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ABSTRACT

In order to investigate formation of relativistic jets at the center of a progenitor of a long gamma-
ray burst (GRB), we develop a two-dimensional general relativistic magnetohydrodynamic (GRMHD)
code. We show the code passes many, well-known test calculations, by which the reliability of the
code is confirmed. Then we perform a numerical simulation of a collapsar using a realistic progenitor
model. It is shown that a jet is launched from the center of the progenitor. We also find that the
mass accretion rate after the launch of the jet shows rapid time variability that resembles to a typical
time profile of a GRB. The structure of the jet is similar to the previous study: a poynting flux jet
is surrounded by a funnel-wall jet. Even at the final stage of the simulation, bulk Lorentz factor of
the jet is still low, and total energy of the jet is still as small as 1048 erg. However, we find that the
energy flux per unit rest-mass flux is as high as 102 at the bottom of the jet. Thus we conclude that
the bulk Lorentz factor of the jet can be potentially high when it propagates outward. It is shown
that the outgoing poynting flux exists at the horizon around the polar region, which proves that the
Blandford-Znajek mechanism is working. However, we conclude that the jet is launched mainly by
the magnetic field amplified by the gravitational collapse and differential rotation around the black
hole, rather than the Blandford-Znajek mechanism.

Subject headings: gamma rays: bursts — relativity — black hole physics — accretion, accretion discs
— supernovae: general

1. INTRODUCTION

Gamma-Ray Bursts (GRBs; in this study, we consider
only long GRBs, so we refer to long GRBs as GRBs
hereafter) have been mysterious phenomena since their
discovery in 1969 (Klebesadel et al. 1973). Last decade,
observational evidence for supernovae (SNe) and GRBs
association has been reported (e.g. Woosley and Bloom
2006, and references therein).

Some of the SNe that associate with GRBs were very
energetic and blight. The estimated explosion energy was
of the order of 1052 ergs, and produced nickel mass was
∼ 0.5M�. Thus they are categorized as a new type of
SNe (sometimes called as hypernovae). The largeness of
the explosion energy is very important, because it can not
be explained by the standard core-collapse SN scenario,
and other mechanism should be working at the center of
the progenitors.

The promising scenarios are the collapsar sce-
nario (Woosley 1993) and the magnetar sce-
nario (Usov 1992). In the collapsar scenario, a
rapidly rotating black hole (BH) is formed at the
center, while a rapidly rotating neutron star with strong
magnetic fields (∼ 1015G) is formed in the magnetar
scenario. Many numerical simulations have been done
for the collapsar scenario (MacFadyen & Woosley 1999;
Proga et al. 2003; Proga & Begelman 2003;
Mizuno et al. 2004a; Mizuno et al. 2004b;
Proga 2005; Fujimoto et al. 2006; Shibata et al. 2006;
Nagataki et al. 2007; Sekiguchi & Shibata 2007;
Suwa et al. 2007; Barkov & Komissarov 2008a)

1 Yukawa Institute for Theoretical Physics, Kyoto University,
Oiwake-cho Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan,
nagataki@yukawa.kyoto-u.ac.jp

and the magnetar scenario (Takiwaki et al. 2004;
Komissarov & Barkov 2007; Burrows et al. 2007;
Bucciantini et al. 2008; Dessart et al. 2008;
Takiwaki et al. 2008; Bucciantini et al. 2009). In
this study, we investigate the collapsar scenario.

In the collapsar scenario, a BH is formed as a result
of gravitational collapse. Also, rotation of the pro-
genitor plays an essential role. Due to the rotation,
an accretion disk is formed around the equatorial
plane. On the other hand, the matter around the
rotation axis falls into the BH almost freely. It is
pointed out that the jet-induced explosion along the
rotation axis may occur due to the heating through
pair annihilation of neutrinos and anti-neutrinos that
are emitted from the accretion disk (Woosley 1993;
MacFadyen & Woosley 1999; Fryer & Mészáros 2000).
Effect of extraction of rotation energy from the accretion
disk by magnetic field lines that leave the disk surface
(Blandford-Payne effect (Blandford & Payne 1982)) is
also investigated by several authors (Proga et al. 2003;
Proga & Begelman 2003; Mizuno et al. 2004a;
Mizuno et al. 2004b; Proga 2005; Fujimoto et al. 2006;
Nagataki et al. 2007; Suwa et al. 2007). Recently,
the effect of extraction of rotation energy from the
BH through outgoing poynting flux (Blandford-
Znajek effect (Blandford & Znajek 1977)) is inves-
tigated (Barkov & Komissarov 2008a). In order to
investigate the collapsar scenario completely, a high-
quality numerical code including effects of a lot of
microphysics (neutrino physics, nuclear physics, and
equation of state for dense matter) and macrophysics
(magneto-hydrodynamics, general relativity) has to be
developed. Although many numerical studies have been
reported, such a numerical code has not been developed
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yet. Thus we have to develop our numerical code step
by step.

In this study, we investigate the dynamics of collapsars
taking into account the general relativistic effects. Ex-
traction of rotation energy from a rotating BH is one of
them. Also, even when the rotation energy is extracted
from the accretion disk, the properties of the accretion
disk should depend on the properties of the BH: if the
BH is rotating, the inner region of the accretion disk
should be enforced to co-rotates with the BH. We inves-
tigate how a jet is launched at the center of a progenitor,
and how the property of the jet is. Effects of rotation
of the BH on the formation of GRB jet have not been
investigated so much. Barkov and Komissarov (2008)
is a pioneering study. However, only one case is inves-
tigated in their study, and the initial progenitor model
they used is a simplified one-dimensional model without
rotation and magnetic fields (Bethe 1990). Since there
should be many initial conditions of progenitors (pro-
genitor mass, metallicity, angular momentum, magnetic
fields), it should be important to investigate the general
relativistic effects using a different initial condition from
the previous study. In this study, we use a realistic initial
condition for the progenitor model that is developed by
Woosley and Heger (2006), in which rotation and mag-
netic fields are taken into account.

When we investigate the general relativistic effects,
one has to develop a General Relativistic Magneto-
Hydro Dynamic (GRMHD) code. So far, there are
many studies on GRMHD code for fixed background
space times using high-order conservative schemes based
on either approximate or full wave-decomposition Rie-
mann solvers (Gammie et al. 2003; Komissarov 2005;
Anninos et al. 2005; Antón et al. 2006;
Del Zanna et al. 2007; Tchekhovskoy et al. 2007) or
non-conservative schemes (De Villiers & Hawley 2003;
Anninos et al. 2005). Since the accreted mass onto the
BH is still less than the initial BH mass in this study,
we take the GRMHD code for the fixed background.
Especially, we develop our code using the conservative
scheme of Gammie et al. (2003) with the method of
Noble et al. (2006) for transforming conserved variables
to primitive variables.

The plan of the paper is as follows. In section 2, we
present the formulation of the GRMHD code. In sec-
tion 3, we show results of many, well-known test calcula-
tions to confirm the reliability of the code. After we show
the reliability, we present results of numerical simulations
of collapsars in section 4. Summary and discussion are
presented in section 5.

2. DEVELOPMENT OF GRMHD CODE

We have developed a two-dimensional GRMHD code
following Gammie et al. (2003) and Noble et al.
(2006). We have adopted a conservative, shock-capturing
scheme with Harten, Lax, and van Leer (HLL) flux
term (Harten et al. 1983) with flux-interpolated con-
strained transport technique (Tóth 2000). We use a
third-order Total Variation Diminishing (TVD) Runge-
Kutta method for evolution in time, while monotonized
central slope-limited linear interpolation method is used
for second-order accuracy in space (van Leer 1977). 2D
scheme (2-dimensional Newton-Raphson method) is usu-
ally adopted for transforming conserved variables to

primitive variables (Noble et al. 2006).
When we perform simulations of GRMHD, Modified

Kerr-Schild coordinate is basically adopted with mass
of the BH (M) fixed where the Kerr-Schild radius r is
replaced by the logarithmic radial coordinate x1 = ln r.
When we show the result, the coordinates are sometimes
transfered from Modified Kerr-Schild coordinate to Kerr-
Schild one for convenience. In the following, we use G =
M = c = 1 unit. G is the gravitational constant, c is the
speed of light, and M is the gravitational mass of the
BH at the center. Throughout this paper we follow the
standard notation (Misner et al. 1970).

2.1. Formalism

Number of variables that appear in the equations of
GRMHD is 13: rest-mass density (ρ), internal energy
density (u), pressure (p), four-velocity of fluid (uµ),
and Faraday tensor (Fµν). Note that Faraday tensor
has only 6 independent components due to the relation
Fµν = −F νµ. We can reduce the number of independent
variables to 8 using the MHD condition (uµFµν = 0),
equation of state (p = (γ − 1)u: γ-law gas is assumed),
and the unit length of the four velocity (uµuµ = −1).
Note that the number of independent equations of the
MHD condition is 3. We choose (ρ,u,ui,Bi) as the 8 in-
dependent variables where ui is the space component of
the four velocity. Bi can be written as <i/α where α is

the lapse function (α =
√

−1/gtt) and <i is the magnetic
field measured by the Fiducial observer (FIDO) whose
four velocity is nµ = (−α, 0, 0, 0). We call these inde-
pendent variables as the primitive variables. Below, we
introduce the conserved variables. Of course, number of
the conserved variables is also 8. Thus we require 8 basic
equations to follow the time evolution of the system.

The basic equations of GRMHD represent the rest-
mass conservation, the energy-momentum conservation,
and space component of the induction equation that de-
termines the time evolution of the magnetic fields. These
are:

∂t(
√−gρut) = −∂i(

√−gρui) (1)

∂t(
√−gT t

ν) = −∂i(
√−gT i

ν) +
√−gT κ

λ Γλ
νκ (2)

∂t(
√−gBi) = −∂j

[√−g(biuj − bjui)
]

, (3)

where T µν is the stress energy tensor that is composed of
the sum of the matter part (T µν

Matter = (ρ + u + p)uµuν +
pgµν) and electromagnetic part (T µν

EM = FµαF ν
α −

gµνFαβFαβ/4). The factor of
√

4π is absorbed into the
definition of the Faraday tensor (Gammie et al. 2003).
bµ is introduced so that Eq.(3) looks simple, and
it is defined as bµ = εµνκλuνFλκ where εµνκλ =
(−1/

√−g) [µνλκ]. [µνλκ] is the completely antisymmet-
ric symbol. In the fluid-rest frame, bµ becomes (0,Bi).

In this study, we adopt the conservative scheme for
integration of the GRMHD equations. In this case, the
left terms of Eq.(1)-(3) are considered to be fundamental
variables and called as the conserved variables. The right
terms of Eq.(1)-(3) are flux terms with a source term (the
second right term of Eq.(2)).

Since we have to estimate pressure of the fluid, we
have to estimate the primitive variables from the con-
served variables at each time step. The problem is that
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the primitive variables can not be expressed analytically
by the conserved variables. Thus we have to use the
Newton-Raphson method to obtain the primitive vari-
ables from the conserved ones (Noble et al. 2006).

Basically, we adopt the 2D scheme introduced by No-
ble et al. (2006) to calculate the primitive variables.
However, it sometimes happens that the 2D scheme fails
to converge well, and the primitive variables can not be
obtained precisely. In such a case, we first adopt the
1DW scheme introduced by Noble et al. (2006) and see
whether the 1DW scheme converges. If it converges well,
we adopt the primitive variables obtained by the 1DW

scheme for the next time step. Otherwise, we adopt the
second choice explained in the following subsection.

2.2. Supplemental Method to Calculate Primitive
Variables

Following Noble et al. (2006), we introduce convenient
variables v2, W , Qµ, and Q̄µ. These variables, of course,
depend on the primitive variables. The definition of these
variables are: v2 = viv

i, W = ωΓ2, Qµ = αT tµ, and Q̄µ

= jµ
λQλ, where vi is the fluid velocity relative to FIDO,

ω = ρ + u + p, Γ = 1/
√

1 − v2, and jµλ = gµλ + nµnλ. It
is apparent that Qµ and Q̄µ can be written analytically
by the conserved variables. On the other hand, v2 and
W can not be expressed analytically by the conserved
variables. Thus, we have to solve v2 and W numerically
in order to determine the proper, corresponding primitive
variables.

Here we show that an upper limit and a lower limit
for W can be obtained before searching for a solution of
W and v2 numerically. Thanks to this fact, all we have
to do is to seek the solution with the condition Wmin 5
W 5 Wmax. From Eq.(28) and Eq.(29) in Noble et al.
(2006), W and v2 satisfy the following equations:

v2
eq28 =

Q̄2W 2 + (Qµ<µ)2(<2 + 2W )

(<2 + W )2W 2
(4)

v2
eq29 =

2

<2

[

(Qµ<µ)2

2W 2
− W + p − (Qµnµ)

]

− 1. (5)

From these equations and the relation 0 5 v2 < 1, v2

and W satisfy the following relations:

f(W )=W 4 + 2<2W 3 + (<4 − Q̄2)W 2 − 2(Qµ<µ)2W

−<2(Qµ<µ)2 = 0 (6)

g(W ) = W 3 + {1

2
<2 + (Qµnµ)− p}W 2 − 1

2
(Qµ<µ)2 5 0

(7)

h(W ) = W 3 + {<2 + (Qµnµ) − p}W 2 − 1

2
(Qµ<µ)2 = 0.

(8)

Since f(0) 5 0, f
′

(0) 5 0, and at least one of the solution

for f
′′

(W ) = 0 is less than 0, there is only one positive
solution Wa that satisfies f(Wa) = 0. Thus, from Eq.(6),
W has to be greater than Wa.

We can understand the behavior of g(W ) from its first
derivative for W :

g
′

(W ) = W

[

3W + 2{1

2
<2 + (Qµnµ) − p}

]

. (9)
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Fig. 1.— Simulation of 1D shock tube test (Komissarov 1999).
The state at t = 1.0 is shown in the figure. Number of grid points
is 600. The calculation region is set to be −2 ≤ x ≤ 2. The upper
left panel shows density, the upper right panel shows pressure, the
lower left panel shows the velocity in the x-direction, and the lower
right panel shows the bulk Lorentz factor.
It is apparent that W = 0 is a solution for g

′

(W ) = 0.
As for the other solution(s), it is not so obvious because
the pressure p depends on W and v2. However, it will
be natural to consider that the monotonic relation holds
between W and p. It means that the pressure rises when
W becomes larger. If this assumption is adopted, as
long as g

′

(W ) = 0 has another solution, it is a positive
one W = Wα = 0. This is because when W = 0, p
should be also 0 and

[

3W + 2{1/2<2 + (Qµnµ) − p}
]

is
a positive value. Thus, g(W ) = 0 has only one positive

solution Wb. This holds even if g
′

(W ) = 0 has only one
solution at W = 0. Also, same conclusion can be derived
for h(W ): there is only one positive solution Wc that
satisfies h(Wc) = 0.

Since h(W ) = g(W ), the relation Wc 5 Wb holds.
In conclusion, W has to be in the range Wmin =
Max(Wa, Wc) 5 W 5 Wb = Wmax. Thus all we have to
do is to find a solution of W that satisfies v2

eq28 = v2
eq29

in this range. This procedure is more expensive than the
2D scheme and the 1DW scheme, but the solution for W
and v2 is more likely to be found because the range for
the solution of W is determined apriori. Thus we use this
method as a supplementary one to obtain the primitive
variables.

3. TEST CALCULATIONS

Using the GRMHD code that is developed in this
study, we check whether it can pass many, well-known
test calculations. The first three tests are special rel-
ativistic hydrodynamic (SRHD) or special relativistic
magnetohydrodynamic (SRMHD) calculations, while the
rest of three tests are GRMHD ones.

3.1. Shock Tube Problems
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Fig. 2.— Simulation of 1D collision test (Komissarov 1999). The
state at t = 1.2 is shown in the figure. Number of grid points is 600.
The calculation region is set to be −2 ≤ x ≤ 2. The left panels
show density, velocity in the x-direction, and bulk Lorentz factor
(from top to bottom), while right panels show pressure, velocity
in x-direction, and y-component of magnetic field (from top to
bottom).

1D shock tube tests are the most basic test problems
for SRHD/SRMHD. We have carried out a number of
the test simulations introduced in Komissarov (1999)
and Balsara (2001). Here we describe only two of them.
One is the shock tube test1 and the other is the collision
test (Komissarov 1999; Mizuno et al. 2006). The initial
left and right states are summarized in Table.1. Number
of grid points is 600 for both simulations. The results
are shown in Fig.1 and Fig.2, which show that the test
calculations are well solved as in the previous studies.

3.2. Double Shock Problems

Here 2D shock tube problem is done to con-
firm whether the shock dynamics in the multidimen-
sional flow can be solved safely. This problem in-
cludes the interactions of shocks, rarefactions, con-
tact discontinuities. Initially a square computational
domain is prepared in x-y plane and divided into
four quarter boxes. Initial condition in each box
is summarized in Table.2. This condition is same
with previous study (Del Zanna & Bucciantini 2001;
Zhang & MacFadyen 2006; Mizuta et al. 2006). We use
400×400 uniform grid points in a square computational
box. Boundary condition is open ones. Density contour
at the final stage of the simulation is shown in Fig.3,
which shows that our code reproduces the previous stud-
ies very well.

3.3. Cylindrical Explosion Test

Here we go to a SRMHD test. A famous, cylindri-
cal blast explosion test is done (Del Zanna et al. 2003;
Leismann et al. 2005). We use the [0, 1] × [0, 1] Carte-
sian grid with a resolution of Nx = Ny = 250 grid

Fig. 3.— Simulation of 2D shock tube problem. Density contour
at t = 0.4 is shown in the figure. Numbers of grid points are
400×400. The calculation region is set to be 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1.

points. We define an initially static background with
ρ = 1.0, p = 0.01, and Bx = 4.0. The relativistic flow
comes out by setting a much higher pressure, p = 103

within a circle of radius r = 0.08 placed at the center of
the domain. γ for the equation of state is set to be 4/3.
Final time is set to be 0.4. The result is shown in Fig.4.
The upper left panel shows the density contour in loga-
rithmic scale. The upper right panel shows the pressure
contour in logarithmic scale. The lower left panel shows
contour of the bulk Lorentz factor. The lower right panel
shows the divergence of the magnetic fields in logarithmic
scale with magnetic field lines. These results are consis-
tent with the previous studies. Especially, the divergence
of the magnetic fields is kept as small as 10−14.

3.4. Gammie’s Flow

Next we consider a GRMHD test. A steady,
magnetized inflow solution on the equatorial plane
around a Kerr BH is considered (Takahashi et al. 1990;
Gammie 1999). Initially, the steady inflow solution for
the Kerr parameter a = 0.5 and the magnetization pa-
rameter Fθφ = 0.5 is set, and time evolution of the sys-
tem is followed by the GRMHD code. In this calculation,
Boyer-Lindquist coordinate is used. The calculation re-
gion is set to be [2.0 5 r 5 4.04] and [0.5 − 10−3 5

θ/π 5 0.5 + 10−3]. The model is run for t = 1.5. The
physical values at boundaries are fixed throughout the
simulation. Results are shown in Fig.5: density, ra-
dial component of the 4-velocity, the φ component of
the 4-velocity, and <φ at the final stage of the simu-
lation. When the initial state is written in the same
figure, we can see that the final state coincides with
the initial state. To show it more quantitatively, we
introduce the norms of the errors for these values as
a function of the number (N) of grid points in the ra-
dial coordinate. The definition of the norm of the error
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Fig. 4.— A RMHD 2D cylindrical explosion test with a pressure
jump as high as 105. The state at t = 0.4 is shown in the figure.
Numbers of grid points are 250×250. The calculation region is set
to be 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The upper left panel shows the
density contour in logarithmic scale. The upper right panel shows
the pressure contour in logarithmic scale. The lower left panel
shows contour of the bulk Lorentz factor. The lower right panel
shows divergence of the magnetic fields in logarithmic scale with
magnetic field lines.

is Σi=N
i=1 |a(final) − a(initial)| /Σi=N

i=1 |a(initial)|. In Fig.6,
the norms of errors are shown. We can see that these val-
ues converge roughly proportional to N−2, as expected.

3.5. Blandford-Znajek Monopole Solution

Further we continue to test the GRMHD code.
We consider the Blandford-Znajek monopole solu-
tion (Blandford & Znajek 1977). This analytic solu-
tion has been investigated numerically by previous
studies (Komissarov 2004b; McKinney & Gammie 2004;
Tanabe & Nagataki 2008).

The computational domain is axisymmetric, with a
grid that extends from rin = 0.98r+ to rout = 230 and

from θ = 0 to θ = π where r+ = 1+
√

1 − a2 is the outer
event horizon. The numerical resolution is 300 × 300. As
an initial condition, we put the 0th order terms of the
monopole solution around the BH (Komissarov 2004b).
That is, <µ = −n∗

νFµν = (0, α sin θ/
√−g, 0, 0) in the

Kerr-Schild coordinate where ∗Fµν and g are the dual
field tensor and determinant of the Kerr-Schild met-
ric. The plasma velocity relative to the FIDO is set
to zero initially, and its pressure and density are set
to small value (P = ρ = <2/100) so that the sys-
tem becomes Force-Free like. Also, to keep the mag-
netization reasonably low, when the critical condition
0.01B2 ≥ Γ2ρ + (γΓ2 − (γ − 1))u is satisfied, density
and internal energy are increased by the same factor so
that the critical condition holds (Komissarov 2004b). γ
is set to be 4/3. We have performed numerical simula-
tions with the Kerr parameters 0, 0.01, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, and 0.995 until time t =
200.

The total energy flux, which is the integrated outgoing
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Fig. 5.— Gammie’s equatorial inflow solution in the Kerr metric
with a = 0.5 and magnetization parameter Fθφ = 0.5. Number
of grid point is 1024. The state at t = 1.5 is shown in the figure.
The panels show density, radial component of the 4-velocity, the
φ component of the 4-velocity, and <φ at the final stage of the
simulation. Boyer-Lindquist coordinate is used for the simulation.

Fig. 6.— Convergence results for the Gammie’s equatorial in-
flow solution in the Kerr metric with a = 0.5 and magnetization
parameter Fθφ = 0.5. Norms of the error for ρ, ur, uφ, and <φ

at the final stage of the simulation are shown in the figure. The
straight line represents the slope expected for second-order conver-
gence. The definition of the norm of the error is written in the
text.
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Fig. 7.— Outgoing poynting fluxes as a function of the zenith an-
gle for the Blandford-Znajek monopole solution with Kerr param-
eter a = 0.01, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95.
The fluxes are measured at r = 20 and t = 200. Numbers of grid
point are 300×300.

poynting flux over the zenith angle, can be written as

Ė =2π

∫ π

0

dθ
√−g(−T r

t ) = 2π

∫ 1

0

dx2

(

dθ

dx2

)√−g(−T r
t )

=2π

∫ 1

0

dx2FE , (10)

where x2 = θ/π is introduced as a convenient vari-
able (Gammie et al. 2003).

In Fig.7, the outgoing poynting fluxes (FE) as a func-
tion of zenith angle are shown. The fluxes are measured
at r = 20 at the final stage of the simulations. We would
like to note that the outgoing poynting flux hardly de-
pends on the radius where it is evaluated. This means
that the conservation of the outgoing poynting flux is
confirmed numerically.

In Fig.8(a), we plot the total energy flux (Ė) at the fi-
nal stage for small Kerr parameters (0 ≤ a ≤ 0.2) by rect-
angular points. Dashed line is just the interpolation of
the calculated values. For comparison, the second-order
analytical solution is shown by dotted line and the forth-
order analytical solution is shown by solid line. From
this comparison, we can see that all of them coincide
with each other. Thus the results of the numerical simu-
lations by the GRMHD code are confirmed by analytical
solutions.

The situation becomes different for large Kerr parame-
ters. In Fig.8(b), we plot the same values with Fig. 8(a),
but for wide range of the Kerr parameters (0 ≤ a ≤ 1).
We can see clearly the difference among three cases. This
is because the analytical solution is obtained by the per-
turbation method in Kerr parameter, and it is applicable
only for small Kerr parameters. Of course, there is no
such limitation for the numerical simulations. Thus the
total energy flux obtained by the numerical simulation is

Fig. 8.— Upper panel (a): Comparison of the derived, conserved,
total energy flux. Dashed line with rectangular points is numerical
result for small Kerr parameter (0 ≤ a ≤ 0.2), dotted line shows
the second-order analytical solution, and solid line represents the
forth-order analytical solution. Lower panel (b): Same with upper
panel, but for wide range of the Kerr parameters (0 ≤ a ≤ 1).
Simulations are done for the Kerr parameters 0, 0.01, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, and 0.995 until t = 200.

more reliable than the analytical estimation (see Tanabe
and Nagataki (2008) for detailed discussion).

3.6. Fishbone and Moncrief ’s Test

Here we present a final test of the GRMHD code. A
steady and stationary torus (Fishbone & Moncrief 1976;
Abramowicz et al. 1978) around a Kerr BH that is sup-
ported by both centrifugal force and pressure is solved
numerically. Of course, it should be solved as a steady
and stationary state.

We have integrated a Fishbone-Moncrief solution
around a Kerr BH with a = 0.9. We set utuφ = 4.45 and
Rin = 6.0. The grid extends radially from rin = 1.40 to
rout = 100. The same floors with Gammie et al. (2003)
are used for ρ and u. The numerical resolution is N ×N
and the solution is integrated for t = 10. The resulting
norm of the error, which converges roughly proportional
to N−2, is shown in Fig.9.

Next we follow the time evolution of the Fishbone-
Moncrief solution with magnetic fields. The vector po-
tential, Aφ ∝ max(ρ/ρmax−0.2, 0) where ρmax is the peak
density in the torus, is introduced (Gammie et al. 2003).
The field is normalized so that the minimum value of
pgas/pmag becomes 102. The time integration extends for
t = 2000. The number of grid points is 256 × 256, and
the grid extends radially from rin = 1.40 to rout = 300
while it extends in the zenith angle from θ = 0 to θ = π.

The density contours in logarithmic scale (from 10−6

to 103) are shown in Fig.10. These are projected on the
(r sin θ,r cos θ)-plane. The upper left panel shows the
initial state. The upper right panel shows the final state
of the simulation without magnetic fields. The lower left
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Fig. 9.— Convergence results for the Fishbone-Moncrief problem
for a Kerr BH with a = 0.9. The straight line represents the slope
expected for second-order convergence. Kerr-Schild coordinate is
used for the simulation.

panel shows the final state of the simulation with mag-
netic fields. The lower right panel is same with the lower
left one, but for a wide region. Due to the presence of
the magnetic fields, the angular momentum in the torus
is conveyed outward and the the torus starts to accrete,
and the jet is launched from the BH around the polar
region. This result is consistent with the previous stud-
ies (Gammie et al. 2003; McKinney & Gammie 2004;
McKinney 2006a; Mckinney 2006b).

4. SIMULATION OF COLLAPSAR

Since our code has passed the many test calculations
shown in the previous section, we now simulate the dy-
namics of a collapsar using the code. However, we have
to say beforehand that no microphysics is included in
the code such as nuclear reactions, neutrino processes,
and equation of state for dense matter. So this is the
FIRST STEP of our project to simulate the dynamics of
a collapsar and formation of a relativistic jet of a GRB.

4.1. Method of Calculation

We have done a 2D GRMHD simulation of a col-
lapsar using the Modified Kerr-Schild coordinate and
G = c = M = 1 units. When we show results, the
coordinate is transfered from the Modified Kerr-Schild
coordinate to the Kerr-Schild one, and the units are fre-
quently transfered to cgs units. The calculated region
corresponds to a quarter of the meridian plane under the
assumption of axisymmetry and equatorial symmetry.
The spherical mesh with 256(r)× 128(θ) grid points is
used for all the computations. The calculated region cov-
ers from r =1.8 to 3×104 (that corresponds to 5.3×105cm
and 8.9×109cm in cgs units, as explained below) with
uniform grids in the Modified Kerr-Schild space.

We adopt the model 12TJ in Woosley and Heger
(2006). This model corresponds to a star that has 12M�

Fig. 10.— Density contour in logarithmic scale (from 10−6 to
103) for the Fishbone-Moncrief problem for the Kerr parameter
a = 0.9. Number of grid points is 256 × 256. The simulations
are done until t = 2000. The upper left panel shows the initial
state. The upper right panel shows the final state of the simulation
without magnetic fields. The lower left panel shows the result with
magnetic fields. The lower right panel is same with the lower left
one, but for a wide region. These results are projected on the (r
sin θ,r cos θ)-plane.

initially with 1% of solar metallicity, and rotates rapidly
and does not lose its angular momentum so much by
adopting small mass loss rate. As a result, this star
has a relatively large iron core of 1.82M�, and rotates
rapidly (the estimated Kerr parameter that a BH forming
of mass and angular momentum of the inner 3 M� would
formally have is 0.57) at the final stage. Of course, what
kind of stars are appropriate for progenitors of GRBs is
still under debate (Yoon et al. 2006). Thus we chosed
the model 12TJ as a first example of our study because
the iron core is large and rotating rapidly, which seems
to form a rapidly-rotating BH, among the models listed
in Woosley and Heger (2006). We assume that the cen-
tral part of the star with 2M� has collapsed and formed
a BH at the center with the Kerr parameter a = 0.5.
We also assume that the gravitational mass of the BH is
unchanged throughout the calculation. Since M = 2M�,
r = 1 corresponds to 2.95 ×105cm, as explained above.
Also, the inner boundary r = 1.8 is set within the outer
horizon r+ = 1 +

√
1 − a2 = 1.866.

Since 1-D calculation is done for the model 12TJ, we
can use the data directly only for the physical quanta
on the equatorial plane. As for the density, internal en-
ergy density, and radial velocity, we assume the struc-
ture of the star is spherically symmetric. We also set
uθ = 0 initially. As for uφ, we extrapolate its value such
as uφ(r, θ) = uφ(r, π/2) × sin θ.

Effects of magnetic fields are taken into account in
the model 12TJ. However, again, since 1-D calculation is
done, we do not know the configuration of the magnetic
fields. It is difficult to extrapolate magnetic fields that
satisfy the condition divB = 0 everywhere. Also, there
are much uncertainty on the amplitude of the magnetic
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Fig. 11.— Contours of rest mass density at the central region
in logarithmic scale, in which cgs units are used assuming that
the gravitational mass of the BH is 2M�. The length unit in the
vertical/horizontal axes corresponds to 2.95 ×105 cm. Upper panel
(a) shows the state at t = 110000 (that corresponds to 1.0835 sec),
while lower panel (b) shows the one at t = 180000 (that corresponds
to 1.773 sec). These results are projected on the (r sin θ,r cos θ)-
plane.

fields in a progenitor. Thus we do not use the informa-
tion on magnetic fields of the model 12TJ. Rather, we
adopt the same treatment in section 3.6. That is, the
vector potential Aφ ∝ max(ρ/ρmax − 0.2, 0) sin4 θ where
ρmax is the peak density in the progenitor (after extract-
ing the central part of the progenitor that has collapsed
and formed a BH). The field is normalized so that the
minimum value of pgas/pmag becomes 102. The defini-
tion of pmag is pmag = b2/2. The reason why we adopt
the strong dependence on the zenith angle for Aφ is so
as not to suffer from discontinuity of magnetic fields at
the polar axis. The resulting biggest amplitude of the
magnetic fields is 7.4×108G at r = 950 (2.8×108cm).

We use a simple equation of state pgas = (γ − 1)u
where we set γ=4/3 so that the equation of state roughly
represents radiation gas.

As for the boundary condition in the radial direction,

Fig. 12.— Same with Fig.11(b), but for a wider region.

we adopt the outflow boundary condition for the inner
and outer boundaries (Gammie et al. 2003). As for the
boundary condition in the zenith angle direction, axis
of symmetry condition is adopted for the rotation axis,
while the reflecting boundary condition is adopted for the
equatorial plane. As for the magnetic fields, the equato-
rial symmetry boundary condition, in which the normal
component is continuous and the tangential component
is reflected, is adopted.

4.2. Results

In Fig.11, color contours of rest mass density at the
central region are shown. Colors represent the density
in units of g cm−3 in logarithmic scale. These results
are projected on the (r sinθ,r cos θ)-plane. The length
r = 200 corresponds to 5.9 ×107 cm. The time unit
corresponds to 9.85×10−6 sec. Upper panel (a) repre-
sents the contours of rest mass density at t = 110000
(that corresponds to 1.0835 sec), while lower panel shows
the contours at t = 180000 (that corresponds to 1.773
sec). Fig.12 is the same figure with Fig.11(b), but for a
wider region. A jet is clearly seen along the rotation axis.
In Fig.13, mass accretion rate history on the horizon is
shown. The definition of the mass accretion rate is

Ṁ = 2 × 2π

∫ θ

0

dθ
√−gρur. (11)

It takes about 0.15 sec for the inner edge of the matter
to reach the horizon. When the matter reaches there,
there is an initial spike of the mass accretion rate. After
that, there is a quasi-steady state like Fig.11(a) is real-
ized. Then, the jet is launched at ∼1.1 sec. After that,
the mass accretion rate varies rapidly with time, which
resembles to a typical time profile of a GRB.

We show color contours of the plasma beta (pgas/pmag)
in logarithmic scale at t = 180000 in Fig.14. As ex-
pected, the plasma beta is low in the jet region while it
is high in the accretion disk region. We show color con-
tours of bulk Lorentz factor around the central region
at t = 180000 in Fig.15(a) (upper panel, in logarithmic
scale). Color contours of the energy flux per unit rest-
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Fig. 13.— Mass accretion rate history on the horizon. The unit
M� sec−1 is used assuming that the gravitational mass of the BH
is 2M� throughout the calculation.

mass flux (E = −T r
t /(ρur)), which is conserved for an

inviscid fluid flow of magnetized plasma, are also shown
in Fig.15(b) (lower panel, in logarithmic scale). This
value represents the bulk Lorentz factor (Γ∞) of the in-
vischid fluid element when all of the internal and mag-
netic energy are converted into kinetic energy at large
distances (McKinney 2006a). We can see that the bulk
Lorentz factor of the jet is still low (Fig.15(a)), but it can
be potentially as high as 102 at large radius (Fig.15(b)).

At t = 180000, the strength of the magnetic field (
√

4πb2)
at the bottom of the jet is found to be ∼ 1015G, and
uφ/ut is ∼ 0.1 at rms on the equatorial plane. Here rms

is the marginally stable orbit. For the Kerr BH with
a = 0.5, rms is 4.23. As stated in section 4.1, the ini-
tial biggest amplitude of the magnetic fields is 7.4×108G
at r = 950 where the initial density is ∼ 106 g cm−3,
the expected amplification factor of the magnetic fields
due to the gravitational collapse and differential rota-
tion around the BH is (ρ/ρ0)

2/3 × (dΦ/dt/2π) ∗ ∆t ∼
100 × 0.016 × 180000 ∼ 3 × 105. Thus the initial mag-
netic field can be amplified as large as several times of
1014 G, which is roughly consistent with the amplitude
of the magnetic fields at the bottom of the jet. At late
phase, the magneto-rotational instability (MRI) may be
also working, which is discussed in the next section.

In Fig.16, contours of the φ component of the vec-
tor potential (Aφ) at t = 180000 are shown. Level
surfaces coincide with poloidal magnetic field lines, and
field line density corresponds to poloidal field strength.
As expected, the magnetic fields are strong at the jet
region, which makes the plasma beta very low. From
Fig.16, the opening angle of the jet is estimated as
5◦−6◦. From Fig.14, 15(b), and 16, this jet should corre-
spond to the poynting flux jet (Hawley & Krolik 2006).
This jet is surrounded by the funnel-wall jet re-
gion (Hawley & Krolik 2006), which is shown in Fig.17

Fig. 14.— Contour of the plasma beta (pgas/pmag) at t = 180000
in logarithmic scale.

below.
In Table.3 and 4, the integrated energies of matter and

electromagnetic field at t = 180000 are shown. The in-
tegrated region is between the horizon and r = 200 (for
Table.3) or r = 40 (for Table.4), and within the zenith
angle measured from the polar axis. As for the matter
component, the contribution of the rest mass energy is
subtracted. That is,

EMatter = 2×2π

∫ r=200 or 40

r+

dr

∫ θ

0

dθ
√−g(T 0

0,Matter−ρu0u0).

(12)
Factor 2 is coming from the symmetry of the system with
respect to the equatorial plane. The field part can be
written as

EEM = 4π

∫ r=200 or 40

r+

dr

∫ θ

0

dθ
√−gT 0

0,EM. (13)

It can be seen that the energy in electromagnetic field
dominates that in matter within r ≤ 40, while they be-
come comparable within r ≤ 200. Also, the integrated
energy is still less than the typical explosion energy of a
GRB (∼ 5 × 1050erg; Frail et al. 2001).

Finally, we show the rest-mass density, outgoing mass
flux, and outgoing poynting flux in Fig.17. The top
panel (a) shows the rest-mass density (g cm−3) as a
function of the zenith angle at r = 10rms = 42.3 and
t = 180000. It is seen that the low-density region
is realized around the polar axis, which corresponds
to the jet region (0.1 radian corresponds to 5.7◦).
The middle panel (b) shows the outgoing mass flux
ρur (g cm−2 s−1) at r = 10rms and t = 180000. It
is seen that the outgoing mass flux exists around
0.06 ≤ θ ≤ 0.14, which corresponds to the funnel-
wall jet (De Villiers et al. 2003; Hirose et al. 2004;
McKinney & Gammie 2004; Kato et al. 2004;
De Villiers et al. 2005; Hawley & Krolik 2006). The
bottom panel (c) shows the outgoing poynting flux (in
units of 1050erg s−1 rad−1) at r = r+ and t = 180000.
Definition of the outgoing poynting flux is

FBZ = −2 × 2π
√
−gT t

r,EM. (14)
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Fig. 15.— Upper panel (a): contours of bulk Lorentz factor
around the central region at t = 180000. Lower panel (b): con-
tours of the energy flux per unit rest-mass flux at t = 180000 that
represent the bulk Lorentz factor (Γ∞) of the invischid fluid ele-
ment when all of the internal and magnetic energy are converted
into kinetic energy at large distances. The contours are written in
logarithmic scale.

Factor 2 is coming from the assumption of the symmetry
of the system with respect to the equatorial plane. We
can see that the positive outgoing poynting flux exists at
the jet region (0 ≤ θ ≤ 0.23 in radian). The integrated
energy of the outgoing poynting flux at r = r+ and t =
180000 is 4.6 × 1046 erg s−1. Since the duration of the
jet in this study is ∼ 0.7 s, this outgoing poynting flux
seems to be too weak to explain the energy of the jet
listed in Table.3 and 4. Thus we conclude that the jet is
launched mainly by the magnetic field amplified by the
gravitational collapse and differential rotation around the
BH, rather than the Blandford-Znajek mechanism in this
study.

5. SUMMARY AND DISCUSSION

In order to investigate the formation of relativistic jets
at the center of a progenitor of a GRB, we have devel-
oped a two-dimensional GRMHD code. In order to con-
firm the reliability of the code, we have shown that the
code passes many, well-known test calculations. Then
we have performed a numerical simulation of a collap-
sar using a realistic progenitor model. We have followed

Fig. 16.— Contours of the φ component of the vector potential
(Aφ) at t = 180000. Level surfaces coincide with poloidal mag-
netic field lines, and field line density corresponds to poloidal field
strength. The biggest amplitude of the magnetic fields is ∼ 1015G.

the time evolution of the system for 1.773 s, and it was
shown that a jet is launched from the center of the pro-
genitor. We also found that the mass accretion rate is
in quasi-stable state before the launch of the jet, while it
shows rapid time variability that resembles to a typical
time profile of a GRB after the launch. The structure
of the jet is similar to the previous study: a poynting
flux jet is surrounded by a funnel-wall jet. Even at the
final stage of the simulation, the bulk Lorentz factor of
the jet is still low, and the total energy of the jet is still
as small as 1048 erg. However, we found that the en-
ergy flux per unit rest-mass flux (E = −T r

t /(ρur)) is as
high as 102 at the at the bottom of the jet. Thus we
conclude that the bulk Lorentz factor of the jet can be
potentially high when it propagates outward. Also, as
long as the duration of the activity of the central engine
is long enough, the total energy of the jet can be large
enough to explain the typical explosion energy of a GRB
(∼ 5× 1050 erg). It is shown that the outgoing poynting
flux exists at the horizon around the polar region, which
proves that the Blandford-Znajek mechanism is working.
However, we conclude that the jet is launched mainly by
the magnetic field amplified by the gravitational collapse
and differential rotation around the BH, rather than the
Blandford-Znajek mechanism in this study.

When we apply the Blandford-Znajek for-
mula (Barkov & Komissarov 2008b), the integrated
outgoing poynting flux is

Ė = 3.6 × 1050f(a)Ψ2
27M

−2
2 erg s−1 (15)

where M2 = MBH/2M� = 1, Ψ27 = Ψ/1027 G cm2,

and f(a) = a2/(1 +
√

1 − a2)2 = 0.07179. This value
becomes 2.3 × 1046B2

15 erg s−1 for the jet with opening
angle θ = 5◦, which is comparable to our numerical result
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Fig. 17.— The top panel (a): the rest-mass density (g cm−3) as a
function of the zenith angle at r = 10rms = 42.3. The middle panel
(b): the outgoing mass flux ρur (g cm−2 s−1) at r = 10rms. The
bottom panel (c): the outgoing poynting flux (in units of 1050erg
s−1 rad−1) at r = r+. These values are evaluated at the final stage
of the simulation (t = 180000).

(Fig.17(c)).
As for the efficiency of converting the released gravi-

tational energy to the jet’s energy, it can be estimated
as follows: the mass accretion rate is ∼ 0.1M� s−1

(Fig.13), the total energy of the jet at the final stage
is ∼ 1048 erg (Table.3), and the duration of the jet is
∼ 0.7 s (Fig.13). Thus the efficiency can be estimated
as ∼ 10−5. When we use the outgoing poynting flux at
the horizon (4.6×1046erg s−1), the efficiency is as low as
∼ 3 × 10−7. These values seem to be very small com-
pared with the previous study (De Villiers et al. 2005;
Mckinney & Narayan 2007a). One of the reason will be
because they used an almost steady disk model. On the
other hand, we used a realistic progenitor model that
collapses gravitationally. Thus the resulting mass accre-
tion rate is pretty high. Second reason may be because
the efficiency is still low even at the final stage of the
simulation. If we perform the simulation further, the ef-
ficiency may become higher with time: mass accretion
rate will become smaller, and the jet energy might be
larger due to the amplification of the magnetic fields due
to winding-up (and MRI) effects. Also, when the initial
amplitude of the magnetic field is set to be larger (as in
Barkov and Komissarov 2008), the efficiency may be en-
hanced. Further, we should investigate the dependence
of the dynamics on progenitor models as well as the Kerr
parameter of the BH. We are planning to investigate this
point systematically in the next paper.

It is well known that the system is unsta-
ble against MRI when there is a strong nega-
tive shear profile (dΩ/d ln r) (Balbus & Hawley 1991;
Balbus & Hawley 1994), where Ω is the angular velocity.
The saturation toroidal magnetic field strength is roughly

expected to be Bφ ∼ (4πρ)1/2rΩ (Akiyama et al. 2003;
Akiyama & Wheeler 2005), which is confirmed by semi-
global simulations (Obergaulinger et al. 2008). The sat-
uration poloidal magnetic field strength is roughly an
order of magnitude smaller (Obergaulinger et al. 2006).
Thus Bφ may be amplified by MRI as strong as 1.4 ×
1015G ρ9rmsΩ4 where Ω4 is Ω/104 rad s−1. The char-
acteristic timescale for saturating the MRI is the Alfvén

crossing time: tA ∼ 0.1ms R6ρ
1/2
9 B−1

15 where R6, ρ9,
and B15 are the radius in units of 106cm, the density in
units of 109 g cm−3, and the amplitude of magnetic fields
in units of 1015G, respectively. Thus this characteristic
timescale can be shorter than the winding-up timescale
for strong magnetic fields. However, the length scale of
the mode with the largest MRI growth rate is approx-

imately λMRI ∼ 50 cm P0.5B10ρ
−1/2
9 where P0.5 is the

rotation period in units of 0.5 ms, which is too short
to be resolved numerically. At least, it is not resolved
in the beginning of the simulations. After the magnetic
field is amplified to a certain value due to gravitational
collapse and winding-up effect, MRI may be working in
this study (Obergaulinger et al. 2006b; Ott et al. 2006;
Burrows et al. 2007; Dessart et al. 2008). It will be nec-
essary to develop a sophisticated code that takes into
account the MRI effectively with help of semi-global sim-
ulations (Obergaulinger et al. 2008) in order to evaluate
the influence of MRI on the dynamics of a collapsar.

It is well known that it becomes difficult to
obtain the matter part of the primitive vari-
ables (ρ,u,ui) precisely by the Newton-Raphson
method (Noble et al. 2006) due to numerical trun-
cation errors (Komissarov 2002; Komissarov 2004a;
Komissarov 2004b; McKinney & Gammie 2004;
Komissarov 2005; Mckinney 2006b) when the elec-
tromagnetic part of the stress energy tensor ( T µν

EM)
greatly exceeds the matter part ( T µν

Matter). The problem
is that the time integration of the electromagnetic part
does not become so reliable, either. This is because the
MHD condition (uµFµν = 0) is implicitly assumed in
the basic equations, and the resulting basic equation
of electromagnetic part depends on the velocity of
fluid (Eq.3). Such pathological conditions may be
realized at the bottom of the jet in our study. In
order to confirm the validity of our results in this
study, we are planning to develop a general relativistic
force-free code that is coupled with the GRMHD code
sophisticatedly (Mckinney 2006b).

It is very important to evaluate the terminal bulk
Lorentz factor, because GRBs are considered to be
emissions from relativistic flows with their bulk Lorentz
factors greater than 102 (e.g. (Lithwick & Sari 2001)).
Although an ad-hoc thermal (and kinetic) energy depo-
sition into the polar region seems to lead to relativistic
jets with bulk Lorentz factors ∼ 100 (Aloy et al. 2000;
Aloy et al. 2002; Zhang et al. 2003; Zhang et al. 2004;
Cannizzo et al. 2004; Mizuta et al. 2006;
Mizuta & Aloy 2008; Morsony et al. 2007;
Wang et al. 2008), it is still controversial whether
such ad-hoc energy deposition is justified by
numerical simulations with proper neutrino
physics (Nagataki et al. 2007). On the other
hand, numerical study on the acceleration of elec-
tromagnetically powered jet requires quite high-
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resolution (Komissarov et al. 2007; Narayan et al. 2007;
Tchekhovskoy et al. 2008; Komissarov et al. 2008).
Due to the reason, a simplified jet model with
an idealized boundary condition is used at
present in order to investigate whether the ini-
tial poynting flux can be effectively converted
into kinetic energy (Tchekhovskoy et al. 2008;
Komissarov et al. 2008). According to their results, as
long as confinement of the jet is realized, acceleration
operates over several decades in radius and considerable
fraction of the poynting flux can be converted into
the kinetic energy. Thus, from the high-ratio of the
poynting flux relative to rest-mass flux seen in our study
(Fig.15(b)), a relativistic jet with high bulk Lorentz
factor may be realized at large radius.

It is true that the two-dimensional restriction can
be a significant limitation. First, anti-dynamo theo-
rem (Moffat 1978) prevents the indefinite maintenance
of the poloidal magnetic field in the face of dissipation.
Second, axisymmetric simulations tend to overem-
phasize the channel mode (Hawley & Balbus 1992),
which produces coherent internal magnetized flows
rather than the more generic MHD turbulence. Hy-
drodynamic instability in the azimuthal direction may
be also very important (Nagakura & Yamada 2008;
Nagakura & Yamada 2009). Thus we are plan-
ning to develop a three-dimensional GRMHD
code (De Villiers et al. 2003; Hirose et al. 2004;
De Villiers et al. 2005; Hawley & Krolik 2006;
Beckwith et al. 2008; Shafee et al. 2008;
Mckinney & Blandford 2008) and investigate the
difference between two-dimensional simulations of
collapsars with three-dimensional ones.

In this study, we assumed that the central region
of the progenitor has collapsed and a BH is formed
at the center with surrounding envelope unchanged.
Thus we solved the GRMHD equation on a fixed
background. But the final goal of our project is to
study how a GRB is formed from the gravitational
collapse of a massive star. Thus we are planning to
develop a GRMHD code on a dynamical background,
which makes the study on the gravitational collapse
and BH formation at the center of a massive star
possible (Shibata 2003; Sekiguchi & Shibata 2004;
Sekiguchi & Shibata 2005; Baiotti et al. 2005;
Duez et al. 2006; Sekiguchi & Shibata 2007).

In this study, photo-disintegration of nuclei and
neutrino processes are not taken into account. Photo-
disintegration absorb considerable amount of thermal
energy, and cooling/heating due to neutrino processes
may have great influence on the dynamics of a collap-
sar (Di Matteo et al. 2002; Kohri & Mineshige 2002;
Nagataki et al. 2003a; Surman & McLaughlin 2004;
Lee et al. 2005; Gu et al. 2006; Nagataki et al. 2007;
Kawanaka & Mineshige 2007; Kawabata et al. 2008;
Rossi et al. 2008; Zhang & Dai 2009;
Cannizzo & Gehrels 2009). Especially, pair-
annihilation of electron-type neutrinos may be a
key process to drive a GRB jet (Woosley 1993;
MacFadyen & Woosley 1999; Asano & Fukuyama 2000;

Asano & Fukuyama 2001; Miller et al. 2003;
Surman & McLaughlin 2005; Kneller et al. 2006;
Shibata et al. 2007; Birkl et al. 2007). Thus we are
planning to include such microphysics in our code, and
perform more realistic simulations of collapsars.

The SNe associated with GRBs often show pe-
culiar properties. Some are very energetic and
blight (Galama et al. 1998; Iwamoto et al. 1998;
Hjorth et al. 2003; Malesani et al. 2004), but oth-
ers prohibit such blight SNe from being accom-
panied (Fynbo et al. 2006; Della Valle et al. 2006;
Gal-Yam et al. 2006). Since the brightness
of SNe depends on the mass of produced
56Ni (Woosley et al. 1999; Nakamura et al. 2001),
it is suggested that there is a huge variety of the amount
of 56Ni in a SN that associates with a GRB. It is still
controversial where and when 56Ni is produced in a
SN accompanied by a GRB (Nagataki et al. 2003b;
Nagataki et al. 2006). It may be produced in a
GRB jet (Maeda et al. 2002; Maeda & Nomoto 2003;
Tanaka et al. 2007; Maeda et al. 2008; Tominaga 2009;
Maeda & Tominaga 2009; Bucciantini et al. 2009), or
it may be produced in (or outflow from) the accretion
disk around the BH (MacFadyen & Woosley 1999;
Pruet et al. 2004; Fujimoto et al. 2004;
Surman et al. 2006; Hu & Peng 2008), or it
may be synthesized around a proto-neutron
star (Uzdensky & MacFadyen 2007). At present, it
is impossible to investigate the explosive nucleosynthesis
in a collapsar in our code because nuclear reactions are
not taken into account. We are planning to include
this effect, and study the site of 56Ni production.
Also, study of a GRB as a possible site where very
heavy elements and light elements are synthesized
is very important (Lemoine 2002; Beloborodov 2003;
Suzuki & Nagataki 2005).
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TABLE 1
Initial Conditions for Shock Tube Test1 and Collision Test

Test Type ρ p vx vy vz Bx By Bz

Shock Tube Test1 left state 1 1000 0 0 0 1 0 0
right state 0.1 1 0 0 0 1 0 0

Collision Test left state 1 1 5/
√

26 0 0 10 10 0
right state 1 1 -5/

√
26 0 0 10 -10 0

Note. — γ for the equation of state is set to be 4/3. Final time is set to be 1.0 for Shock Tube Test 1, and 1.2 for Collision Test.

TABLE 2
Initial Conditions for 2D Shock Tube Problem

Region x y ρ p vx vy

A 0 5 x 5 0.5 0.5 5 y 5 1 0.1 1 0.99 0
B 0.5 5 x 5 1 0.5 5 y 5 1 0.1 0.01 0 0
C 0 5 x 5 0.5 0 5 y 5 0.5 0.5 1 0 0
D 0.5 5 x 5 1 0 5 y 5 0.5 0.1 1 0 0.99

Note. — γ for the equation of state is set to be 5/3. Final time is set to be 0.4.

TABLE 3
Integrated Energies of Matter and Field (r≤200)

θ 0.714◦ 1.43◦ 2.14◦ 2.86◦ 3.57◦

Matter 1.44E+46 7.09E+46 1.70E+47 3.14E+47 5.10E+47
Field 2.96E+46 1.11E+47 2.39E+47 4.12E+47 6.30E+47

θ 4.29◦ 5.00◦ 5.71◦ 6.42◦ 7.14◦

Matter 7.66E+47 1.10E+48 1.52E+48 2.05E+48 2.69E+48
Field 8.91E+47 1.19E+48 1.52E+48 1.88E+48 2.26E+48

Note. — The energy is written in units of erg. As for the matter component, the contribution of the rest mass energy is subtracted.

TABLE 4
Integrated Energies of Matter and Field (r≤40)

θ 0.714◦ 1.43◦ 2.14◦ 2.86◦ 3.57◦

Matter 6.89E+43 3.15E+44 8.96E+44 2.03E+45 3.95E+45
Field 8.60E+45 3.44E+46 7.73E+46 1.37E+47 2.14E+47

θ 4.29◦ 5.00◦ 5.71◦ 6.42◦ 7.14◦

Matter 6.76E+45 1.04E+46 1.47E+46 1.96E+46 2.50E+46
Field 3.08E+47 4.19E+47 5.46E+47 6.91E+47 8.52E+47

Note. — Same with Table.3, but integration is done for R≤40.
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