain of validity of this regime (t  t⇤)
the scale factor starts at zero and then increases linearly with time whereas the scalar field
increases as �(t) . �t2. For t > t⇤ ⌘ 1/

p
�, ⇤ dominates as long as � is small enough

(� < ⇤/Mp) such that ⇤ dominates over both �� and �̇2. In that case the universe starts
a standard inflationary period, otherwise the field rolls fast and depending on the potential
there may or may not be a standard period of inflation.
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�F �T�a �b

Figure 12: The scalar field potential has a false vacuum at �f and an inflationary region on the
right of �T . In the standard CDL picture the field tunnels from �a to �b.
• Closed Universe. In the closed universe after tunneling the equations are 17:
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0 = �̈ + 3H�̇ + V,� .

17For relatively recent discussions on the cosmology of closed universes see for instance [63–70].
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De Sitter transitions
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O(4) bounce
<latexit sha1_base64="HaO6em3VZTcQXxCgJNdzxlf5c/A="></latexit>

! O(3, 1)

What is the geometry after the transition

[Coleman and de Luccia 1981, 
 Freivogel and Susskind 2002]

which is also pictured as the region in blue in Fig. 13. To get the Euclidean continuation we
need to do the transformations, � ! i� and ⇠ ! i⇠, which lead to Eq. (A.9). finally note that
this transformation are equivalent to X0 ! iX0 .

A.2 Analytic Continuation in CDL

Given two vacua �F and �T such that V (�F ) > V (�T ) � 0, according to [3] to calculate the
scalar field that interpolates between the two minima first we need to consider the Euclidean
solution that extremises the action in order to derive the remaining geometry inside and outside
the bubble. This was done in several steps:

• In field theory, the Euclidean bounce solution is O(4) invariant in such a way that the scalar
field depends on the Euclidean distance ⇠2 = |x|2 + ⌧2. Analytic continuation changes this
to a O(3, 1) and ⇠2 ! |x|2 � t2. Once gravity is included the corresponding line element is
assumed to share that symmetry.

�a�b

V(�f )

V(�t)

Figure 14: Penrose diagram for the dS to Minkowski transition mediated by a CdL instanton.
The red causal diagram is obtained after analytically continue the O(4) instanton to O(3, 1)
whose metric is given in Eq. (A.14). The dotted line is the wall which is also a constant �
slice.The blue region is open FRW with V (�t) = 0 obtained after analyticaly continue Eq. (A.14)
past the lightcone. In this region we also draw the constant radius hypersurfaces.

• Starting with the O(4) symmetric Euclidean dS metric,

ds2 = d⇠2 + ⇢2(⇠)(d 2 + sin2  d⌦2

2) (A.12)

45

and writing  ! ⇡/2 + i� we get the O(3, 1) invariant metric,

ds2 = d⇠2 + ⇢2(⇠)(�d�2 + cosh2 �d⌦2

2) (A.13)

where � now runs from �1 to 1. This spacetime is dS foliated by timelike hyperboloids. If
we fix the angles and write d⇠2 = ⇢2(⇠)(dy2) we get,

ds2 = ⇢2(y) (�d�2 + dy2) (A.14)

whose geometry is represented by the causal diamond in Fig. 14. The wall lies within this
region as indicated by the dotted timelike hypersurface in Fig. 14. An observer in the hemi-
sphere will see the wall moving at a speed approaching the speed of light.

• This space is not geodesically complete, because for timelike geodesics it is possible to go past
the lightlike hypersurfaces. To complete the description we can make a further analytical
continuation � ! i⇡/2 + � and a rotation ⇠ ! it which leads to,

ds2 = �dt2 + ⇢2(�i⇠)(d�2 + sinh2 �d⌦2

2). (A.15)

This region describes an FRW open space, and covers the blue patch in Fig. 13. Note that
the analytical continuation � ! �i⇡/2 + � describes the upper right region of the diagram.
Constant time hypersurfaces end on I+ at ⇠ = ⇡/2

• To interpret the diagram in terms of dynamics of the scalar field, let us assume that the
tunneling points where �b and �a, as indicated in Fig. 12. Both points are hemispheres of dS
where ⇢ vanishes. The wall separating the two regions is inside the causal diamond as indicated
in Fig. 14 by the dotted line. The left region outside the causal diamond describes the dynamics
after the tunneling while the right region describes the false vacuum dynamics. Spacelike
hypersurfaces in these region represent constant field surfaces. Then after the tunneling the
field rolls down to the true vacuum V (�t) at I+. After analytic continuation the surfaces of
constant field values correspond to constant values of |x|2 � t2 which are hyperbolae. This
defines the natural foliation of the spacetime.

In Fig. 14 we have assumed that the true vacuum is Minkowski. In the case of dS this only
extends up to the horizontal line at T = ⇡/2.
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and writing  ! ⇡/2 + i� we get the O(3, 1) invariant metric,

ds2 = d⇠2 + ⇢2(⇠)(�d�2 + cosh2 �d⌦2

2) (A.13)

where � now runs from �1 to 1. This spacetime is dS foliated by timelike hyperboloids. If
we fix the angles and write d⇠2 = ⇢2(⇠)(dy2) we get,

ds2 = ⇢2(y) (�d�2 + dy2) (A.14)

whose geometry is represented by the causal diamond in Fig. 14. The wall lies within this
region as indicated by the dotted timelike hypersurface in Fig. 14. An observer in the hemi-
sphere will see the wall moving at a speed approaching the speed of light.

• This space is not geodesically complete, because for timelike geodesics it is possible to go past
the lightlike hypersurfaces. To complete the description we can make a further analytical
continuation � ! i⇡/2 + � and a rotation ⇠ ! it which leads to,

ds2 = �dt2 + ⇢2(�i⇠)(d�2 + sinh2 �d⌦2

2). (A.15)

This region describes an FRW open space, and covers the blue patch in Fig. 13. Note that
the analytical continuation � ! �i⇡/2 + � describes the upper right region of the diagram.
Constant time hypersurfaces end on I+ at ⇠ = ⇡/2

• To interpret the diagram in terms of dynamics of the scalar field, let us assume that the
tunneling points where �b and �a, as indicated in Fig. 12. Both points are hemispheres of dS
where ⇢ vanishes. The wall separating the two regions is inside the causal diamond as indicated
in Fig. 14 by the dotted line. The left region outside the causal diamond describes the dynamics
after the tunneling while the right region describes the false vacuum dynamics. Spacelike
hypersurfaces in these region represent constant field surfaces. Then after the tunneling the
field rolls down to the true vacuum V (�t) at I+. After analytic continuation the surfaces of
constant field values correspond to constant values of |x|2 � t2 which are hyperbolae. This
defines the natural foliation of the spacetime.

In Fig. 14 we have assumed that the true vacuum is Minkowski. In the case of dS this only
extends up to the horizontal line at T = ⇡/2.
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Open universes
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O(4) bounce
<latexit sha1_base64="HaO6em3VZTcQXxCgJNdzxlf5c/A="></latexit>

! O(3, 1)

What is the geometry after the transition

[Coleman and de Luccia 1981, 
 Freivogel and Susskind 2002]

and writing  ! ⇡/2 + i� we get the O(3, 1) invariant metric,

ds2 = d⇠2 + ⇢2(⇠)(�d�2 + cosh2 �d⌦2

2) (A.13)

where � now runs from �1 to 1. This spacetime is dS foliated by timelike hyperboloids. If
we fix the angles and write d⇠2 = ⇢2(⇠)(dy2) we get,

ds2 = ⇢2(y) (�d�2 + dy2) (A.14)

whose geometry is represented by the causal diamond in Fig. 14. The wall lies within this
region as indicated by the dotted timelike hypersurface in Fig. 14. An observer in the hemi-
sphere will see the wall moving at a speed approaching the speed of light.

• This space is not geodesically complete, because for timelike geodesics it is possible to go past
the lightlike hypersurfaces. To complete the description we can make a further analytical
continuation � ! i⇡/2 + � and a rotation ⇠ ! it which leads to,

ds2 = �dt2 + ⇢2(�i⇠)(d�2 + sinh2 �d⌦2

2). (A.15)

This region describes an FRW open space, and covers the blue patch in Fig. 13. Note that
the analytical continuation � ! �i⇡/2 + � describes the upper right region of the diagram.
Constant time hypersurfaces end on I+ at ⇠ = ⇡/2

• To interpret the diagram in terms of dynamics of the scalar field, let us assume that the
tunneling points where �b and �a, as indicated in Fig. 12. Both points are hemispheres of dS
where ⇢ vanishes. The wall separating the two regions is inside the causal diamond as indicated
in Fig. 14 by the dotted line. The left region outside the causal diamond describes the dynamics
after the tunneling while the right region describes the false vacuum dynamics. Spacelike
hypersurfaces in these region represent constant field surfaces. Then after the tunneling the
field rolls down to the true vacuum V (�t) at I+. After analytic continuation the surfaces of
constant field values correspond to constant values of |x|2 � t2 which are hyperbolae. This
defines the natural foliation of the spacetime.

In Fig. 14 we have assumed that the true vacuum is Minkowski. In the case of dS this only
extends up to the horizontal line at T = ⇡/2.
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and writing  ! ⇡/2 + i� we get the O(3, 1) invariant metric,

ds2 = d⇠2 + ⇢2(⇠)(�d�2 + cosh2 �d⌦2

2) (A.13)

where � now runs from �1 to 1. This spacetime is dS foliated by timelike hyperboloids. If
we fix the angles and write d⇠2 = ⇢2(⇠)(dy2) we get,

ds2 = ⇢2(y) (�d�2 + dy2) (A.14)

whose geometry is represented by the causal diamond in Fig. 14. The wall lies within this
region as indicated by the dotted timelike hypersurface in Fig. 14. An observer in the hemi-
sphere will see the wall moving at a speed approaching the speed of light.

• This space is not geodesically complete, because for timelike geodesics it is possible to go past
the lightlike hypersurfaces. To complete the description we can make a further analytical
continuation � ! i⇡/2 + � and a rotation ⇠ ! it which leads to,

ds2 = �dt2 + ⇢2(�i⇠)(d�2 + sinh2 �d⌦2

2). (A.15)

This region describes an FRW open space, and covers the blue patch in Fig. 13. Note that
the analytical continuation � ! �i⇡/2 + � describes the upper right region of the diagram.
Constant time hypersurfaces end on I+ at ⇠ = ⇡/2

• To interpret the diagram in terms of dynamics of the scalar field, let us assume that the
tunneling points where �b and �a, as indicated in Fig. 12. Both points are hemispheres of dS
where ⇢ vanishes. The wall separating the two regions is inside the causal diamond as indicated
in Fig. 14 by the dotted line. The left region outside the causal diamond describes the dynamics
after the tunneling while the right region describes the false vacuum dynamics. Spacelike
hypersurfaces in these region represent constant field surfaces. Then after the tunneling the
field rolls down to the true vacuum V (�t) at I+. After analytic continuation the surfaces of
constant field values correspond to constant values of |x|2 � t2 which are hyperbolae. This
defines the natural foliation of the spacetime.

In Fig. 14 we have assumed that the true vacuum is Minkowski. In the case of dS this only
extends up to the horizontal line at T = ⇡/2.
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To describe past the light cone

and writing  ! ⇡/2 + i� we get the O(3, 1) invariant metric,

ds2 = d⇠2 + ⇢2(⇠)(�d�2 + cosh2 �d⌦2

2) (A.13)

where � now runs from �1 to 1. This spacetime is dS foliated by timelike hyperboloids. If
we fix the angles and write d⇠2 = ⇢2(⇠)(dy2) we get,

ds2 = ⇢2(y) (�d�2 + dy2) (A.14)

whose geometry is represented by the causal diamond in Fig. 14. The wall lies within this
region as indicated by the dotted timelike hypersurface in Fig. 14. An observer in the hemi-
sphere will see the wall moving at a speed approaching the speed of light.

• This space is not geodesically complete, because for timelike geodesics it is possible to go past
the lightlike hypersurfaces. To complete the description we can make a further analytical
continuation � ! i⇡/2 + � and a rotation ⇠ ! it which leads to,

ds2 = �dt2 + ⇢2(�i⇠)(d�2 + sinh2 �d⌦2

2). (A.15)

This region describes an FRW open space, and covers the blue patch in Fig. 13. Note that
the analytical continuation � ! �i⇡/2 + � describes the upper right region of the diagram.
Constant time hypersurfaces end on I+ at ⇠ = ⇡/2

• To interpret the diagram in terms of dynamics of the scalar field, let us assume that the
tunneling points where �b and �a, as indicated in Fig. 12. Both points are hemispheres of dS
where ⇢ vanishes. The wall separating the two regions is inside the causal diamond as indicated
in Fig. 14 by the dotted line. The left region outside the causal diamond describes the dynamics
after the tunneling while the right region describes the false vacuum dynamics. Spacelike
hypersurfaces in these region represent constant field surfaces. Then after the tunneling the
field rolls down to the true vacuum V (�t) at I+. After analytic continuation the surfaces of
constant field values correspond to constant values of |x|2 � t2 which are hyperbolae. This
defines the natural foliation of the spacetime.

In Fig. 14 we have assumed that the true vacuum is Minkowski. In the case of dS this only
extends up to the horizontal line at T = ⇡/2.
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and writing  ! ⇡/2 + i� we get the O(3, 1) invariant metric,

ds2 = d⇠2 + ⇢2(⇠)(�d�2 + cosh2 �d⌦2

2) (A.13)

where � now runs from �1 to 1. This spacetime is dS foliated by timelike hyperboloids. If
we fix the angles and write d⇠2 = ⇢2(⇠)(dy2) we get,

ds2 = ⇢2(y) (�d�2 + dy2) (A.14)

whose geometry is represented by the causal diamond in Fig. 14. The wall lies within this
region as indicated by the dotted timelike hypersurface in Fig. 14. An observer in the hemi-
sphere will see the wall moving at a speed approaching the speed of light.

• This space is not geodesically complete, because for timelike geodesics it is possible to go past
the lightlike hypersurfaces. To complete the description we can make a further analytical
continuation � ! i⇡/2 + � and a rotation ⇠ ! it which leads to,

ds2 = �dt2 + ⇢2(�i⇠)(d�2 + sinh2 �d⌦2

2). (A.15)

This region describes an FRW open space, and covers the blue patch in Fig. 13. Note that
the analytical continuation � ! �i⇡/2 + � describes the upper right region of the diagram.
Constant time hypersurfaces end on I+ at ⇠ = ⇡/2

• To interpret the diagram in terms of dynamics of the scalar field, let us assume that the
tunneling points where �b and �a, as indicated in Fig. 12. Both points are hemispheres of dS
where ⇢ vanishes. The wall separating the two regions is inside the causal diamond as indicated
in Fig. 14 by the dotted line. The left region outside the causal diamond describes the dynamics
after the tunneling while the right region describes the false vacuum dynamics. Spacelike
hypersurfaces in these region represent constant field surfaces. Then after the tunneling the
field rolls down to the true vacuum V (�t) at I+. After analytic continuation the surfaces of
constant field values correspond to constant values of |x|2 � t2 which are hyperbolae. This
defines the natural foliation of the spacetime.

In Fig. 14 we have assumed that the true vacuum is Minkowski. In the case of dS this only
extends up to the horizontal line at T = ⇡/2.
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FRW with open slices 



CdL

• It reproduces the right decay rate as WKB and allows for 
a direct extension to QFT and gravity


• After bubble nucleation Euclidean continuation implies an 
open universe, but it is an educated guess


• Negative modes problem
[Lavrelashvili, Rubakov and Tinyakov 1985] 

[Sasaki and Tanaka 1992]



Vacuum transitions in QM 
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V (x) Transition rate is computed 

using WKB method
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WKB approach

• Is possible to generalise the quantum mechanics 
computation to gravity at least in the case of a brane.


• Instead of founding the instanton we would like to use a 
WKB approach


• Time shouldn’t play any role <latexit sha1_base64="us2kB/hpimVdhYIYUKbQqZ4p0Eg="></latexit>

H = 0 WdW equation



Probabilities from WdW

Using the classical 
solution is possible to 
solve the WdW equation
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 = AeiS +Be�iS We need to keep both solutions

Tunneling Probability and Wheeler 
DeWitt

Using Eq. (2.21) in Eq. (2.16) and Eq. (2.4) (in the gauge Nr = 0 and Nt = 1) one can

write an equation of motion for the wall:

˙̂
R

2 + V = �1 , (2.23)

where, depending on the solution chosen in Eq. (2.21), the potential takes the form

V = � 1

(2R̂)2

⇣
(ÂI � ÂO)� 

2
R̂

2
⌘2

+ (ÂO � 1) = (2.24)

= � 1

(2R̂)2

⇣
(ÂI � ÂO) + 

2
R̂

2
⌘2

+ (ÂI � 1) . (2.25)

So the equation V = �1 gives the turning points for the classical motion of the wall, i.e.

the points at R = Ri and R = Ro in Fig. 1. At a turning point we see from Eq. (2.24) that

ÂO > 0 and from Eq. (2.25) that ÂI > 0. The classical turning points for the geometry

occur at ⇡L = 0, i.e. (see Eq. (2.16)) at

R
02

L2
= A(R) = 1� 2MG

R
�H

2
R

2
. (2.26)

When r = r̂ these are the turning points for the wall, i.e. the solutions of V = �1.

2.2 Wheeler-DeWitt equation and tunnelling probability

The problem of computing the tunnelling probability in semiclassical gravity is similar to

the tunnelling problem of a barrier potential in usual quantum mechanics. In this context,

instead of the Schröedinger equation we need to solve the WDW equation

H = 0 , (2.27)

where the wave functional  is a functional of the geometry and a function of the brane

position r̂. We employ the WKB approximation, for which the wave function  can be

written at leading order in the semi-classical approximation as

 = ae
I + be

�I
, (2.28)

where, given a configuration with action S, we have denoted the combination iS = I and

the action S is evaluated on a classical solution. In the following we will refer to both S

and I as the ‘action’. The two solutions are given by ⌘ = ±1 corresponding to the two

solutions for ⇡L, see Eq. (2.16).

The problem is qualitatively very di↵erent depending on whether the background ge-

ometry includes a black hole or not. If it does, the problem is similar to the usual quantum

mechanical tunnelling through a potential barrier: as shown in Fig. (1), there are two

classically allowed (I and III) and one classically forbidden regions (II). Classically, the

wall expands (or contracts) up to a classical turning point and then re-collapses (or re-

expands). Quantum mechanically, it can tunnel under the barrier and resurface after the

second turning point. The WDW equation has two independent solutions as in Eq. (2.28)

in each of these regions, that need to be matched at the classical turning points. Some of
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the coe�cients a and b (there are two coe�cients for each region) can be fixed by imposing

boundary conditions. For instance, requiring that there is only an outgoing wave in region

III (that amounts to requiring that the nucleated universe is expanding and not contract-

ing, as it happens in the Vilenkin proposal for the creation of a dS bubble from ‘nothing’)

gives a relation between the two coe�cients of the under the barrier wave function. On the

contrary, if there is no boundary condition, in general one of the two solutions (positive

or negative exponent) in Eq. (2.28) will dominate in each region, depending on the sign of

the action I. The tunnelling probability in this case can be computed as the ratio between

the squared wave function associated to the expanding bubble in the classical Region III

and the squared wave function of the expanding bubble in the classical Region I. This can

be approximated (up to subtleties that will be addressed in Sec. 3) as the ratio

P =
| (Ro)|2

| (Ri)|2
, (2.29)

In general we interpret the ratio

P(B ! N ) =

����
 N

 B

����
2

, (2.30)

as the relative probability of finding the system in the ‘nucleated’ state N versus the

‘background’ state B, see Sec. 3 for more details. Notice that the two states B and N
do not always have the meaning of ‘initial’ and ‘final’ states (see Sec. 1): the transition

can be clearly interpreted as happening in time if there is an initial classical motion of

the bubble wall. In such a case, the configuration with a type (a) bubble at its maximum

radius (i.e. evaluated at the first turning point Ri, see Fig. 1), plays the role of the

background geometry. In the cases in which there is no initial classical motion of the wall the

interpretation is less clear. For this reason we will refer to the state B as the ‘background’

spacetime, instead of initial spacetime. Since we compute a relative probability, it does

not have to be smaller than one, and we avoid the problem of the normalization of wave

functionals. Observe that in the context of Euclidean instanton computations à la CDL,

the relative probability in Eq. (2.30) is interpreted as tunnelling rate per unit volume and

time, see e.g. [19] for details.

P(B ! N ) ⌘ �B!N . (2.31)

In the typical transitions that we will consider in the next Sections, the background

configuration is given by some spacetime state A, while the nucleated state corresponds to

the spacetime A joined to another spacetime B through a wall W. We will denote such

a configuration by A/B �W. Then the relative probability for being in the configuration

A/B �W versus being in the background state A is

P(A ! A/B �W) =
| (A/B �W)|2

| (A)|2 . (2.32)

Note that the denominator represents the probability of creating the state A out of

‘nothing’ (‘nothing’, whose wave function is simply 1, corresponds to the background space-

time in the ‘nothing’ to A transition). If the state A is a dS bubble, the denominator
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the relative probability in Eq. (2.30) is interpreted as tunnelling rate per unit volume and

time, see e.g. [19] for details.

P(B ! N ) ⌘ �B!N . (2.31)

In the typical transitions that we will consider in the next Sections, the background

configuration is given by some spacetime state A, while the nucleated state corresponds to

the spacetime A joined to another spacetime B through a wall W. We will denote such

a configuration by A/B �W. Then the relative probability for being in the configuration

A/B �W versus being in the background state A is

P(A ! A/B �W) =
| (A/B �W)|2

| (A)|2 . (2.32)

Note that the denominator represents the probability of creating the state A out of

‘nothing’ (‘nothing’, whose wave function is simply 1, corresponds to the background space-

time in the ‘nothing’ to A transition). If the state A is a dS bubble, the denominator

– 10 –

corresponds to the standard HH or Vilenkin wave function, depending on the choice of the

sign in the exponent of the wave function. In Sec. 3 we will argue that both in the case of

dS to dS transitions and in the zero mass limit of the Schwarzschild to dS transitions the

numerator has a similar interpretation.

If Eq. (2.30) is dominated by one term in the numerator and the denominator (see

Sec. 3 for more details), it simplifies to an expression of the form

P(B ! N ) ' exp


2Re (Itot(N )� I(B))

�
, (2.33)

where Itot(N ) denotes the total action evaluated on the nucleated configuration8, while

I(B) ⌘ I denotes the total action evaluated on the background configuration. Notice that,

if there is an initial classical motion of the wall of the bubble (i.e. if there is a first turning

point), the background configuration corresponds to the spacetime evaluated at the first

turning point of the wall. Otherwise, the background must be specified on a case by case

basis.

Computation of the classical action

We note that the dynamical variables are R,L, r̂ and their conjugates ⇡R, ⇡L, p̂. On a

classical trajectory ending at some given values of R, L, r̂ we have in Hamilton-Jacobi

theory9

Stot = Stot[R,L, r̂] =

Z
drL(L,R,R

0
, r̂) , (2.34)

where

�Stot =

Z
dr (⇡L �L+ ⇡R �R) + p̂ �r̂ +

@L
@R0

�R

����
r̂+✏

r̂�✏

. (2.35)

The last (boundary) term needs to be removed from the bulk action in order to have a

well-defined functional derivative with respect to R [9]. The integration to get the classical

action may be done along any path ending at the given values. In particular one may

choose the path that keeps R, r̂ fixed as the integrability conditions will guarantee that

the other functional partial derivatives are satisfied. With this choice we can neglect the

second and third terms in Eq. (2.35) and we can write schematically

Itot = IB + Ib , (2.36)

where IB is the bulk action arising from the integration of the first term in Eq. (2.35), while

Ib is the boundary action coming from the integration of the last term in Eq. (2.35). The

two terms can be written in detail as

IB =
⌘

G

Z
r̂�✏

0
drR

p
AIL

2 �R02 �R
0 cos�1

✓
R

0

L
p
AI

◆�
+

Z
⇡

r̂+✏

dr [I ! O] , (2.37)

Ib =
⌘

G

Z
�R̂ R̂ cos�1

 
R

0

L

p
Â

!����
r̂+✏

r̂�✏

, (2.38)

8In order to simplify the notation, in the following we will suppress the explicit dependence on N : only

over-barred quantities will refer to the background configuration.
9Note that L depends on R

0 since ⇡L does, see Eq. (2.16).
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Wheeler DeWitt Equation

WKB

Transition Probability

(no time evolution)

Using Eq. (2.21) in Eq. (2.16) and Eq. (2.4) (in the gauge Nr = 0 and Nt = 1) one can

write an equation of motion for the wall:

˙̂
R

2 + V = �1 , (2.23)

where, depending on the solution chosen in Eq. (2.21), the potential takes the form

V = � 1
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⇣
(ÂI � ÂO) + 

2
R̂

2
⌘2

+ (ÂI � 1) . (2.25)

So the equation V = �1 gives the turning points for the classical motion of the wall, i.e.

the points at R = Ri and R = Ro in Fig. 1. At a turning point we see from Eq. (2.24) that

ÂO > 0 and from Eq. (2.25) that ÂI > 0. The classical turning points for the geometry

occur at ⇡L = 0, i.e. (see Eq. (2.16)) at

R
02

L2
= A(R) = 1� 2MG

R
�H

2
R

2
. (2.26)

When r = r̂ these are the turning points for the wall, i.e. the solutions of V = �1.
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instead of the Schröedinger equation we need to solve the WDW equation
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where the wave functional  is a functional of the geometry and a function of the brane
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ometry includes a black hole or not. If it does, the problem is similar to the usual quantum

mechanical tunnelling through a potential barrier: as shown in Fig. (1), there are two

classically allowed (I and III) and one classically forbidden regions (II). Classically, the
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second turning point. The WDW equation has two independent solutions as in Eq. (2.28)

in each of these regions, that need to be matched at the classical turning points. Some of
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the points at R = Ri and R = Ro in Fig. 1. At a turning point we see from Eq. (2.24) that

ÂO > 0 and from Eq. (2.25) that ÂI > 0. The classical turning points for the geometry

occur at ⇡L = 0, i.e. (see Eq. (2.16)) at

R
02

L2
= A(R) = 1� 2MG
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�H

2
R

2
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When r = r̂ these are the turning points for the wall, i.e. the solutions of V = �1.

2.2 Wheeler-DeWitt equation and tunnelling probability

The problem of computing the tunnelling probability in semiclassical gravity is similar to

the tunnelling problem of a barrier potential in usual quantum mechanics. In this context,

instead of the Schröedinger equation we need to solve the WDW equation

H = 0 , (2.27)

where the wave functional  is a functional of the geometry and a function of the brane

position r̂. We employ the WKB approximation, for which the wave function  can be

written at leading order in the semi-classical approximation as

 = ae
I + be

�I
, (2.28)

where, given a configuration with action S, we have denoted the combination iS = I and

the action S is evaluated on a classical solution. In the following we will refer to both S

and I as the ‘action’. The two solutions are given by ⌘ = ±1 corresponding to the two

solutions for ⇡L, see Eq. (2.16).

The problem is qualitatively very di↵erent depending on whether the background ge-

ometry includes a black hole or not. If it does, the problem is similar to the usual quantum

mechanical tunnelling through a potential barrier: as shown in Fig. (1), there are two

classically allowed (I and III) and one classically forbidden regions (II). Classically, the

wall expands (or contracts) up to a classical turning point and then re-collapses (or re-

expands). Quantum mechanically, it can tunnel under the barrier and resurface after the

second turning point. The WDW equation has two independent solutions as in Eq. (2.28)

in each of these regions, that need to be matched at the classical turning points. Some of
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the coe�cients a and b (there are two coe�cients for each region) can be fixed by imposing

boundary conditions. For instance, requiring that there is only an outgoing wave in region

III (that amounts to requiring that the nucleated universe is expanding and not contract-

ing, as it happens in the Vilenkin proposal for the creation of a dS bubble from ‘nothing’)

gives a relation between the two coe�cients of the under the barrier wave function. On the

contrary, if there is no boundary condition, in general one of the two solutions (positive

or negative exponent) in Eq. (2.28) will dominate in each region, depending on the sign of

the action I. The tunnelling probability in this case can be computed as the ratio between

the squared wave function associated to the expanding bubble in the classical Region III

and the squared wave function of the expanding bubble in the classical Region I. This can

be approximated (up to subtleties that will be addressed in Sec. 3) as the ratio

P =
| (Ro)|2

| (Ri)|2
, (2.29)

In general we interpret the ratio

P(B ! N ) =

����
 N

 B

����
2

, (2.30)

as the relative probability of finding the system in the ‘nucleated’ state N versus the

‘background’ state B, see Sec. 3 for more details. Notice that the two states B and N
do not always have the meaning of ‘initial’ and ‘final’ states (see Sec. 1): the transition

can be clearly interpreted as happening in time if there is an initial classical motion of

the bubble wall. In such a case, the configuration with a type (a) bubble at its maximum

radius (i.e. evaluated at the first turning point Ri, see Fig. 1), plays the role of the

background geometry. In the cases in which there is no initial classical motion of the wall the

interpretation is less clear. For this reason we will refer to the state B as the ‘background’

spacetime, instead of initial spacetime. Since we compute a relative probability, it does

not have to be smaller than one, and we avoid the problem of the normalization of wave

functionals. Observe that in the context of Euclidean instanton computations à la CDL,

the relative probability in Eq. (2.30) is interpreted as tunnelling rate per unit volume and

time, see e.g. [19] for details.

P(B ! N ) ⌘ �B!N . (2.31)

In the typical transitions that we will consider in the next Sections, the background

configuration is given by some spacetime state A, while the nucleated state corresponds to

the spacetime A joined to another spacetime B through a wall W. We will denote such

a configuration by A/B �W. Then the relative probability for being in the configuration

A/B �W versus being in the background state A is

P(A ! A/B �W) =
| (A/B �W)|2

| (A)|2 . (2.32)

Note that the denominator represents the probability of creating the state A out of

‘nothing’ (‘nothing’, whose wave function is simply 1, corresponds to the background space-

time in the ‘nothing’ to A transition). If the state A is a dS bubble, the denominator
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the relative probability in Eq. (2.30) is interpreted as tunnelling rate per unit volume and

time, see e.g. [19] for details.

P(B ! N ) ⌘ �B!N . (2.31)

In the typical transitions that we will consider in the next Sections, the background

configuration is given by some spacetime state A, while the nucleated state corresponds to

the spacetime A joined to another spacetime B through a wall W. We will denote such

a configuration by A/B �W. Then the relative probability for being in the configuration

A/B �W versus being in the background state A is

P(A ! A/B �W) =
| (A/B �W)|2

| (A)|2 . (2.32)

Note that the denominator represents the probability of creating the state A out of

‘nothing’ (‘nothing’, whose wave function is simply 1, corresponds to the background space-

time in the ‘nothing’ to A transition). If the state A is a dS bubble, the denominator

– 10 –

the coe�cients a and b (there are two coe�cients for each region) can be fixed by imposing

boundary conditions. For instance, requiring that there is only an outgoing wave in region

III (that amounts to requiring that the nucleated universe is expanding and not contract-

ing, as it happens in the Vilenkin proposal for the creation of a dS bubble from ‘nothing’)

gives a relation between the two coe�cients of the under the barrier wave function. On the

contrary, if there is no boundary condition, in general one of the two solutions (positive

or negative exponent) in Eq. (2.28) will dominate in each region, depending on the sign of

the action I. The tunnelling probability in this case can be computed as the ratio between

the squared wave function associated to the expanding bubble in the classical Region III

and the squared wave function of the expanding bubble in the classical Region I. This can

be approximated (up to subtleties that will be addressed in Sec. 3) as the ratio

P =
| (Ro)|2

| (Ri)|2
, (2.29)

In general we interpret the ratio

P(B ! N ) =

����
 N

 B

����
2

, (2.30)

as the relative probability of finding the system in the ‘nucleated’ state N versus the

‘background’ state B, see Sec. 3 for more details. Notice that the two states B and N
do not always have the meaning of ‘initial’ and ‘final’ states (see Sec. 1): the transition

can be clearly interpreted as happening in time if there is an initial classical motion of

the bubble wall. In such a case, the configuration with a type (a) bubble at its maximum

radius (i.e. evaluated at the first turning point Ri, see Fig. 1), plays the role of the

background geometry. In the cases in which there is no initial classical motion of the wall the

interpretation is less clear. For this reason we will refer to the state B as the ‘background’

spacetime, instead of initial spacetime. Since we compute a relative probability, it does

not have to be smaller than one, and we avoid the problem of the normalization of wave

functionals. Observe that in the context of Euclidean instanton computations à la CDL,
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corresponds to the standard HH or Vilenkin wave function, depending on the choice of the

sign in the exponent of the wave function. In Sec. 3 we will argue that both in the case of

dS to dS transitions and in the zero mass limit of the Schwarzschild to dS transitions the

numerator has a similar interpretation.

If Eq. (2.30) is dominated by one term in the numerator and the denominator (see

Sec. 3 for more details), it simplifies to an expression of the form

P(B ! N ) ' exp


2Re (Itot(N )� I(B))

�
, (2.33)

where Itot(N ) denotes the total action evaluated on the nucleated configuration8, while

I(B) ⌘ I denotes the total action evaluated on the background configuration. Notice that,

if there is an initial classical motion of the wall of the bubble (i.e. if there is a first turning

point), the background configuration corresponds to the spacetime evaluated at the first

turning point of the wall. Otherwise, the background must be specified on a case by case

basis.

Computation of the classical action

We note that the dynamical variables are R,L, r̂ and their conjugates ⇡R, ⇡L, p̂. On a

classical trajectory ending at some given values of R, L, r̂ we have in Hamilton-Jacobi

theory9

Stot = Stot[R,L, r̂] =

Z
drL(L,R,R

0
, r̂) , (2.34)

where

�Stot =

Z
dr (⇡L �L+ ⇡R �R) + p̂ �r̂ +

@L
@R0

�R

����
r̂+✏

r̂�✏

. (2.35)

The last (boundary) term needs to be removed from the bulk action in order to have a

well-defined functional derivative with respect to R [9]. The integration to get the classical

action may be done along any path ending at the given values. In particular one may

choose the path that keeps R, r̂ fixed as the integrability conditions will guarantee that

the other functional partial derivatives are satisfied. With this choice we can neglect the

second and third terms in Eq. (2.35) and we can write schematically

Itot = IB + Ib , (2.36)

where IB is the bulk action arising from the integration of the first term in Eq. (2.35), while

Ib is the boundary action coming from the integration of the last term in Eq. (2.35). The

two terms can be written in detail as

IB =
⌘

G

Z
r̂�✏

0
drR

p
AIL

2 �R02 �R
0 cos�1

✓
R

0

L
p
AI

◆�
+

Z
⇡

r̂+✏

dr [I ! O] , (2.37)

Ib =
⌘

G

Z
�R̂ R̂ cos�1

 
R

0

L

p
Â

!����
r̂+✏

r̂�✏

, (2.38)

8In order to simplify the notation, in the following we will suppress the explicit dependence on N : only

over-barred quantities will refer to the background configuration.
9Note that L depends on R

0 since ⇡L does, see Eq. (2.16).
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Wheeler DeWitt Equation

WKB

Transition Probability

(no time evolution)

Using Eq. (2.21) in Eq. (2.16) and Eq. (2.4) (in the gauge Nr = 0 and Nt = 1) one can

write an equation of motion for the wall:

˙̂
R

2 + V = �1 , (2.23)

where, depending on the solution chosen in Eq. (2.21), the potential takes the form

V = � 1

(2R̂)2

⇣
(ÂI � ÂO)� 

2
R̂

2
⌘2

+ (ÂO � 1) = (2.24)

= � 1

(2R̂)2

⇣
(ÂI � ÂO) + 

2
R̂

2
⌘2

+ (ÂI � 1) . (2.25)

So the equation V = �1 gives the turning points for the classical motion of the wall, i.e.

the points at R = Ri and R = Ro in Fig. 1. At a turning point we see from Eq. (2.24) that

ÂO > 0 and from Eq. (2.25) that ÂI > 0. The classical turning points for the geometry

occur at ⇡L = 0, i.e. (see Eq. (2.16)) at

R
02

L2
= A(R) = 1� 2MG

R
�H

2
R

2
. (2.26)

When r = r̂ these are the turning points for the wall, i.e. the solutions of V = �1.

2.2 Wheeler-DeWitt equation and tunnelling probability

The problem of computing the tunnelling probability in semiclassical gravity is similar to

the tunnelling problem of a barrier potential in usual quantum mechanics. In this context,

instead of the Schröedinger equation we need to solve the WDW equation

H = 0 , (2.27)

where the wave functional  is a functional of the geometry and a function of the brane

position r̂. We employ the WKB approximation, for which the wave function  can be

written at leading order in the semi-classical approximation as

 = ae
I + be

�I
, (2.28)

where, given a configuration with action S, we have denoted the combination iS = I and

the action S is evaluated on a classical solution. In the following we will refer to both S

and I as the ‘action’. The two solutions are given by ⌘ = ±1 corresponding to the two

solutions for ⇡L, see Eq. (2.16).

The problem is qualitatively very di↵erent depending on whether the background ge-

ometry includes a black hole or not. If it does, the problem is similar to the usual quantum

mechanical tunnelling through a potential barrier: as shown in Fig. (1), there are two

classically allowed (I and III) and one classically forbidden regions (II). Classically, the

wall expands (or contracts) up to a classical turning point and then re-collapses (or re-

expands). Quantum mechanically, it can tunnel under the barrier and resurface after the

second turning point. The WDW equation has two independent solutions as in Eq. (2.28)

in each of these regions, that need to be matched at the classical turning points. Some of
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Minisuperspace
• Mini superspace approximation

4.2 Vacuum transitions in mini-superspace

An instructive exercise, that helps understanding the formalism outlined in Sec. 2 and shows
the di↵erences between the Lorentzian and Euclidean appproaches, consists in studying vacuum
transitions in a mini-superspace setup that includes a real scalar field. This calculation is a
generalization of the ‘tunneling from nothing’ scenario [20–23]. For a recent discussion see for
instance [42–44]. The metric is

ds2 = �N2(t)dt2 + a2(t)(dr2 + sin2 rd⌦2

2) . (4.7)

The action (setting Mp = 1/
p

8⇡G = 1) is given by the sum S = Sg + Sm, where

Sg = 2⇡2

Z
1

0

dt
�
�N�13aȧ2 + 3kaN

�
, (4.8)

Sm = 2⇡2

Z
1

0

dt

✓
N�1

1

2
a3�̇2 � Na3V (�)

◆
. (4.9)

Here k = ±1, 0 depending on whether the three-spatial slice is positively (negatively) curved
or flat. Of course in the open k = 0, �1 cases the factor 2⇡2 would have to be replaced by an
appropriate compactified volume factor and the spatial metric in Eq. (4.7) would need to be
replaced by a flat or hyperbolic metric. Here we will focus on the k = +1 case and for convenience
we will drop the 2⇡2 factor in the calculations below and restore it in the expressions for the
classical action. We will make some remarks at end on the other two cases. The canonical
momenta are

⇡N = 0 , ⇡a = �N�16aȧ , ⇡� = N�1a3�̇ , (4.10)

and the Hamiltonian constraint is

H = N

 
� ⇡2

a

12a
+

⇡2

�

2a3
� 3a + a3V (�)

!
⇡ 0 . (4.11)

Comparing with Eq. (2.4) we have

Gaa = � 1

6a
, G�� =

1

a3
, (4.12)

f(a, �) = �3a + a3V (�). (4.13)

Consider a scalar potential with two dS minima in �A and �B, with V (�A) ⌘ VA > VB ⌘ V (�B).
Then the general shape of the function �f(a, �) in Eq. (4.13) is plotted in Fig. 4.

As we emphasised before, the superspace metric is not positive definite in the presence of
gravity and this introduces significant di↵erences to WKB type tunneling arguments. As can be
seen from this constraint equation in the absence of the scalar field (this is the ‘tunneling from
nothing’ model of [20–23]), one has a barrier at fixed � for the scale factor a when a <

p
3/V

whereas if the geometry is fixed (as in the original investigations of Coleman et al.) then there is
a barrier for � when V is greater than its value at the point where ⇡� becomes zero. However it
is clear that these simple situations are not the only possibilities when both a and � are present.
The following is to our knowledge the first time this more complex situation is discussed.
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⇡N = 0 , ⇡a = �N�16aȧ , ⇡� = N�1a3�̇ , (4.10)

and the Hamiltonian constraint is

H = N

 
� ⇡2

a

12a
+

⇡2

�

2a3
� 3a + a3V (�)

!
⇡ 0 . (4.11)

Comparing with Eq. (2.4) we have

Gaa = � 1

6a
, G�� =

1

a3
, (4.12)

f(a, �) = �3a + a3V (�). (4.13)

Consider a scalar potential with two dS minima in �A and �B, with V (�A) ⌘ VA > VB ⌘ V (�B).
Then the general shape of the function �f(a, �) in Eq. (4.13) is plotted in Fig. 4.

As we emphasised before, the superspace metric is not positive definite in the presence of
gravity and this introduces significant di↵erences to WKB type tunneling arguments. As can be
seen from this constraint equation in the absence of the scalar field (this is the ‘tunneling from
nothing’ model of [20–23]), one has a barrier at fixed � for the scale factor a when a <

p
3/V

whereas if the geometry is fixed (as in the original investigations of Coleman et al.) then there is
a barrier for � when V is greater than its value at the point where ⇡� becomes zero. However it
is clear that these simple situations are not the only possibilities when both a and � are present.
The following is to our knowledge the first time this more complex situation is discussed.
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The Hamiltonian is
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Hartle-Hawking
• For constant potential
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Also note that from the Hamiltonian we can integrate (for a constant potential ) to

get a classical solution for a

a =

r
3

V
sin

 r
V

3
s

!
, for a3V < 3a (1.17)

a =

r
3

V
cosh

 r
V

3
s

!
, for a3V > 3a (1.18)

for some a�ne parameter s. Identifying s with euclidean time ⌧ or Lorentzian time

t depending the case, we have

1

6a

�S0

�a

�⌧

�a
= i

r
1� V

3
a2

1

ȧ
= i (1.19)

when under the barrier, while for over the barrier

1

6a

�S0

�a

�t

�a
= 1 (1.20)

To obtain the last identities we have used the classical solution for a(t), (1.18).

These result implies that given a classical solution we can define time derivatives

through the relation (1.19). Now notice that the the first term in (1.12) contains an

expression similar to (1.19) in its first term. Replacing we get,

✓
@

@⌧
+H2

◆
� = 0 (1.21)

which is a Euclidean Schrodinger equation for the perturbations. For the modes

over the barrier we have, ✓
i
@

@t
�H2

◆
� = 0 (1.22)

which corresponds to the Schrodinger equation in real time.

Bunch Davies vacuum

To find the vacuum let us first solve the equations of motion for the quadratic actions

for the perturbation. We assume that the spacetime is fixed de Sitter such that the

metric is given in cosmic time by

a
2(t) =

1

H
cosh2(Ht) (1.23)

or that H = V/3. It is convenient to decompose the ' in terms of spherical har-

monics.

'(x) =
X

l,m

'l(t)Ylm(⌦) (1.24)

3

From the constraints
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Quantum transitions

which guarantees in general that there is no local minimum value for a(t) (ȧ = 0 =) ä < 0)
and that there should be at least one point for which a = 0 (the coordinate singularity).

After a critical time of order t⇤ ⇠ (↵V )�1/2 with ↵�1 = 3/8⇡G = 3M2
p , the potential starts

to dominate, and the curvature term becomes less important as the universe expands. This
could mark the onset of inflation as long as the slow roll conditions are satisfied.

There are some conditions on the potential in order to achieve this scenario. In particular, it
is required to have that V 00/V > 1 to be able to have a solution that satisfies the instanton
boundary conditions [62] (see fig.12). This being the opposite of the slow-roll condition, there
has to be a curvature change in the scalar potential to eventually give rise to inflation.

We may be more quantitative and follow the scale factor a(t) and �(t) for times smaller
than t⇤. In this case we can expand around the initial points V (�(0) + ��) ⇠ ⇤ + ��� with
� = V 0(�(0)) and find

a(t) =
sinh(�t)

�
, �2 = ↵⇤ =

⇤

3M2
p

, (5.35)

and the scalar field:

�(t) =
�

3�2


cosh(�t) � 1

cosh(�t) + 1
+ log

✓
cosh(�t) + 1

2

◆�
. (5.36)

From here we can explicitly verify that for the domain of validity of this regime (t  t⇤)
the scale factor starts at zero and then increases linearly with time whereas the scalar field
increases as �(t) . �t2. For t > t⇤ ⌘ 1/

p
�, ⇤ dominates as long as � is small enough

(� < ⇤/Mp) such that ⇤ dominates over both �� and �̇2. In that case the universe starts
a standard inflationary period, otherwise the field rolls fast and depending on the potential
there may or may not be a standard period of inflation.

�

V

�F �T�a �b

Figure 12: The scalar field potential has a false vacuum at �f and an inflationary region on the
right of �T . In the standard CDL picture the field tunnels from �a to �b.
• Closed Universe. In the closed universe after tunneling the equations are 17:

✓
ȧ

a

◆2

=
8⇡G

3

✓
1

2
�̇2 + V (�)

◆
� 1

a2
, (5.37)

0 = �̈ + 3H�̇ + V,� .

17For relatively recent discussions on the cosmology of closed universes see for instance [63–70].
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III �f(a, �)

�
�B

�A

�

Figure 5: We display the function f(a, �) and the integration path that is split into three

portions. The portion I refers to the under-the-barrier path in the a direction, at fixed

� = �A. Part II refers to the ‘thin-wall’ portion along the phi direction, at constant scale

factor. The portion III refers to the final path in the a-direction at fixed � = �B.
fig:Path
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Thus, using a(s̄ ± �s) = ā ± �a, we have
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1 � (ā � �a)2

VB

3

◆3/2

� 1

#
� 1

VA

"✓
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4.3 Thin-wall approximation

Let us first evaluate this in the thin-wall approximation. In this case the potential essen-

tially reduces to a brane so that e↵ectively we may write the argument of the integral in

the last term above in the limit �s ! 0 as a delta function. Thus we may write

– 22 –

where we have chosen to keep C - so the choice of phase is so far undetermined. After some
cancellations this may be rewritten as

±B

2
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ds0C�1(s0)

✓
�a + a3

VB

3

◆
+ 12⇡2i

Z
s̄��s

0

ds0C�1(s0)

✓
�a + a3

VA

3

◆

+ 2⇡2ā3T. (4.19)

where we have defined the tension T in analogy with Eq. (4.5), as the contribution to the action
coming from the portion of the path such that d�/ds 6= 0

2⇡2ā3T = 12⇡2i

Z
s+�s

s̄��s

ds0C�1(s0)

✓
a3

V (�) � VA

3

◆
. (4.20)

Note that, despite the contribution in Eq. (4.20) is similar to Eq. (4.5), there is no physical wall in
the process that we are considering, that preserves the full O(4) symmetry of the minisuperspace
model. So far we have not made any approximation. The terms in the first line of Eq. (4.19)
will now be evaluated (as in the corresponding Euclidean case) keeping � constant. So we may

use da

ds0 = ±
q

1 � VA,B

3
a2 (see Eq. (4.16) with d�/ds = 0 which implies C2 = �1). We will also

assume that the last term of Eq. (4.19) is also integrated over a time-like path in field space -
so that we can choose C2 = �1 along this path as well, which requires of course that da/ds is
non-zero along this path. Hence
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Thus we have (putting a(s̄ ± �s) = ā ± �a)
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4.4 Concrete cases

Let us now consider several cases to identify the transition amplitudes using our formalism.

• Thin wall CDL. Let us try to recover the CDL resukt in the thin wall approximation. We
can evaluate the last equation in the thin wall approximation. In this case the potential
essentially reduces to a brane so that e↵ectively we may write the argument of the integral
in Eq. (4.20) in the limit �s ! 0 as a delta function. Then the logarithm of the transition
amplitude becomes
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� 1

#)

+ 2⇡2ā3T . (4.23)

This is the same expression as Eq. (4.6). It is also clear that this is the sum of two Hartle-
Hawking/Vilenkin-Linde terms and9 and a term coming from the portion of the path where

9Note that in the thin wall approximation the integrals in Eq. (4.5) and Eq. (4.20) imply that in the region
around s̄ the potential takes the form a

3(s) (V (�(s))� VA) = 2ā3
T �(s� s̄).
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CDL

where we have chosen to keep C - so the choice of phase is so far undetermined. After some
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where we have defined the tension T in analogy with Eq. (4.5), as the contribution to the action
coming from the portion of the path such that d�/ds 6= 0
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Note that, despite the contribution in Eq. (4.20) is similar to Eq. (4.5), there is no physical wall in
the process that we are considering, that preserves the full O(4) symmetry of the minisuperspace
model. So far we have not made any approximation. The terms in the first line of Eq. (4.19)
will now be evaluated (as in the corresponding Euclidean case) keeping � constant. So we may

use da

ds0 = ±
q

1 � VA,B

3
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so that we can choose C2 = �1 along this path as well, which requires of course that da/ds is
non-zero along this path. Hence
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1 � (ā � �a)2

VB

3

◆3/2

� 1

#
� 1

VA

"✓
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4.4 Concrete cases

Let us now consider several cases to identify the transition amplitudes using our formalism.

• Thin wall CDL. Let us try to recover the CDL resukt in the thin wall approximation. We
can evaluate the last equation in the thin wall approximation. In this case the potential
essentially reduces to a brane so that e↵ectively we may write the argument of the integral
in Eq. (4.20) in the limit �s ! 0 as a delta function. Then the logarithm of the transition
amplitude becomes
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This is the same expression as Eq. (4.6). It is also clear that this is the sum of two Hartle-
Hawking/Vilenkin-Linde terms and9 and a term coming from the portion of the path where

9Note that in the thin wall approximation the integrals in Eq. (4.5) and Eq. (4.20) imply that in the region
around s̄ the potential takes the form a

3(s) (V (�(s))� VA) = 2ā3
T �(s� s̄).
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4.3 Recovering Coleman-De Luccia

It is instructive to try and recover the CDL expression in Eq. (4.6) using the formalism of Sec. 2.
Hopefully, this might help us in better understanding CDL. Let us choose the deformation
parameter s (in analogy with the Euclidean time ⌧) such that from some initial value (say at
s = 0) to the point s̄ � �s the field � remains very close to �B and for points smax > s > s̄ + ✏,
� becomes close to �A. It should be emphsised here that s has nothing to do with real time
- it is simply a deformation parameter that parametrises the path of integration. The range
s̄�✏ < s < s̄+✏ is the transitional region where in e↵ect CDL used the thin wall approximation.
Thus the classical action (see Eq. (2.11)) is
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Here in the first term we have used the fact that � remains constant and equal to �B while in
the last term it remains equal to �A.

This path corresponds to the Euclidean path chosen by CDL and Parke. Thus in the
Lorentzian case this action corresponds to ‘tunneling from nothing’, as in Hartle-Hawking/Vilenkin-
Linde [20, 21, 23] wave function of the universe arguments, essentially keeping � fixed, to the
potentially emergent state B (the true vacuum in CDL’s language), then making a transition
to the state A (where both � and a can change), that then emerges as the classical background
space time. This is then to be compared to the situation where the the state A emerges from a
‘tunneling from nothing’ process. The latter gives an action

S0(amax, �A; a0, �A) = �12⇡2

Z
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✓
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Now we have from Eq. (2.15)
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Thus as long as a2 < 3/V (�), for a “time-like” trajectory in field space C2 = �1. In particular
this would be the case for d�/ds = 0. For the moment though we will leave this undetermined.

The transition probability is given by (ignoring the pre-factors for the moment),

P (A ! B) =
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The dominant term in this ratio will be exponentially larger than the subdominant terms so the
latter may be safely ignored.
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4.3 Recovering Coleman-De Luccia

It is instructive to try and recover the CDL expression in Eq. (4.6) using the formalism of Sec. 2.
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The dominant term in this ratio will be exponentially larger than the subdominant terms so the
latter may be safely ignored.
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4.4 Concrete cases

Let us now consider several cases to identify the transition amplitudes using our formalism.

• Thin wall CDL. Let us try to recover the CDL resukt in the thin wall approximation. We
can evaluate the last equation in the thin wall approximation. In this case the potential
essentially reduces to a brane so that e↵ectively we may write the argument of the integral
in Eq. (4.20) in the limit �s ! 0 as a delta function. Then the logarithm of the transition
amplitude becomes
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+ 2⇡2ā3T . (4.23)

This is the same expression as Eq. (4.6). It is also clear that this is the sum of two Hartle-
Hawking/Vilenkin-Linde terms and10 and a term coming from the portion of the path where
d�/ds 6= 0, that in the CDL computation corresponds to the wall tension contribution. How-
ever, notice that we recovered the CDL expression for the tunnelling probability, Eq. (4.23)
without having to go to Euclidean space, but just using WKB quantum mechanics and assum-
ing that, for the path that extremizes the action, C�1 in Eq. (4.20) is imaginary. Extremizing
Eq. (4.23) gives the standard (generalised) CDL expression for transitions between two dS
spaces (or AdS with appropriate sign changes). The extremum is at
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where �V = VA � VB. Note that this expression shows that ā is less than the horizon radius
of both A and B. Putting this into Eq. (4.23) gives the final expression (with H2 ⌘ V/3)
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This is of course the well-known result. However its derivation and interpretation is quite
di↵erent from that of CDL (and subsequent work which generalised the CDL result). Firstly
we did not explicitly use Coleman’s tunneling formula - instead we directly solved the WDW
equation in the classical approximation, as a deformation of the solution where the initial
configuration is one in which the fields correspond to a dS space (with vacuum energy VA and
compared it to the undeformed configuration).

However, there are a few puzzles posed by this calculation as we discuss next.

• Hartle-Hawking interpretation.

As the last term in Eq. (4.23) is positive, it increases the absolute value of B and hence
decreases the tunneling probabilty. On the other hand, one can simply ask what is the
relative probability of ‘tunneling from nothing’ to the state B compared to ‘tunneling from
nothing’ to the state A. In other words one might compute the following ratio

B

2
=

| (a0, �B; amax, �B)|2

| (a0, �A; amax, �A)|2
, (4.26)

10Note that in the thin wall approximation the integrals in Eq. (4.5) and Eq. (4.20) imply that in the region
around s̄ the potential takes the form a

3(s) (V (�(s))� VA) = 2ā3
T �(s� s̄).
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If we  define the probability 

which guarantees in general that there is no local minimum value for a(t) (ȧ = 0 =) ä < 0)
and that there should be at least one point for which a = 0 (the coordinate singularity).

After a critical time of order t⇤ ⇠ (↵V )�1/2 with ↵�1 = 3/8⇡G = 3M2
p , the potential starts

to dominate, and the curvature term becomes less important as the universe expands. This
could mark the onset of inflation as long as the slow roll conditions are satisfied.

There are some conditions on the potential in order to achieve this scenario. In particular, it
is required to have that V 00/V > 1 to be able to have a solution that satisfies the instanton
boundary conditions [62] (see fig.12). This being the opposite of the slow-roll condition, there
has to be a curvature change in the scalar potential to eventually give rise to inflation.

We may be more quantitative and follow the scale factor a(t) and �(t) for times smaller
than t⇤. In this case we can expand around the initial points V (�(0) + ��) ⇠ ⇤ + ��� with
� = V 0(�(0)) and find

a(t) =
sinh(�t)

�
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, (5.35)

and the scalar field:
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From here we can explicitly verify that for the domain of validity of this regime (t  t⇤)
the scale factor starts at zero and then increases linearly with time whereas the scalar field
increases as �(t) . �t2. For t > t⇤ ⌘ 1/

p
�, ⇤ dominates as long as � is small enough

(� < ⇤/Mp) such that ⇤ dominates over both �� and �̇2. In that case the universe starts
a standard inflationary period, otherwise the field rolls fast and depending on the potential
there may or may not be a standard period of inflation.

�

V

�F �T�a �b

Figure 12: The scalar field potential has a false vacuum at �f and an inflationary region on the
right of �T . In the standard CDL picture the field tunnels from �a to �b.
• Closed Universe. In the closed universe after tunneling the equations are 17:
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0 = �̈ + 3H�̇ + V,� .

17For relatively recent discussions on the cosmology of closed universes see for instance [63–70].
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approximation



CdL?
• If we add an scalar fields we can also obtain CdL


• This approach works because CdL instanton is basically 
an Euclidean minisuperspace computation


• After nucleation the minisuperspace computation is not 
valid

4.4 Concrete cases

Let us now consider several cases to identify the transition amplitudes using our formalism.

• Thin wall CDL. Let us try to recover the CDL resukt in the thin wall approximation. We
can evaluate the last equation in the thin wall approximation. In this case the potential
essentially reduces to a brane so that e↵ectively we may write the argument of the integral
in Eq. (4.20) in the limit �s ! 0 as a delta function. Then the logarithm of the transition
amplitude becomes
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VB

3

◆3/2

� 1

#
⌥ 1

VA

"✓
1 � ā2

VA

3

◆3/2

� 1

#)
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This is the same expression as Eq. (4.6). It is also clear that this is the sum of two Hartle-
Hawking/Vilenkin-Linde terms and10 and a term coming from the portion of the path where
d�/ds 6= 0, that in the CDL computation corresponds to the wall tension contribution. How-
ever, notice that we recovered the CDL expression for the tunnelling probability, Eq. (4.23)
without having to go to Euclidean space, but just using WKB quantum mechanics and assum-
ing that, for the path that extremizes the action, C�1 in Eq. (4.20) is imaginary. Extremizing
Eq. (4.23) gives the standard (generalised) CDL expression for transitions between two dS
spaces (or AdS with appropriate sign changes). The extremum is at
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where �V = VA � VB. Note that this expression shows that ā is less than the horizon radius
of both A and B. Putting this into Eq. (4.23) gives the final expression (with H2 ⌘ V/3)
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This is of course the well-known result. However its derivation and interpretation is quite
di↵erent from that of CDL (and subsequent work which generalised the CDL result). Firstly
we did not explicitly use Coleman’s tunneling formula - instead we directly solved the WDW
equation in the classical approximation, as a deformation of the solution where the initial
configuration is one in which the fields correspond to a dS space (with vacuum energy VA and
compared it to the undeformed configuration).

However, there are a few puzzles posed by this calculation as we discuss next.

• Hartle-Hawking interpretation.

As the last term in Eq. (4.23) is positive, it increases the absolute value of B and hence
decreases the tunneling probabilty. On the other hand, one can simply ask what is the
relative probability of ‘tunneling from nothing’ to the state B compared to ‘tunneling from
nothing’ to the state A. In other words one might compute the following ratio

B

2
=

| (a0, �B; amax, �B)|2

| (a0, �A; amax, �A)|2
, (4.26)

10Note that in the thin wall approximation the integrals in Eq. (4.5) and Eq. (4.20) imply that in the region
around s̄ the potential takes the form a

3(s) (V (�(s))� VA) = 2ā3
T �(s� s̄).
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CdL boundary conditions are not consistent

 with a closed universe



CdL?
• If we add an scalar fields we can also obtain CdL


• Nevertheless there are another allowed decays

4.4 Concrete cases

Let us now consider several cases to identify the transition amplitudes using our formalism.

• Thin wall CDL. Let us try to recover the CDL resukt in the thin wall approximation. We
can evaluate the last equation in the thin wall approximation. In this case the potential
essentially reduces to a brane so that e↵ectively we may write the argument of the integral
in Eq. (4.20) in the limit �s ! 0 as a delta function. Then the logarithm of the transition
amplitude becomes

±B

2
= 12⇡2

(
± 1

VB

"✓
1 � ā2
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This is the same expression as Eq. (4.6). It is also clear that this is the sum of two Hartle-
Hawking/Vilenkin-Linde terms and10 and a term coming from the portion of the path where
d�/ds 6= 0, that in the CDL computation corresponds to the wall tension contribution. How-
ever, notice that we recovered the CDL expression for the tunnelling probability, Eq. (4.23)
without having to go to Euclidean space, but just using WKB quantum mechanics and assum-
ing that, for the path that extremizes the action, C�1 in Eq. (4.20) is imaginary. Extremizing
Eq. (4.23) gives the standard (generalised) CDL expression for transitions between two dS
spaces (or AdS with appropriate sign changes). The extremum is at
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where �V = VA � VB. Note that this expression shows that ā is less than the horizon radius
of both A and B. Putting this into Eq. (4.23) gives the final expression (with H2 ⌘ V/3)
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This is of course the well-known result. However its derivation and interpretation is quite
di↵erent from that of CDL (and subsequent work which generalised the CDL result). Firstly
we did not explicitly use Coleman’s tunneling formula - instead we directly solved the WDW
equation in the classical approximation, as a deformation of the solution where the initial
configuration is one in which the fields correspond to a dS space (with vacuum energy VA and
compared it to the undeformed configuration).

However, there are a few puzzles posed by this calculation as we discuss next.

• Hartle-Hawking interpretation.

As the last term in Eq. (4.23) is positive, it increases the absolute value of B and hence
decreases the tunneling probabilty. On the other hand, one can simply ask what is the
relative probability of ‘tunneling from nothing’ to the state B compared to ‘tunneling from
nothing’ to the state A. In other words one might compute the following ratio

B

2
=

| (a0, �B; amax, �B)|2

| (a0, �A; amax, �A)|2
, (4.26)

10Note that in the thin wall approximation the integrals in Eq. (4.5) and Eq. (4.20) imply that in the region
around s̄ the potential takes the form a

3(s) (V (�(s))� VA) = 2ā3
T �(s� s̄).
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with amax � max(
p

(3/VA),
p

3/VB). The result would then be given by the top line of
Eq. (4.23) (i.e. the two Hartle-Hawking/Vilenkin-Linde terms) with no tension term. Note
that, even though the integration of Eq. (4.23) in this case extends till amax, only the integrals
up to

p
3/VA and

p
3/VB contribute to the real part of B. Hence, for instance, the factor

⇣
1 � ā

2
VB
3

⌘3/2

evaluated at ā2 > 3/VB gives no contribution to B and analogously for the

term containing VA in Eq. (4.23). Hence the relative probability is now given by P = e�B
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. (4.27)

This is simply the ratio of the Hartle-Hawking/Vilenkin-Linde (depending on the choice of
sign) probabilities for tunneling from ‘nothing’ to the state B compared to tunneling from
‘nothing’ to the state A. Note that Eq. (5.11) might be interpreted as the tunnelling rate for
the transition dS A ! ‘nothing’ ! dS B (or the opposite, depending on the choice of the
signs). Interestingly, it seems that this would give a greater probability for transition than
the CDL calculation. In this connection it should be pointed out that in the Hartle-Hawking
case the wave function in the classical region is indeed a superposition of wave functions for
expanding and contracting universes. The process we are envisaging may then be thought of
as the contracting branch with the field sitting at the A minimum tunneling to ‘nothing’ and
then reemerging as an expanding branch in the B minimum or the reverse.

• CDL vs Hartle-Hawking.

In the Lorentzian analog of the CDL calculation on the other hand, it is not clear how the true
vacuum (i.e. B) emerges into the classical region. In CDL, the tunnelling rate is computed
exactly with the same integral as in Eq. (4.18). However, in CDL this is interpreted as the
action for a Euclidean configuration given by a compound state that joins two portions of
4-spheres (corresponding to dS B and dS A) along a 3-sphere (the wall): the SO(5) symmetry
of the Euclidean four dimensional dS is broken to SO(4) by the presence of the ‘Euclidean’
wall. Afterwards, as described in App. A, one of the angular variables that implements the
SO(4) symmetry, is analytically continued and becomes the usual Lorentzian time, breaking
the symmetry to SO(1, 3). In this way, the initial under-the-barrier Euclidean configuration
(the compound state) becomes the real three-dimensional equal-time slice of the nucleated
spacetime. As the continued angular variable is one that preserves the Euclidean SO(4)
symmetry, the nucleated spacetime is still a compound state of dS A and dS B: both dS
spacetimes enter the classical region and keep evolving according to the classical equations of
motion.

In our computation, the integral of Eq. (4.18) (that we chose in order to recover the same
CDL expression, and try to give it a Lorentzian interpretation) is associated with a particular
path in field space that, starting from the configuration (a0, �B) (‘B nothing’) leads to the
nucleation of a full dS A sphere, i.e. the configuration (amax, �A). This has to be contrasted,
as described in Eq. (4.17) with the path that, starting from the configuration (a0, �A) leads
to the same full dS A sphere as above. Essentially we are comparing 3-geometries, which is
all one can do in the context of quantum gravity as described by the WDW equation.

In our procedure we neither need a dilute gas approximation nor a single negative mode in the
spectrum of fluctuations as in the CDL flat space argument. Furthermore, there is no notion
of bubble nucleation. Both the numerator and the denominator in Eq. (4.17) correspond to
spacetime configurations that preserve the SO(4) symmetry. To be more explicit, the portion
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Other solutions

• There are other solutions in the case of a potential

In the case there is an initial kinetic energy 
the field can move  classically between 

vacua
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Figure 5: The potential in the left panel is a quartic polynomial in which four parameters are fixed by requiring
two minima as described in the main text, while the remaining parameter fixes the height of the barrier. The
right panel shows the trajectory of the field that starts in the A minimum and oscillates around the B minimum
with decreasing amplitude. Asymptotically it goes to rest in the B minimum at � = 0.01.

Figure 6: In the left panel we plot the scale factor. In the right panel we plot the derivative of the scale factor
with respect to time t. After a contracting phase and a few large oscillations, the system settles into a regime of
exponential growth once it is in the lower vacuum.

Figure 7: The black line represents the term 1
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• Non-standard classical paths. The Hamiltonian and momentum constraints can be ex-
pressed as the standard FLRW equation:
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and the scalar field equation
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[SC, de Alwis, Muia and Quevedo 2020]



Beyond minisuperspace

• First let us study the motion of a brane between two dS

Imposing junction conditions at the wall 

we can obtain equations of motion for

 the brane
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�r

�
��

r

�� > �
2

Figure 1. Left panel : de Sitter to flat space instanton. The blue region is the dS spacetime that
lies outside the bubble that contains flat space, in yellow. Right panel : di↵erent configuration for
dS to flat space transitions. Colors as in the left panel.

wall are given by 1

`

@

@⇠
and @

@r
in the de Sitter and flat space sides respectively. Both these

vectors point outwards, with the flat space bubble placed at the center of both coordinate

systems, see Fig. 1. Hence we can immediately write the junction conditions as (see Eq.

(2.10) of [1])

�Kab ��Khab = �Sab , (1.5)

where  = 8⇡G, K is the trace of the extrinsic curvature, �Kab ⌘ K+
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to the outside/inside regions respectively), hµ⌫ = gµ⌫ � nµn⌫ is the metric induced on the

wall (nµ are the components of the vector orthogonal to the wall) and Sµ⌫ is the pill-box

integrated stress-energy tensor of the wall: Sµ⌫ = lim✏!0
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Tµ⌫dn.

All the o↵-diagonal components of the extrinsic curvature vanish: K̂ab = 0 for a 6= b.
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The sign is not clear in Eq. (1.9): in Euclidean signature the stress-energy tensor for a O(4) symmetric
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Classical solutions

• First let us study the motion of a brane between two dS

Imposing junction conditions at the wall 

we can obtain equations of motion for

 the brane
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Figure 1. Left panel : de Sitter to flat space instanton. The blue region is the dS spacetime that
lies outside the bubble that contains flat space, in yellow. Right panel : di↵erent configuration for
dS to flat space transitions. Colors as in the left panel.
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in the de Sitter and flat space sides respectively. Both these

vectors point outwards, with the flat space bubble placed at the center of both coordinate

systems, see Fig. 1. Hence we can immediately write the junction conditions as (see Eq.

(2.10) of [1])
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Hamiltonian analysis

not be an inconsistency since both states can be pure3. Also, even though the instanton

calculation of FGG involves a singular configuration, the FMP Hamiltonian calculation

has no such problem. Thus we believe that the latter should be taken seriously and as we

pointed out above the thermodynamic issues it presents should be addressed as above.

In this paper we also generalise the FMP argument away from the turning point of the

tunnelling trajectory. This enables us to show the relation to the well-known arguments

due to HH and Vilenkin for di↵erent wave functions for creating dS spaces from ‘nothing’4.

Indeed in the case of the dS to dS transitions there is no initial turning point very much like

the case of tunnelling from ‘nothing’. Also this general discussion resolves the issue related

to the sign of the exponent of the wave function (mentioned for instance by Bachlech-

ner [15]) in that the usual (CDL/BT) tunnelling arguments are recovered from the general

solution to the WDW equation by picking the dominant term in both the numerator and

the denominator of the ratio defining the relative probability.

In the next Section we start by reviewing the Hamiltonian formalism used by FMP. We

introduce the transition amplitudes in terms of relative probabilities and discuss the di↵er-

ent cases of transition among dS and Minkowski spacetimes. We finish the Section with a

summary comparing the value of the di↵erent amplitudes for up- and down-tunnelling. In

Sec. 3 we generalise the formalism by computing the wave functions away from the turning

points that allows us to properly study the wave function in the regions under and outside

the barrier. This is also relevant since the pre-factor of the semi-classical wave function

usually blows up at the turning points. The issue of the dominant components of the wave

functions contributing to the transition amplitude are addressed. Sec. 4 is dedicated to

comparison with other approaches to the Minkowski to dS transition. We address several

concerns that have been raised over the years questioning the validity of the FGG proposal.

We conclude that the FGG proposal survives the di↵erent challenges and it is robust. In

particular we address explicitly the consistency with AdS/CFT and detailed balance. We

present our conclusions in Sec. 5.

2 Vacuum transitions in the Hamiltonian formalism

2.1 Summary of the Hamiltonian formalism

We consider spherically symmetric configurations so that the metric in four dimensions

take the form

ds
2 = �N

2
t (t, r)dt

2 + L
2(t, r)(dr +Nrdt)

2 +R
2(t, r)d⌦2

2 , (2.1)

where as usual, d⌦2
2 = d✓

2 + sin2 ✓ d�2, ✓ and � being the angular coordinates on the

two-sphere. In the case of a single wall separating two domains, the total action is

Stot =
1

16⇡G

Z

M

d
4
x
p
gR+

1

8⇡G

Z

@M

d
3
y

p
hK + Smat + SW ⌘

⌘ SEH + SK + Smat + SW , (2.2)

3We thank Steve Shenker for pointing out this argument.
4For recent discussions of the di↵erent proposals for the ‘wave function of the universe’ in terms of

solutions to the WDW equation see [17] and [18].
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In order to include the wall we use the following metric
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Stot = SEH + SK + Smat + SW

Wall

Wall Tension

Gravity Solution to constraints

where

E =

s
p̂2

L̂2
+m2 , m = 4⇡�R̂2

, p̂ = @L/@ ˙̂r , (2.13)

and the Lagrangian can be read from Eq. (2.2). Away from the domain wall (i.e. r 6= r̂)

we have from the second constraint,

⇡R =
L

R0
⇡
0

L. (2.14)

Inserting Eq. (2.14) in Eq. (2.11) (for r 6= r̂) we get

d

dr

✓
⇡
2
L

2R

◆
=

1

2G2

d

dr

"
R

✓
R

0

L

◆2

�R+
8⇡

3
G⇢R

3

#
, (2.15)

that translates into the solution

⇡L = ⌘
R

G


R

02

L2
�A↵

�1/2
, ↵ = O, I , ⌘ = ±1 , (2.16)

A↵ = 1� 2GM↵

R
�H

2
↵R

2
, H

2
↵ =

8⇡G

3
⇤↵ , (2.17)

where M↵ is an integration constant. This of course corresponds to the general solution

to the spherically symmetric metric ansatz, i.e Schwarzschild-dS (SdS). If the constant

M↵ = 0, ⇤↵ 6= 0, we have a pure dS solution and if ⇤↵ = 0, M↵ 6= 0 we have a Schwarzschild

black hole. In the static coordinate system with R as one of the coordinates, the spherically

symmetric SdS metric takes the static form:

ds
2
↵ = �A↵(R) d⌧2 +A

�1
↵ (R) dR2 +R

2
d⌦2

2 . (2.18)

Constraints and dynamics of the wall

The constraints on the domain wall are imposed by integrating Eq. (2.11) and Eq. (2.12)

from r̂ � ✏ to r̂ + ✏ leading to

R̂

L̂
(R0(r̂ + ✏)�R

0(r̂ � ✏)) = �GE , (2.19)

⇡L(r̂ + ✏)� ⇡L(r̂ � ✏) =
p̂

L̂
= 0 , (2.20)

where to get the last equality we have transformed to the rest frame of the wall so that

p̂ = 0 and E = m = 4⇡R̂2
�. We note for future reference that in the limit  ! 0 ,

AI = AO, i.e. there is not change in the geometry in the absence of the wall. Combining

Eq. (2.20) with Eq. (2.16) and then using Eq. (2.19) gives

R
0(r̂ ± ✏)

L̂
=

1

2R̂

⇣
ÂI � ÂO

⌘
⌥ 

2
R̂ , (2.21)

where we have defined

 ⌘ 4⇡�G =
Gm

R̂2
. (2.22)

– 8 –

Solution to constrains 
+ 

Junction conditions
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⇡L =
R

G


R02

L2
�A↵

�1/2
, ↵ = O, I, ⌘ = ±1

A↵ = 1�H2
↵R

2, H↵ =
8⇡G

3
⇤↵

[Fishler, Morgan & Polchinksi 1989,1990]



dS to dS
⇡

2

<latexit sha1_base64="2gCX1HWZJleQD2pySsDvHwMPsaY="></latexit>

�⇡

2

<latexit sha1_base64="Ho5TNpOEYd1kK09zs8sV7c7p6JE="></latexit>

T̃

<latexit sha1_base64="D+FTb1Py4d+eKC8l44UG0aygjmY="></latexit>

0

<latexit sha1_base64="tnPCqi1+8BBBq01lPZGKocyePMc="></latexit>

0

<latexit sha1_base64="tnPCqi1+8BBBq01lPZGKocyePMc="></latexit>

⇡

<latexit sha1_base64="fMNMk7WfhHYWkmU7BqDaWLhm9Vg="></latexit>

⇡

<latexit sha1_base64="fMNMk7WfhHYWkmU7BqDaWLhm9Vg="></latexit>

r

<latexit sha1_base64="+kiQ0U2nF9rgDdEO5hVT3IQoHb8="></latexit>

Figure 11: Penrose diagram for the FMP dS to dS transition. The lower part is the universe
before the transition. The upper part is the universe after the transtion composed of two regions
with di↵erent vacua separated by a wall, which is the red line. The equation of the wall is given
by Eq. (5.30). The pale blue region is the part of the universe with the true vacuum, where the
green dotted lines are open universe constant time slices and the blue dotted lines are closed
universe constant time slices.

configurations of �(t) and a(t) right after tunnelling that we will define as t = 0.

• Open Universe16. The Lorentzian equations of motion after CDL tunneling are those for
an open k = �1 LFRW model with the standard cosmological evolution for a scalar field with
canonical kinetic terms and potential V (�),

✓
ȧ

a

◆2

=
8⇡G

3

✓
1

2
�̇2 + V (�)

◆
+

1

a2
, (5.33)

0 = �̈ + 3H�̇ + V,� .

Initial conditions consistent with the smoothness of the CDL instanton are

�̇(0) = �(0) = 0 , a(t) = t + O(t3) .

Here a(0) = 0 is a coordinate singularity. It is clear from Eqs. (5.34) that ȧ could not be
chosen to vanish at t = 0 for positive potentials. We can see that initially the dynamics is
dominated by the curvature term 1/a2. The friction (3H) diverges at t ! 0, and then the
initial �̇ does not increase by much.

From Eq. (5.34) we obtain the Ḣ equation for k = �1:

Ḣ =
ä

a
�
✓

ȧ

a

◆2

= �4⇡G�̇2 � 1

a2
< 0 , (5.34)

16See [12, 55–61] for related discussions.
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with Nt, Nr the lapse and shift functions respectively and d⌦2
2

the line element for the 2-sphere.
The system consists of two dS spaces with cosmological constants ⇤I ,⇤O separated by a wall of
tension � at r = r̂. The bulk and boundary actions are the standard gravitational ones and the
matter action is given by the two cosmological constants, so the total action is:

S =
1

16⇡G

Z

M
d4x

p
�gR +

1

8⇡G

Z

@M
d3y

p
�hK + SM + SW , (5.3)

where K is the extrinsic curvature of the wall and

SM = �4⇡

Z
dtdrLNtR

2 (⇤O✓(r � r̂) + ⇤I✓(r̂ � r)) ,

SW = �4⇡T

Z
dtdr�(r � r̂)

h
N2

t � L2(Nr + ˙̂r)2
i
. (5.4)

In the above we defined T ⌘ 4⇡G�. Following the standard Dirac prescription for this Hamil-
tonian system, the Hamiltonian and momentum constraints can be found and the matching
conditions at the wall lead to an equation for the wall trajectory of the form:

˙̂R2 + V = �1; V = �R̂2

R2
0

, (5.5)

where R̂ = R(r̂) and R0 is the turning point:

R2

0 =
4T 2

⇥
(H2

O
� H2

I
)2 + 2T 2(H2

O
+ H2

I
) + T 4

⇤ . (5.6)

With H2

I,O
= 8⇡G⇤I,O/3. The classical trajectory of the wall is then given by:

R(t) = R0 cosh
t

R0

. (5.7)

The quantum probabilities are determined from the solutions of the WDW equation H = 0
with P the relative probability of the configuration of the two dS spaces and the wall compared
to that for just one dS:

P(dS ! dS/dS � W) =
| (dS/dS � W)|2

| (dS)|2 . (5.8)

The detailed calculation using the WKB method including a discussion of the matching of the
under-the-barrier wave function to that in the classical region is given in [16] and the result
reproduces the standard exponential factor e�B with B given by Eq. (4.25). This provides yet
another Lorentzian way to derive the same decay rate. But contrary to the mini-superspace
approach, the presence of the wall and its classical trajectory after the transition is made quite
explicit

 = aeI + be�I , (5.9)

where, given a configuration with action S, we have denoted the combination iS = I and the
action S is evaluated on a classical solution. The total action away from the turning point (but
still under the barrier) is

29

Spacetime tunnels from one 

de Sitter to two 


de Sitter separated by a wall
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= exp

✓
� B0

(1 + (HR0/2)2)2

◆

Same as CDL!

[Fishler, Morgan, Polchinsky 91, 
 Brown and Teitelboim ’88, 

Bachlechner 2017, 
de Alwis et al 2019]
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Figure 11: Penrose diagram for the FMP dS to dS transition. The lower part is the universe
before the transition. The upper part is the universe after the transtion composed of two regions
with di↵erent vacua separated by a wall, which is the red line. The equation of the wall is given
by Eq. (5.30). The pale blue region is the part of the universe with the true vacuum, where the
green dotted lines are open universe constant time slices and the blue dotted lines are closed
universe constant time slices.

configurations of �(t) and a(t) right after tunnelling that we will define as t = 0.

• Open Universe16. The Lorentzian equations of motion after CDL tunneling are those for
an open k = �1 LFRW model with the standard cosmological evolution for a scalar field with
canonical kinetic terms and potential V (�),

✓
ȧ

a

◆2

=
8⇡G

3

✓
1

2
�̇2 + V (�)

◆
+

1

a2
, (5.33)

0 = �̈ + 3H�̇ + V,� .

Initial conditions consistent with the smoothness of the CDL instanton are

�̇(0) = �(0) = 0 , a(t) = t + O(t3) .

Here a(0) = 0 is a coordinate singularity. It is clear from Eqs. (5.34) that ȧ could not be
chosen to vanish at t = 0 for positive potentials. We can see that initially the dynamics is
dominated by the curvature term 1/a2. The friction (3H) diverges at t ! 0, and then the
initial �̇ does not increase by much.

From Eq. (5.34) we obtain the Ḣ equation for k = �1:

Ḣ =
ä

a
�
✓

ȧ

a

◆2

= �4⇡G�̇2 � 1

a2
< 0 , (5.34)

16See [12, 55–61] for related discussions.
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In global coordinates

where K±
ij

is the extrinsic curvature at each side and � is the tension of the wall. In order to
compute the extrinsic curvature it is helpful to use Gaussian normal coordinates in which Kab

takes the simple form

Kab = ��n

ab = �1

2
@ngab = �1

2
nµ@µgab , (5.17)

where nµ denotes the unit vector orthogonal to the wall and gab is the induced metric at the wall.
The whole computation then boils down to calculate the normal vector nµ in an appropriate
coordinate systems, from which we can compute the extrinsic curvature on the two sides of the
wall and then enforce the junction conditions. To do so let us first denote the four-velocity of a
point on the wall as Uµ. In the static patch coordinate system, due to the spherical symmetry
of the wall we have

Uµ

S
=

⇣
ṫdS , Ṙ, 0, 0

⌘
, (5.18)

where ˙ denotes the derivative with respect to proper time. Note that the normalisation of the
four-velocity gµ⌫U

µ

S
U⌫

S
= �1 implies the following relation between ṫdS and Ṙ:

(1 � H2R2)ṫ2dS = 1 + (1 � H2R2)�1Ṙ2 . (5.19)

To compute the normal vector to the wall first notice that this is orthogonal to the four-velocity
Uµ, i.e. gµ⌫n⌫Uµ

S
= 0. Using this condition and that gµ⌫nµn⌫ = 1 implies

nµ =
⇣
(1 � H2R2)�1Ṙ, ±

p
1 � H2R2 + Ṙ2, 0, 0

⌘
. (5.20)

One can now compute the junction condition. The ✓ component gives,
q

1 � H2
+R2 + Ṙ �

q
1 � H2

�R2 + Ṙ2 = 4⇡�R , (5.21)

where the subscript ± indicates the side of the wall where we are evaluating. After some
manipulation this equation leads to Eq. (5.5), and so to a solution for the radius of the wall R.
One also has the ⌧ component of the extrinsic curvature, K⌧⌧ = UµU⌫r⌫nµ = �nµU⌫r⌫Uµ,
which can be interpreted as the normal acceleration of the wall. This implies that the trajectory
followed by the wall is not a geodesic unless K⌧⌧ vanishes. This can be evaluated in the static
patch coordinates,

K⌧⌧ = � R̈ � H2Rp
1 � H2R2 + Ṙ2

= �
p

1 � H2R2
0

R0

, (5.22)

where in the last step we have used Eq. (5.5). This last equation implies that the normal
acceleration is a non-vanishing constant (since R0H < 1).

Global slicing
13

We will now embed the wall in global coordinates, which are described in Eq. (A.3). The metric
is given by

ds2 =
1

H2 cos2 T

�
�dT 2 + d⇢2 + sin2 ⇢d⌦2

�
, (5.23)

where T is conformal time that varies from �⇡/2 at I� to ⇡/2 at I+. Embedding the wall metric
in Eq. (5.14) into the global coordinates implies that T (⌧) and R(⌧) = H�1 sec T (⌧) sin ⇢(⌧).
Also, plugging this back into Eq. (5.23) we have,

� Ṫ 2 + ⇢̇2 = �H2 cos2 T , (5.24)

13This part follows the last part of appendix C of [47].
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Trajectory of the wall is given by

where dots are derivatives with respect to proper time. Using this relation we find

Ṫ 2 =
H2 cos2 T

1 � ⇢02
, ⇢̇2 =

H2 cos2 T

1 � ⇢02
⇢02 , (5.25)

with ⇢0 ⌘ d⇢/dT . To describe the trajectories of the wall in global coordinates we would like to
find an expression for ⇢(T ). Let us start by noticing that

Ṙ =
1

H

dT

d⌧

�
tan T sec T sin ⇢ + sec T cos ⇢⇢0

�

=
tan T sin ⇢ + cos ⇢⇢0p

1 � ⇢02
=

s
sin2 ⇢

H2R2
0
cos2 T

� 1 , (5.26)

where we have used Eq. (5.25) and in the last step Eq. (5.5). The last equality is a first order
non-linear di↵erential equation which determines the wall trajectory in conformal coordinates.
The solution turns out to be remarkably simple: cos(⇢) =

p
1 � H2R2

0
cos T as the reader may

easily verify.
In practice it turns out that to obtain this solution it is more convenient to use Eq. (5.22).

This is straightforward since it is also possible to write R̈, in terms of ⇢, T and derivatives of ⇢
with respect to T . After substituting into Eq. (5.22) we get 14,

K⌧⌧ = �cos(T )⇢00 � sin(T )⇢03 + sin(T )⇢0

(1 � ⇢02)3/2
H , (5.27)

given that K⌧⌧ is constant this is a second order ODE for ⇢ as a function of T . Furthermore
this expression does not depend explicitly on ⇢ and can be easily integrated if we rewrite it as,

p
1 � H2R2

0

HR0

= cos2(T )
d

dT

 
sec T⇢0p
1 � ⇢02

!
, (5.28)

which leads to

⇢0 = ±
p

1 � H2R2
0
sin(T )q

H2R2
0
+ (1 � H2R2

0
) sin2(T )

, (5.29)

where to fix one integration constant we have imposed ⇢0 = 0 at T = 0, which comes from
Eq. (5.5). We will keep the positive signs as it means that the wall speed increases. Notice that
⇢0 < 1 and that at I+, ⇢0 =

p
1 � H2R2

0
< 1. This expression can be integrated to obtain

cos(⇢) =
q

1 � H2R2
0

cos T (5.30)

where we have used that at T = 0, R0 = cos(⇢(0)). Eq. (5.30) determines the trajectory of the
wall in global coordinates. Now let us analyse this expression, first note that this the trajectory

14Alternatively we can use that is possible to write K⌧⌧ = � �̇
Ṙ
, with

� ⌘
q

1�H2R2 + Ṙ2 =
cos ⇢+ sin ⇢ tanT⇢0p

1� ⇢02
.
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Same as CDL!
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[SC et al 2020]

By solving the junction conditions

Eq of an hyperboloid with 
SO(3,1) symmetry



• Curvature of spacetime was not given as a solution of the 
WdW equation. Computation only assumed SO(3) 
symmetry


• Using an open slicing is possible to find a homogenous 
constant time foliation


• There are more general cases when open slicing might 
not be possible.


• This approach (FMP) has not been generalised to include 
scalar fields. 



Conclussions
• There are important aspects of vacuum decay with gravity 

that needs more scrutiny


• CdL simple picture is very intuitive but it might not be the 
end of the game


• Is it possible to distinguish a closed from an open 
universe?


• There are concrete applications for this, eg quantum 
criticality to explain the mass of the Higgs [Khoury et al 2020, 

Giudice et al 2021]

[Aavis et al 2019]



Negative modes
Including subheading terms wave function is

Assuming that the complete integral of the Hamilton-Jacobi equation depends on a set of pa-
rameters ↵

Ā
, we can identify the conjugate variables with our parameters �Ā , i.e.

�Ā =
�S0[�s; ↵]

�↵Ā
. (2.30)

The VanVleck matrix can then be written as


�2S0

��A�↵Ā

�
=

"
��Ā

��A

#
=


��A

��Ā
.

��1

(2.31)

Therefore

S1[�s] = � i

2
ln

✓
det


�2S0

��A�↵Ā

�p
G

◆

s

+ constant . (2.32)

Finally, the wave function with semi-classical corrections take the form

 [�s] =
1

P0

4
p

Gs

s

det


�2S0

��A�↵Ā

�

s

e
i
~S0[�s] [�0] ,

S0[�s] =

Z
s

o

ds0

s

�2

Z

X

f [�s0 ]ds0 + constant , (2.33)

with the constant 1/P0 fixed such that the left hand side at s = 0 agrees with the right hand
side at s = 0.

A formula similar to this in the context of flat space field theory has been given by Bitar
and Chang [29]. However the pre-factor was obtained there, not by following the WKB method
for getting it, but by switching to a functional integral over the fluctuations around the classical
path. This gives them a pre-factor which is the inverse of the VanVleck pre-factor above.
Furthermore these authors (in contrast to those of [28,30]) claim agreement with the pre-factor
in the Euclidean instanton analyis of Coleman et al. [1–3]. However we fail to see this. For
instance the latter depended on the dilute gas approximation and relied crucially on the presence
of a single negative mode in the fluctuations around it. Clearly in the above formula the issue
of negative modes do not play a special role. In the next two sections we will elaborate on these
di↵erences.

3 WKB in flat space

In this section we will recall how to use WKB for the study of vacuum decay in field theory,
in flat space. We will analyse two di↵erent situations, corresponding to the two potentials in
Fig. 1. The left panel corresponds to the process of vacuum decay from a false vacuum to a true
vacuum characterised by a lower energy density. In this context, we will show explicitly how the
leading order final result corresponds to the CDL bounce, and how the analytic continuation
is well justified by the fact that there is an under the barrier integral, which is equivalent to
analytically continuing time to an imaginary variable. In this case, the WKB formalism can be

used to compute the transmission coe�cient T 2 = | (�B)|2
| (�A)|2 , that gives a measure of the decay
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• Formula is a generalisation of QM and refactor is given by the VanVleck determinant


• Decay rate is not necessarily related to the negative modes




Going beyond 
minisuperspace

• It is possible to add perturbationsHartle-Hawking

Now let us assume that the potential is constant and so the scalar field momentum

is negligible compared to ⇡a. If we write the wavefunction as  =  (a)�(a,�) where

 = exp
�
iMPl

2
S0

�
we have that,

�

�a
 = iMPl

2 �S0

�a
 +  

��

�a

�
2

�a2
 = �MPl

4

✓
�S0

�a

◆2

 �+ 2iMPl
2 �S0

�a

��

�a
 + iMPl

2 �
2
S0

�a2
 �+

�
2
�

�a2
 (1.10)

We get at leading order in MPl
2

✓
�S0

�a

◆2

+ a
3
V (�)� 3a = 0 (1.11)

which is the Hamilton-Jacobi equation for minisuperspace. At next lo leading order

we have,
i

6a

�S0

�a

��

�a
+ i

�
2
S0

�a2
�+H2� = 0 (1.12)

The second functional derivative of the action is related to the negative modes and

for now we will assume that its smaller in comparison with the rest of the terms.

We will now solve the minisuperspace action to find a classical solution. We have

that the classical action is given by,

S0 = �
Z

s

0

ds
0
C(s)�1

✓
�a+ a

3V

3

◆
(1.13)

and where C(s) is defined through the relation,

� 6

✓
da

ds

◆2

+ 2a3
✓
d�

ds

◆2

= �2C�2(s)(�3a+ a
3
V (�)) (1.14)

Notice that we have factored MPl in the definition of  and so the action has units

of MPl
�2. Now since we are considering trajectories such that d�/ds = 0 we can

define C(s)�1 easily. For under the barrier a3V < 3a we pick C(s)�2 = �1 and we

get

S0 = 6i

Z
daa

p
1� a2V/3 (1.15)

For over the barrier a3V > 3a we have instead

S0 = 6

Z
daa

p
a2V/3� 1 (1.16)
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define C(s)�1 easily. For under the barrier a3V < 3a we pick C(s)�2 = �1 and we

get
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For over the barrier a3V > 3a we have instead
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daa

p
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Also note that from the Hamiltonian we can integrate (for a constant potential ) to

get a classical solution for a

a =

r
3

V
sin

 r
V

3
s

!
, for a3V < 3a (1.17)

a =

r
3

V
cosh

 r
V

3
s

!
, for a3V > 3a (1.18)

for some a�ne parameter s. Identifying s with euclidean time ⌧ or Lorentzian time

t depending the case, we have

1

6a

�S0

�a

�⌧

�a
= i

r
1� V

3
a2

1

ȧ
= i (1.19)

when under the barrier, while for over the barrier

1

6a

�S0

�a

�t

�a
= 1 (1.20)

To obtain the last identities we have used the classical solution for a(t), (1.18).

These result implies that given a classical solution we can define time derivatives

through the relation (1.19). Now notice that the the first term in (1.12) contains an

expression similar to (1.19) in its first term. Replacing we get,

✓
@

@⌧
+H2

◆
� = 0 (1.21)

which is a Euclidean Schrodinger equation for the perturbations. For the modes

over the barrier we have, ✓
i
@

@t
�H2

◆
� = 0 (1.22)

which corresponds to the Schrodinger equation in real time.

Bunch Davies vacuum

To find the vacuum let us first solve the equations of motion for the quadratic actions

for the perturbation. We assume that the spacetime is fixed de Sitter such that the

metric is given in cosmic time by

a
2(t) =

1

H
cosh2(Ht) (1.23)

or that H = V/3. It is convenient to decompose the ' in terms of spherical har-

monics.
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X
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'l(t)Ylm(⌦) (1.24)
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Using the classical 
solutions is possible 

to reintroduce time

Under the barrier

Over the barrier

Schrodinger equation
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Now both solutions should coincide at a0 = 0 which corresponds to ⌘, T = 0. Match-

ing (1.36) and (1.38) and its derivative at a0 = 0 we obtain that c2 = 0. The final

solution is,

fl = H
((l + 1) cos ⌘ + i sin ⌘)e�i(l+1)⌘

p
2l(l + 1)(l + 2)

(1.39)

which coincide with having only incoming waves in the paste, and hence is consistent

with the Bunch-Davies vacuum as it was obtained in [2]. Finally the wavefunction

is,

� = exp

 
i

X

l,m

sec ⌘

2H2

l(l + 2)

i(1 + l) cos ⌘ � sin ⌘
'l,m'l,m

!
(1.40)

Expanding for ⌘ close to ⇡/2 we find,

� = exp

 
i

X

l,m

1

2H2

✓
l(l + 2)

⌘ � ⇡/2
+ il(l + 1)(l + 2) +O(⌘ � ⇡/2)

◆
'l,m'l,m

!
(1.41)

Notice that the divergent piece is a pure phase and the two point function is given

by,

h'2i ⇠ H
2

l(l + 1)(l + 2)
(1.42)

In order to compare it to observations is better to use ⇣, which at linear order and

after horizon crossing is given by ⇣⇤ = �H/�̇'⇤ where the asterisk denotes horizon

crossing. Then we have

h⇣i2 = H
4

�̇2

1

2l(l + 1)(l + 2)
=

H
4

MPl
2(Ḣ � 1

a2
)

1

2l(l + 1)(l + 2)
(1.43)

which for large l is the to the flat space power spectrum ( which scales as H2
/✏k

�3).

Both, the wavefunction (1.41) and the two point function generalise the results

obtained for a flat universe in [1]. In general to compute the correlation functions

we use the relation

h�⌘|O[�, ⇡]|�⌘i =
Z

D� �
⇤
⌘
[�]O


�,� �

��

�
�⌘[�] (1.44)

For instance the two point function is given by,

h'l'�li0 =
1

2Im cl
= H

2 (1 + l)2 cos2 ⌘ + sin2
⌘

2l(l + 1)(l + 2)
(1.45)

which implies that at ⌘ = ⇡/2 becomes, h'2
l
i ⇠ 1/(l(l+1)(l+2)) as we saw before.

Let us now make some comments about these results. Notice that in getting (1.39)
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This naturally selects 

the Bunch-Davies vacuum

Writing



Observable effects
• Inflation washes out the curvature


• The density perturbations depend on the curvature,

So we have two di↵erent possible outcomes after nucleation depending on the value of �: a
short period of relative fast roll and a few e-foldings before the standard slow-roll inflation or
an inflationary period right after nucleation if � ⌧ ⇤/Mp. The maximum number of e-foldings
from this period would be:

Nmax =

Z
tc

0

Hdt = log cosh

✓
tc
t⇤

◆
⇠ tc

t⇤
⇠ 2

✏
, tc = t⇤

✓
⇤

�Mp

◆2

. (5.43)

Where ✏ = M2

P
V 2

,�
/2V 2 ' M2

P
�2/2⇤2 < 1 is the usual slow roll parameter. This is the

maximum number of e-foldings since at t = 0 the nucleation happens at the minimum value
of a(t) by imposing ȧ(0) = 0, implying a(0) = amin = 1/� [64]. Unlike the flat and open
cases in which the initial value of a at the start of inflation can be as small as possible, i.e. as
small as the Planck scale lP , in the closed case the existence of a lower bound for a with amin

much bigger than the Planck length implies a a much stronger upper bound in the number
of e-folds in order to fit with the present value size of the observable universe a0 which could
be estimated if � = |⌦ � 1| = 1/a0H0 is measured: Nmax  ln a0/amin. Note that this
is independent of the standard argument for N ⇠ 60 setting bounds on ⌦ today which if
measured with enough precision may di↵erentiate between open or closed universes.

Density Perturbations

The magnitude of density perturbations measured by �⇢/⇢ ⇠ H2/�̇ grows from zero at t = 0
to order �⇢/⇢ ⇠ �3/� close to t = tc which can be smaller or larger than standard slow-roll
inflation depending on the values of � and ⇤19.

If � does not satisfy the slow-roll condition then N =
R
t
⇤

0
Hdt = log cosh 1 ⇠ 1. Therefore

it is clear that in this case the scalar potential will need to flatten up through an inflection
point in order to have an adequate period of inflation afterwards.

In both cases (slow or fast roll after bubble nuecleation) the fact is that k = 1 not only
provides initial conditions for inflation but also contributes to the density perturbations since
in general the presence of curvature provides a new scale. It a↵ects the power spectrum in
the sense that the long wavelength modes which exit the horizon during the early stages of
inflation may carry imprints of the spatial curvature, whereas the short wavelength modes
which exit the horizon later are not a↵ected by the spatial curvature.

This can also be seen if we compute the power spectrum for the inflationary perturbations.
As it is well known the scalar field during inflation produces an adiabatic power spectrum of
scalar and tensor perturbations. Whereas for flat universes the power spectrum is nearly scale
invariant, this is not the case for open and closed universes. As the long wavelength modes
leave the horizon carrying the imprint of the curvature they deviate from scale invariance at
large scales. For small curvature ⌦k = k/(a0H0) < 1 the power spectrum can be written as
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19Note that in the open universe case, this quantity diverges at t = 0 since H diverges and �̇(0) = 0 there, and
then increases with time.

20A more appropriate treatment of the power spectrum after tunneling needs to take into account the fluc-
tuations of the wall. In the case of open inflation these translate into an excited initial state which also imply
deviations from scale invariance [57]. For the closed universe solution obtained in Sec. 4.2 we leave the analysis
of the inflationary perturbations for future work.
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Observable effects
• Inflation washes out the curvature


• The density perturbations depend on the curvature,


• This might effect the low l CMB modes
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from this period would be:

Nmax =

Z
tc

0

Hdt = log cosh

✓
tc
t⇤

◆
⇠ tc

t⇤
⇠ 2

✏
, tc = t⇤

✓
⇤

�Mp

◆2

. (5.43)

Where ✏ = M2

P
V 2

,�
/2V 2 ' M2

P
�2/2⇤2 < 1 is the usual slow roll parameter. This is the
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much bigger than the Planck length implies a a much stronger upper bound in the number
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the sense that the long wavelength modes which exit the horizon during the early stages of
inflation may carry imprints of the spatial curvature, whereas the short wavelength modes
which exit the horizon later are not a↵ected by the spatial curvature.

This can also be seen if we compute the power spectrum for the inflationary perturbations.
As it is well known the scalar field during inflation produces an adiabatic power spectrum of
scalar and tensor perturbations. Whereas for flat universes the power spectrum is nearly scale
invariant, this is not the case for open and closed universes. As the long wavelength modes
leave the horizon carrying the imprint of the curvature they deviate from scale invariance at
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where As is the amplitude of the scalar fluctuations and q is the comoving wavenumber. We
have also neglected self interactions of the curvature perturbation. From Eq. (5.44) we can
read that at large scales, or smaller q , the power spectrum is suppressed for a closed universe
(k = +1), but is enhanced for the same scales for an open universe.

These deviations from scale invariance can have an e↵ect on the CMB. At large scales the
main contribution to the angular power spectrum Cl is given by the Sachs-Wolfe e↵ect21

l(l + 1)Cl =
4⇡

25
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◆
. (5.45)

Where rL is the radial coordinate of the surface of last scattering. Then we see that at
linear order in the curvature there is a suppression/enhancement of the low l modes of the
temperature anisotropy of the CMB depending on the sign of k.

Note that this computation assumes that the only contribution from the curvature comes from
inflation and, although this is not quite accurate, it works as a qualitative approximation.
Another point is that the e↵ect described is model independent but, as we mentioned before,
there are other signatures that depend on each model that may have important consequences.
For example for the case of open inflation after CDL, there is a fast roll phase before slow
roll, by which the authors of [12, 59] have argued that because of an anthropic bound on the
duration of inflation the fast roll phase translates into a potentially observable suppression
of the low l modes of the CMB. This implies that a negatively curved universe can have an
e↵ect which is indistinguishable from a positively curved universe, so in order to break this
degeneracy it might be necessary to study higher order correlation functions of cosmological
observables.

At small scales it can be seen from Eq. (5.44) that the power spectra coincide. This means
that the CMB power spectrum at large angles or small multipoles is suppressed with respect
to the standard flat ⇤ CDM model. Since the e↵ect through inflation is only present at
large scales, the power spectrum coincides with the flat case for large multipoles (` & 30).
This is the regime that has been tested most successfully, although recently several articles
have found some evidence for the closed universe inflationary model from the latest CMB
observations [50–52].

Observational Implications and the String Landscape

The implications of a closed universe after bubble nucleation may have important observational
implications and would radically a↵ect the dynamics of the string landscape. Let us list some
of them.

• General Prediction. Due to the richness of the string landscape, it has been a serious
challenge to identify concrete and general predictions that could be tested with the potential
to rule out the landscape paradigm. The standard belief that bubble nucleation after vacuum
decay gives rise only to an open universe, has been identified as the most concrete general
prediction that could be subject to experimental test at some point. However, if the outcome
is a closed universe, the prediction would be exactly the opposite. At the moment we cannot
rule out the possibility that an open universe could also be allowed. Furthermore note that,
in principle, the idea behind the landscape is that universes are continuously produced from a

21 For a derivation of the e↵ect of the primordial power spectrum over Sachs-Wolfe e↵ect see formula (2.6.19 )
of [74]
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