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Quantum cosmology

Y(g,9) — wave function of the universe

H =0 - Wheeler-DeWitt equation

In ordinary QM the boundary conditions for ¥ are determined by the
physical setup external to the system.

But there is nothing external to the universe. ™® The b.c. for ¥ should be
postulated as an independent physical law.

The b.c. should determine ¥ uniquely.
Path integral representation:

(9,9) ,
(g, ) = / DgDee’s

What is the class of paths?



Hartle-Hawking wave function Hartle & Hawking (1983)

l/jHH (ga ¢) = f(g’(p)e_SE Euclidean metrics

Tunneling wave function

Y, (g,9)= f(g,(b)

%)

A.V. (1984)

s Lorentzian metrics

| will focus on the tunneling proposal.
Based on work with Masaki Yamada (2018, 2019)

time
—

ﬁ' 7 Euclidean time

Creation of the universe
from “nothing”



Tunneling wave function

(g:9) lS

W (9= [

Corresponding b.c. in superspace:

» QOutgoing wave boundary condition
for the WDW equation

« 9 should give a normalizable
probability distribution
(regularity condition)

Are these formulations equivalent?

Critique: The tunneling wave function predicts

Cox

runaway instability of matter fields.

3-geometries of vanishing

volume (“Nothing”)
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A.V. (1986)

Halliwell & Hartle (7990)
Bousso & Hawking (1996)
Feldbrugge, Lehners & Turok (2017)



Perturbative minisuperspace model

S:/\/—gd4x (g —pv> +Sm + 5B

]‘ 2 12 1 2
- _ R
T~ e

— [ v=gate | -5(vor -
=a’(n) (N?dn*> — d¥*), N = const

1
= =2 Z fn(n Treat ¢ as a small perturbation.



Perturbative minisuperspace model
S:/\/—_gd4x (g—pv> + Sm + SB
= / V—gd'z [—%(W)Q - %m2¢2 - %RcﬁQ

=a’(n) (N?dn*> — d¥*), N = const

1
= =2 Z fn(n Treat ¢ as a small perturbation.

WDW equation (dropping some numerical factors)

82

gz ~ U@ = 2 e fu) =
102 1

Hp = 2972 5%%(@) :

U(a) = a*(1 — H?*a?)
H? =p,/3

a)j (a)=n*+m’a’




TUNNELING BOUNDARY
CONDITIONS



WKB ansatz:

Ua f) = Aexp | =S(a) ~ 5 3 Rula)

(8")2 — U(a) = 0

WDW eq. m==)
S'Rl, — R2 + w2(a) =0

Boundary conditions:

(1) Only outgoing wave in S(a) at a — o°.
(2) Regularity: Re[R,,(a)] > 0



WKB ansatz:

Ua f) = Aexp | =S(a) ~ 5 3 Rula)

(8")2 — Ula) = 0

WDW eq. m==)
S'R), — R2 +w2(a) =0

Boundary conditions:
(1) Only outgoing wave in S(a) at a —> .

(2) Regularity: Re[R,,(a)] > 0

Leading order:
H-1
S(a<H_1)::I:/ VU (a')dd
S(a>H 1) = ii/ VvV —U(a)da'

H-1
Select “-”
Corresponds to expanding universe.




WKB ansatz:

Ua f) = Aexp | =S(a) ~ 5 3 Rula)

(8")2 — Ula) = 0

WDW eq. m==)
S'R), — R2 +w2(a) =0

Boundary conditions:
(1) Only outgoing wave in S(a) at a —> .
(2) Regularity: Re[R,,(a)] > 0

Leading order

—1

Sla>H™"') ==+i VvV —U(a)da'

Select “-”
Corresponds to expanding universe.

Including perturbations

The regularity condition is satisfied in the entire classically
allowed region (U(a) < 0) if it is satisfied at any point in
that region.

Same for ¥4 in the classically forbidden region.

For ¥g the regularity condition is satisfied in the entire
classically forbidden region if it is satisfied at @ = 0 .

Vachaspati & A.V (1988)
A.V. & Yamada (2018)
Damour & A.V. (2019)



Boundary condition at a = 0

SR — R +w>(a) =0 w>(a)=n’>+m’a’

For a < H™ ! introduce (conformal) Euclidean time 7 :
a — 0 corresponds to 7 — $00.

da _

o= S'(a) = £+/U(a) a(r) = (H cosh7)™* (+ for Vg , - for ¥g.)
4

Al — R?2 +w2(a) =0 >




Boundary condition at a = 0

SR — R +w>(a) =0 w>(a)=n’>+m’a’

For a < H™ ! introduce (conformal) Euclidean time 7 :
a — 0 corresponds to 7 — $00.

dCL / . -1
o= S'(a) = £+/U(a) a(T) = (H cosh ) (+ for g . - for 1y.)
dR,, S4
T R? +w?(a) =0
This is a Riccati equation.
1 dv d*v,, 9 . :

S L — n =0 Same as eq. for f, with Nn — i1

Rn (T) Uy dr :> dTQ Wy V q f n
This formalism is equivalent to QFT

in curved spacetime.



Boundary condition at a = 0
S'Rl, — R2 + w2(a) =0

For a < H™ ! introduce (conformal) Euclidean time 7 :

— = 5'(a) = £1/U(a)
dr
dR, S4
—— — Ru+wi(e) =0
This is a Riccati equation.
1 dv, d*v, 9
—_ -2 — Wiy, =0
R, (T) a ) T2 T Wl
For a = 0: w2 ~n? v, = Ae " + Bue

An _ Bn€2n7'
Rn<7-) ~ nAn n Bn62n7

R, (T — c0) = —n, unless B,, = 0.

a(r) = (H cosh7)™*

a)j (a)=n*>+m’a’

a — 0 corresponds to 7 — $00.
(+ for ¥g , - for 1¥q.)

Same as eq. for f,, with Nn — 7

This formalism is equivalent to QFT
in curved spacetime.

m=) Require B, =0.



B < wd
B,=0 =) v,(1r - o00)xe ™ L
A U(a)
dy'n, \\‘s w’ ek
d— = —NVn (7‘ — OO) Robin boundary condition IO WY o S A O
- N 2 1 Vg
T d H! “"I' :\.," E:: ':,’

This determines v, (7)for ¢4. Selects the Bunch-Davies vacuum state.

vy, for ¥4 are determined from the matching conditions at a ~ H! |:> Un(T — —00) oce” "

The regularity condition is equivalent to Robin b.c. at a — 0.
This is now really a b.c.



B ‘P‘
B,=0 =) v,(1r - o00)xe ™ L
A U(a)
dyn \“s r —
d— = —NVn (7‘ — OO) Robin boundary condition IO WY o S A O
- 2 2 1 Vg
’ 0 HO\W/ )G

This determines v, (7)for ¢4. Selects the Bunch-Davies vacuum state.

vy, for ¥4 are determined from the matching conditions at a ~ H! |:> Un(T — —00) ox e”

The regularity condition is equivalent to Robin b.c. at a — 0.
This is now really a b.c.

1 dv,
Note: vp(T — —00) — 00. But R, = —— —= — n are well behaved.
v, dt
Conclusion: The tunneling b.c. uniquely determine the wave function.

Vachaspati & A.V (1988)

It describes a dS universe nucleating with the field ¢ A.V. & Yamada (2018)

in the Bunch-Davies state.



PATH INTEGRAL APPROACH



UV(a, fr) :/OOOdN/Da/Dfn et

Leading order

Yo(ay) :/ dN/Da 'S (@)
0

m 22
S(CL,N):67T2/ [—%—I—Ncﬂ (1—H2a2’)

— 0o

a(m)=a1, a(n— —o0)=

The path integral over a can be done exactly: Halliwell & Louko (7990)
* dN
wolar) = /0 Wezsowhm So(ar, N) = 67* [N?(H*/12) + N (1 — H?a?/2) — a7 /4N |

Use saddle point approximation.



ImN

> dN 1 a
Yo(ay) = —N1/2e So(a1,N)

Saddle points: 9S/ION =0

N=+H""? (z + \/ H2a? — 1)

Pickard-Lefshetz prescription:

Deform the contour so that it passes through a saddle
point following steepest ascent/descent lines.

Only one saddle point is relevant: N = H ™! (z + \/Hza%)

—1
(ar>H™") Halliwell & Louko (1990)
Feldbrugge, Lehners & Turok (2017)




> dN 1.5 (Cl,l,N)
Po(ar) = . Ni2© ’

Saddle points: 9S/ION =0

N=+H""? (z + \/ H2a? — 1)

Pickard-Lefshetz prescription:

Deform the contour so that it passes through a saddle
point following steepest ascent/descent lines.

Only one saddle point is relevant: N = H ™! (7, + \/Hza%)

(a1 > H_l)

. Ar? A 3/2
P(ay) ~ e N) = exp {— 75 i (HYay — 1) ]
Expanding universe

- Satisfies the outgoing
wave condition.

Large H are favored

ImN

Halliwell & Louko (7990)
Feldbrugge, Lehners & Turok (2017)



Including perturbations

Plar, fur) = €SN T] / DS ) N=—H" ( + \/Hza%)

U .
SN = [ an(§82-N22) +5m, famw = a0
. f

To ensure regularity



Including perturbations

W(ay, fno1) = ed0la1N) H/DfneiSn(fn,N)

1 m 1 .
S, ) = [ dn (572 N2 )+ S

This path integral can be done exactly.

Disregard Sp,, for now.

Yla, fur) = 5o T

N=H"1 (i—F\/Hza%)

fa(m) = faa, g—; = inNf,
4

To ensure regularity

Su0 = g (Furfur = Fo)

(mo — —o0)



Including perturbations

Plar, fur) = €SN T] / DS ) N=—H" ( + \/Hza%)

1 m 1 . d - .

Sn(fn, N) = _/ dn _fg_Nw?Lf?L + Sen fn(n1) = fu1, i:anfn (10 — —o0)
2/ N dn »

This path integral can be done exactly. To ensure regularity

Disregard Sp,, for now.
. . 1 . .
_ _iSo(a1,N) | | iSn _ . ‘
¢(a1,fn1) = e 70\ ‘6 0 SnO = _2N (fnlfnl anan)

But  fh0 o< ™V 5 00 (g = —00)
(since ImN > 0)

=) S0 — o0

If we drop the Robin b.c., then we lose regularity
m==) uncontrolled fluctuations.



The boundary term

The choice of the boundary term depends on the boundary conditions.
Dirichlet b.c. (fixing f at Mo and 71) do not require any boundary term.

We have Dirichlet b.c. at 71 but Robin b.c. Cg_” =N f,, at7o.
n

m
) Add a boundary term Spg,, = ?ffb(??o)- Then variation of the action gives

This comes from
the boundary term

:O =0



The boundary term

The choice of the boundary term depends on the boundary conditions.
Dirichlet b.c. (fixing f at Mo and 71) do not require any boundary term.

We have Dirichlet b.c. at 71 but Robin b.c. Cg_” =N f,, at7o.
n

m
) Add a boundary term Spg,, = ?ffb(??o)- Then variation of the action gives

This comes from

1 1 the boundary t
5Sn:5fnﬁcéfn( ) — fn<—df—n—znfn) o) e boundary term

=0 =0

The action with the boundary term:

1 : . 1 : The infinity canceled out!
Sno = 9N (fnlfnl - anan) + SBn = ﬁfnlfnl Note: this boundary term is required

for consistency.
We can rewrite this as

Sho = §Rnf731 R, = ——@ — same as in the WDW approach.
N fn A.V. & Yamada (2018)



Conclusions

We discussed two approaches to defining the tunneling wave function v (a, f,)
in a minisuperspace model:

1) Tunneling boundary conditions in superspace.

2) Lorentzian path integral over histories starting at a = 0 with scalar field modes f,,
satisfying Robin b.c.

Both approaches give identical wave functions with well behaved scalar field fluctuations.

Extension beyond perturbative minisuperspace?
What replaces the Robin b.c.?



Some comments on the HH wave function

(&.9) _
Original proposal: Yy (g,0)= f e "

The Euclidean action is unbounded from below, so the integral is divergent.

Solution: Integrate over complex metrics, in particular over complex lapse contours.

How do we choose the contour?

Contribution of j-th
saddle point

Most recent version:  Yuru(g,$) = Zdj o—Si(9:9)
J

Which saddle points should be included?
What are d;?

Both ¥uH and T are now “work in progress”.
The question is: What is the general law of boundary conditions?



