西尾禎治 国立がん研究センター東病院臨床開発センター粒子線医学開発分野

1. はじめに

近年、多岐に渡る技術進歩の恩恵を受け、がん の放射線治療は急速に高精度化へ向かっている。X 線治療による定位放射線治療や強度変調放射線治 療(IMRT)、更に、陽子線や炭素線による粒子線 治療によって、高い線量集中性が得られるような ってきた。また、放射線診断画像の高画質化も進 み、透視やCT画像を利用することで放射線診断と 治療が融合させた、患者の腫瘍位置精度を向上さ せる画像誘導放射線治療(IGRT)が最先端治療と して、世界中で盛んに研究がされている。しかし、 これらの高精度放射線治療を患者へ提供するには、 腫瘍へ処方された線量が実際に正確に照射された かどうかを確認する必要がある。

特に陽子線治療では、飛程付近での高い線量集 中性を利用し、腫瘍には治療に必要十分な線量を 一様に与え、かつ周辺の正常組織への線量付与を できる限り低くすることで高い治療効果を実現す ることが可能である。しかし、その反面、的確に 腫瘍への照射が実施されなかった場合、治癒率の 低下や重要臓器への障害などが生じる可能性があ る。従って、陽子線治療の優れた特徴を最大限に 利用するために、実際に患者体内へ照射された領 域を確認することが非常に重要である。そこで、 腫瘍へ照射された放射線を可視化する手法として、 治療用放射線と患者体内を構成する元素との標的 原子核破砕反応に注目した。この手法により照射 誘導陽子線治療の実現を目指す。

2. 標的原子核破砕反応と照射野可視化の原理

陽子線治療で利用される核子あたり数十 MeV 以上のエネルギー領域において、入射陽子核と患 者体内に含まれる原子核と標的原子核破砕反応 (e.g. ¹⁶O(p,pn)¹⁵O, ¹²C(p,pn)¹¹C, ...)が生じる。この 反応により生成されるポジトロン放出核を情報因 子として利用し、その位置と放射強度を PET 装置 で測定することで、患者体内において陽子線が実 際に照射された領域の可視化を行う。図 1 に陽子 線照射による標的原子核破砕反応及び生成される ポジトロン放出核の同定法に関する概念図を示す。

標的原子核破砕反応によって生成されるポジト ロン放出核の生成量を決定する因子は、主に三つ 挙げられる。体内組織組成、陽子核と体内原子核 との標的原子核破砕反応の反応チャンネル、そし て陽子線治療で利用されるエネルギー範囲におけ る反応チャンネル毎の反応断面積の値である。人 体の組織の主な構成元素は、¹H核、¹²C核、¹⁴N核、 ¹⁶O核及び⁴⁰Ca核の5つである。この5つの元素の うち、陽子線治療で利用されるエネルギー領域で は、水素核を除いた 4 元素が標的原子核破砕反応 を引き起こす。表 1 に陽子線治療の対象部位とな る組織組成を示す。また、表 2 には、陽子核と体 内原子核との主な標的原子核破砕反応の反応チャ ンネルにおいて、標的核となる体内原子核、生成 ポジトロン放出核及びその半減期を示した。

図 1:入射陽子核と標的原子核における原子核破砕反応 と生成されたポジトロン放出核の位置導出の概念図。

表1:組織ごとの人体構成要素の例。

Dedu Tierre	Elemental composition [%]						
Body Hissue	Н	С	Ν	0	Ca	others	mass density [kg/m**3]
Liver (adult)	10.2	13.9	3.0	71.6	0.0	1.3	1060
Adipose Tissue (adult)	11.2	51.7	1.3	35.5	0.0	0.3	970
Soft Tissue (male)	10.5	25.6	2.7	60.2	0.0	1.0	1030
Lung (adult)	10.3	10.5	3.1	74.9	0.0	1.2	260
Muscle (adult)	10.2	14.3	3.4	71.0	0.0	1.1	1050
Skeleton Sacrum (male)	7.4	30.2	3.7	43.8	9.8	5.1	1290
Skeleton Cranium (adult)	5.0	21.2	4.0	43.5	17.6	8.7	1610
Skeleton Femur (adult)	7.0	34.5	2.8	36.8	12.9	6.0	1330
Skeleton Ribs (adult)	6.4	26.3	3.9	43.6	13.1	6.7	1410

表 2: 陽子線の照射領域可視化において、考慮すべき原 子核破砕反応 A(p,X)B と生成されるポジトロン放出核種。

A B Half life [m] 12C 11C 20.39 10C 0.321 16O 15O 2.037 14O 1.177 16O 13N 9.965 11C 20.39 10C 0.321 14O 1.177 16O 13N 9.965 11C 20.39 10C 0.321 14N 11C 20.39	
A B Half life [m] 12C 11C 20.39 10C 0.321 16O 15O 2.037 14O 1.177 16O 13N 9.965 11C 20.39 10C 0.321 14N 11C 20.39	
12C 11C 10C 20.39 0.321 16O 15O 14O 2.037 14O 16O 13N 10C 9.965 0.321 11C 20.39 10C 0.321 14N 11C 20.39	in]
12C 10C 0.321 15O 2.037 14O 1.177 16O 13N 9.965 11C 20.39 10C 0.321 14N 11C 20.39	
150 2.037 140 1.177 160 13N 9.965 11C 20.39 10C 0.321 14N 11C 20.39	
150 2.037 140 1.177 160 13N 9.965 11C 20.39 10C 0.321 14N 11C 20.39	
140 1.177 160 13N 9.965 11C 20.39 10C 0.321 13N 9.965 11C 20.39 14N 11C 20.39	
160 13N 9.965 11C 20.39 10C 0.321 13N 9.965 14N 11C 20.39	
11C 20.39 10C 0.321 13N 9.965 14N 11C 20.39	
10C 0.321 13N 9.965 14N 11C 20.39	
13N 9.965 14N 11C 20.39	
13N 9.965 14N 11C 20.39	
14N 11C 20.39	
10C 0.321	
I	
38K 7.636	
30P 2.498	
40Ca 15O 2.037	
13N 9.965	
11C 20.39	

図2に現在までに報告されている、主な体内原 子核と陽子核おける陽子線治療で利用されるエネ ルギー範囲での反応断面積の実験値を示す。 National Nuclear Data Center (NNDC)より原子核物 理の分野で報告されている世界最新の反応断面積 データを見る限りでも、このエネルギー領域及び 原子核破砕反応の種類においては、データが不足 していることは明らかであり、反応断面積を決定 する難しさが伺える。

図 2: 陽子線治療で利用されるエネルギー範囲における、 主な体内原子核と陽子核との反応断面積の実験値。

3. Beam ON-LINE PET system

国立がん研究センター東病院では、患者体内に おける陽子線の照射領域の可視化のために Beam ON-LINE PET system (Beam ON-LINE PET system mounted on a rotating gantry port : BOLPs-RGp)を開 発した(図3参照)。患者への陽子線照射によっ て体内で起こる標的核原子核反応により生成され るポジトロン放出核の activity を実測することで、 照射領域を可視化する。尚、可視化の定量性には 標的原子核破砕反応の物理現象を正確に把握する 必要がある。

図 3:研究開発された BOLPs-RGp。

4. BOLPs-RGp の臨床利用

陽子線治療を行った、頭頸部、前立腺、肝臓、 肺及び脳の約 150 症例について実施した。各部位 に対し、陽子線照射中から照射後 200 秒までの間、 BOLPs-RGp で消滅ガンマ線を実測した。日々の陽 子線治療において、BOLPs-RGp より得られた照射 野可視化画像は 3000 枚以上となった(図4参照)。

初回の治療で得られた可視化画像をリファレン スとして、それ以降の日々の陽子線治療で得られ る可視化画像との時系列変化を観測した。頭頸部 (副鼻腔腫瘍)の陽子線治療においては、48 症例 中3 症例で治療途中での腫瘍の変化による脳幹へ の陽子線の誤照射を観測された照射領域の可視化 画像の変化から同定し、速やかに再計画へフィー ドバックをすることが出来た。壊死した肝臓腫瘍 の場合においては、腫瘍内で生成されたポジトロ ン放出核の washout 効果が優位的に遅いことが観 測された。この結果は患者ごとの線量感受性から 個別の処方線量を決定できる可能性もある。

図 4: 部位毎に実測された activity 分布及び治療計画により計算された線量分布結果。

5. まとめ

研究開発された BOLPs-RGp を利用した標的原 子核破砕反応による線量照射誘導陽子線治療が実 現し、治療期間中の腫瘍の線量集中と重要臓器の 線量低減の担保、また、線量感受性を判断出来る 可能性を秘めていることを示唆できた。陽子線治 療の高精度化にとって、非常に高い有用性を持つ BOLPs-RGp を活用することで、高精度陽子線治療 が患者へ提供可能となる。

陽子線照射領域可視化データの定量化について は、標的原子核破砕反応の多岐に渡る反応断面積 を網羅的に高精度で把握する必要がある。今後、 医学物理学と基礎物理学の異分野交流による原子 核物理研究の相乗効果を大いに期待している。