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Introduction

[Matrix Modelj

Large N limit I I Dimensional reduction

[Gauge Theory ]

Large N limit I I Holography

[String Theory j

We check for an integrable model




We consider 2-dimensional Yang-Mills theory [Witten (1992)]

Witten shows that the non-Abelian localization works 1n the 2-
dim U(N) Yang-Mills theory on $# and the partition function is
given by a weighted sum over critical points
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Non-Abelian localization theorem

where A is an area of S2 and 70 is instanton (monopole) charges
of classical solutions to the equation of motion
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Minahan and Polychronakos determined the weight function w(7)
using the Poisson resummation formula from Migdal’s partition

function
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discretized (Gaussian) matrix model

Poisson resummation

2
g A Zivzl n?
ZodYM = E w( Y™

neZN

C/de@ — e e R
1<J



2d YM (=BF theory + mass term) on §2
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This matrix model is called the _V/'=1* matrix model in the context

of Dijkgraat-Vata theory.
< mass deformed superpotential of .V"=4 theory

Classical solutions < SU(2) representations



For later convenience, we redefine the MxM matrices as
G e ibese AL Jesne s T,
then the action becomes
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Integrating Z and Z' first
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The partition function is given by integrals over zero modes y;
and summation over partitions Y of M



N blocks sector of ./"’=1" matrix model partition function
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Fluctuations of the size of blocks = instanton (monopole) charges




Conclusion
* We obtain the 2d YM partition function from the reduced
matrix model.
* The localization theorem also works in the matrix model.

* Using the relation between the 2d YM and non-critical
strings, we can obtain the string from the matrix model in
the large N (rank) limit.
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