Holography and Entanglement of Flat Space

Wei LI (李微), IPMU, Tokyo University.

arXiv: 1010.3700; with Tadashi Takayanagi (高柳 匡)

Dec 17th, 2010 @ RIKEN SYMPOSIUM

Holographic Duality

- Quantum gravity in the bulk = QFT on the boundary.
- Best known incarnation: AdS/CFT.

Holography for Flat Space

- Minkowski space: $ds_{\mathbb{R}^{1,d}}^2 = d\rho^2 + \rho^2 ds_{dS_d}^2$
- What is the dual boundary theory on dS_d ?
 - Handles:
 - 1. Correlation functions
 - 2. Entanglement entropies

Quantum gravity in R^{1,d}

 dS_d : boundary theory =?

Entanglement Entropy

- Statistical Entropy $S_{stat} = -\text{Tr } \rho_{tot} \ln \rho_{tot}$
- Entanglement Entropy
 - 1. Total = A + B

- 3. Entanglement entropy: $S_{E_1E_2}^A \equiv -\text{Tr}_A \rho_A \ln \rho_A$
- A has no access to B \Longrightarrow Holographically $S_{E,E}^A = \frac{Area(\gamma)}{4GN}$

Volume Law & Non-locality

- Entanglement entropy measures correlation between A and B.
 - For ground state in local theory: $S_{E,E}^A \sim Area(\partial A)$
 - Boundary theory of AdS: Local!

- Boundary theory of Flat space: $S_{E.E.}^{A} \sim Vol(A)$
 - boundary theory is non-local!
- Example of non-local theory

$$S_{boundary} = \int d\Omega_d \left[\phi \cdot e^{\sqrt{-\Delta}} \cdot \phi \right]$$

Correlation functions

- After adding counter terms, $\langle \hat{O}(x_1) \dots \hat{O}(x_n) \rangle = 0$
- It does not mean the boundary theory is empty!!!

 It means that it is non-local and highly-entangled!
- Use Entanglement Entropy to reproduce bulk physics!!

Summary & Outlook

Summary:

- The boundary theory of the gravity in asymptotically flat space is a non-local and highly-entangled quantum field theory.
- The boundary correlation functions are all trivial and one should use instead the entanglement entropies to reproduce the bulk physics.

Outlook:

- Concrete field theory realization.
- Schwarzschild black hole entropy.

• ...

ありがとうございます!