
有限温度摂動論

日高 義将
(理研)



小さなパラメータによる展開
摂動論:

結合定数 g, 1/g,
温度:T, 1/T, 
自由度: N, 1/N, 
波数,振動数:ω, k



1/g: 強結合展開

1/Nc: Large-Nc QCD
1/Nc,1/g2Nc: Gauge/gravity対応
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g: 弱結合展開
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Figure 1. Conjectured QCD phase diagram with boundaries that define various
states of QCD matter based on S�B patterns.

The chiral transition is a notion independent of the deconfinement transition. In
section 3.2 we classify the chiral transition according to the S�B pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the phase structure of QCD
matter including conjectures which are not fully established. At present, relatively firm
statements can be made only in limited cases – phase structure at finite T with small
baryon density (µB ⌧ T ) and that at asymptotically high density (µB � ⇤QCD).
Below we will take a closer look at figure 1 from a smaller to larger value of µB in
order.

Hadron-quark phase transition at µB = 0: The QCD phase transition at finite
temperature with zero chemical potential has been studied extensively in the numerical
simulation on the lattice. Results depend on the number of colours and flavours as
expected from the analysis of e↵ective theories on the basis of the renormalization
group together with the universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the finite size scaling analysis
on the lattice [37], and the critical temperature is found to be Tc ' 270MeV. For
Nf > 0 light flavours it is appropriate to address more on the chiral phase transition.
Recent analyses on the basis of the staggered fermion and Wilson fermion indicate a
crossover from the hadronic phase to the quark-gluon plasma for realistic u, d and s
quark masses [38, 39]. The pseudo-critical temperature Tpc, which characterizes the
crossover location, is likely to be within the range 150MeV� 200MeV as summarized
in section 4.2.

Even for the temperature above Tpc the system may be strongly correlated and
show non-perturbative phenomena such as the existence of hadronic modes or pre-
formed hadrons in the quark-gluon plasma at µB = 0 [28, 40] as well as at µB 6= 0
[41, 42, 43]. Similar phenomena can be seen in other strong coupling systems such as
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QGPは強結合？

小さくは無いが巨大でも無い.
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弱結合摂動論
g ⌧ 1



静的な物理量
圧力，エントロピー, 感受率など

動的な物理量
輸送係数，スペクトル関数など



真空: 
ループ展開=結合定数の展開

有限温度: 
ループ: 量子ゆらぎ+熱ゆらぎ

ループ展開≠結合定数の展開

しばしば無限個のダイアグラムの
足し上げが必要



赤外の振る舞い
有限温度一般
分布関数の特異性:

ゲージ理論特有の赤外特異性

collinear特異性
クーロン前方散乱

Pinch特異性: 運動論的方程式と関係
Bose分布



半古典的
量子ゆらぎ熱ゆらぎ >>

ボルツマン方程式が良い近似に
Soft, ultrasoftな励起に対して

超相対論的プラズマ
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超相対論的プラズマ
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摂動論
Stephan-Boltzmann 
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FIG. 1. Weak-coupling expansion for the scaled QCD pressure with Nf = 3. Shaded bands show the result of varying the
renormalization scale µ by a factor of 2 around µ = 2πT .

(QED) [12] and QCD [11, 12], respectively. The corresponding calculations to order g5 were obtained soon afterwards
[13–20]. Recent results have extended the calculation of the QCD free energy by determining the coefficient of the
g log g contribution [21]. For massless scalar theories the perturbative free energy is now known to order g6 [22] and
g8 log g [23].
Unfortunately, for all the above mentioned theories the resulting weak-coupling approximations, truncated order-

by-order in the coupling constant, are poorly convergent and show large dependence on the renormalization scale
unless the coupling constant is tiny which corresponds to astronomically high temperatures. In Fig. 1, we show the
weak-coupling expansion for the QCD pressure with Nf = 3 normalized to that of an ideal gas through order g5. The
various approximations oscillate wildly and show no signs of convergence in the temperature range shown which is
probed in the ongoing experiments. The bands are obtained by varying the renormalization scale µ by a factor of 2
around the value µ = 2πT and we use three-loop running for αs [24] with ΛMS(Nf = 3) = 344MeV [25]. In Fig. 2
we show the weak-coupling expansion for the QED pressure with Nf = 1 normalized to that of an ideal gas through
order e5, and we see clearly the same poor convergence pattern as the QCD case. Therefore this oscillating behavior
is not specific to QCD, but a generic feature for hot field theories which actually has been also observed in scalar
theories [10, 11, 13, 14, 22, 23]. Due to this subtlety, a straightforward perturbative expansion in powers of αs for
QCD does not seem to be of any quantitative use even at temperatures many orders of magnitude higher than those
achievable in heavy-ion collisions.
The poor convergence of finite-temperature perturbative expansions of thermodynamic functions stems from the fact

that at high temperature the classical solution is not described by massless particle states. Instead one must include
plasma effects such as the screening of electric fields and Landau damping via a self-consistent hard-thermal-loop
(HTL) resummation [26]. The inclusion of plasma effects can be achieved by reorganizing perturbation theory. There
are several ways of systematically reorganizing the finite-temperature perturbative expansion [27–29]. In this paper
we will focus on the hard-thermal-loop perturbation theory (HTLpt) method [30–41]. The HTLpt method is inspired
by variational perturbation theory (VPT) [42–49]. HTLpt is a gauge-invariant extension of screened perturbation
theory (SPT) [50–54], which is a perturbative reorganization for finite-temperature massless scalar field theory. In
the SPT approach, one introduces a single variational parameter which has a simple interpretation as a thermal
mass. In SPT a mass term is added to and subtracted from the scalar Lagrangian, with the added piece kept as
part of the free Lagrangian and the subtracted piece associated with the interactions. The mass parameter is then
required to satisfy either a variational or perturbative prescription. This naturally leads to the idea that one could
apply a similar technique to gauge theories by adding and subtracting a mass in the Lagrangian. However, in gauge
theories, one cannot simply add and subtract a local mass term since this would violate gauge invariance. Instead,
one adds and subtracts an HTL effective action which modifies the propagators and vertices selfconsistently so that
the reorganization is manifestly gauge invariant [55].

圧力:摂動論
図: Su, 1204.0260
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2.3. Self–consistent resummation

2.3.1. Skeleton expansion for thermodynamical potential

A systematic way to take into account in the calculation of the thermody-
namics, screening effects, or more generally propagator renormalisations,
is to use the representation52,22,53,54 of the thermodynamic potential
Ω = −PV in terms of the full propagator D:

βΩ[D] = − log Z =
1

2
Tr log D−1 − 1

2
Tr ΠD + Φ[D] , (48)

where Tr denotes the trace in configuration space, β = 1/T , and Φ[D] is
the sum of the two–particle irreducible (2PI) “skeleton” diagrams with no
external legs:

− Φ[D] = 1/12 +1/8 +1/48 +... (49)

(where in the φ4 example the first diagram is absent of course). The full
propagator D is expressed in terms of the proper self–energy Π by Dyson’s
equation (D0 is the free propagator):

D =
1

D−1
0 + Π

, (50)

and Π itself, which is the sum of the one–particle irreducible (1PI) diagrams
with two external lines, is obtained from Φ[D] by:

δΦ[D]/δD =
1

2
Π . (51)

By using this relation, one can check that Ω[D] is stationary under varia-
tions of D (at fixed D0) around the physical propagator:

δΩ[D]/δD = 0 for D = (D−1
0 + Π)−1 . (52)

We shall usually refer to eq. (50) in which Π is given in terms of D by
eq. (51) as a ‘gap equation’.

An explicit expression for Ω is obtained by performing the summations
over the Matsubara frequencies in eq. (48), using standard contour integra-
tion techniques. One obtains:

Ω/V =

∫

d4k

(2π)4
n(ω)

(

Im log(−ω2 + k2 + Π) − ImΠD
)

+ TΦ[D]/V (53)

2PI形式
Dの汎関数
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A. Formalism

In the following of this subsection we will use QCD as an example to show the setup of HTLpt, however the result
is general for both Abelian and non-Abelian gauge theories as we will comment in the next subsections.
The Lagrangian density for QCD in Minkowski space reads

LQCD = −1

2
Tr [GµνG

µν ] + iψ̄γµDµψ + Lgf + Lgh +∆LQCD , (12)

where the gluon field strength is Gµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], the term with the quark fields ψ contains an
implicit sum over the Nf quark flavors, and the covariant derivative is Dµ = ∂µ − igAµ. The ghost term Lgh

depends on the gauge-fixing term Lgf . The perturbative expansion in powers of g generates ultraviolet divergences.
The renormalizability of perturbative QCD guarantees that all divergences in physical quantities can be removed by
renormalization of the coupling constant αs = g2/(4π) and the necessary counterterms are represented by ∆LQCD in
the Lagrangian (12). There is no need for wavefunction renormalization, because physical quantities are independent
of the normalization of the field. There is also no need for renormalization of the gauge parameter, because physical
quantities are independent of the gauge parameter.
HTLpt is a reorganization of the perturbation series for thermal gauge theories with the Lagrangian density written

as

L = (LQCD + LHTL)
∣

∣

∣

g→
√
δg

+∆LHTL. (13)

The HTL improvement term is

LHTL = −1

2
(1 − δ)m2

DTr

(

Gµα

〈

yαyβ

(y ·D)2

〉

y

Gµ
β

)

+ (1− δ) im2
qψ̄γ

µ

〈

yµ
y ·D

〉

y

ψ , (14)

where yµ = (1, ŷ) is a light-like four-vector, and 〈. . .〉y represents the average over the directions of ŷ. The term (14)
has the form of the effective Lagrangian that would be induced by a rotationally invariant ensemble of charged sources
with infinitely high momentum and modifies the propagators and vertices self-consistently so that the reorganization is
manifestly gauge invariant [55, 117–121]. The parameter mD can be identified with the Debye screening mass, and mq

with the thermal quark mass to account for the screening effects. HTLpt is defined by treating δ as a formal expansion
parameter. By coupling the HTL improvement term (14) to the QCD Lagrangian (12), HTLpt systematically shifts
the perturbative expansion from being around an ideal gas of massless particles which is the physical picture of the
weak-coupling expansion, to being around a gas of massive quasiparticles which are the more appropriate physical
degrees of freedom at high temperature.
Physical observables are calculated in HTLpt by expanding them in powers of δ, truncating at some specified order,

and then setting δ = 1. This defines a reorganization of the perturbation series in which the effects of m2
D and m2

q
terms in (14) are included to all orders but then systematically subtracted out at higher orders in perturbation theory
by the δm2

D and δm2
q terms in (14), which is in the spirit of VPT. If we set δ = 1, the HTLpt Lagrangian (13) reduces

to the QCD Lagrangian (12). If the expansion in δ could be calculated to all orders the final result would not depend
on mD and mq when we set δ = 1. However, any truncation of the expansion in δ produces results that depend on
mD and mq. Some prescription is required to determine mD and mq as a function of T and αs. We will discuss
several prescriptions in the next subsections.
The HTL perturbation expansion generates ultraviolet divergences. In QCD perturbation theory, renormalizability

constrains the ultraviolet divergences to have a form that can be cancelled by the counterterm Lagrangian ∆LQCD.
Although the renormalizability of the HTL perturbation expansion has not been proven, the renormalization can
be archived through NNLO by using only a vacuum counterterm, a Debye mass counterterm and a fermion mass
counterterm, as well as a coupling constant counterterm. The necessary counterterms for the renormalization through
NNLO as just discussed read

∆E0 =

(

dA
128π2ε

+O(δαs)

)

(1− δ)2m4
D , (15)

∆m2
D =

(

−11cA − 4sF
12πε

αsδ +O(δ2α2
s)

)

(1− δ)m2
D , (16)

∆m2
q =

(

− 3

8πε

dA
cA
αsδ +O(δ2α2

s)

)

(1− δ)m2
q , (17)

δ∆αs = −11cA − 4sF
12πε

α2
sδ

2 +O(δ3α3
s) , (18)

where the coupling constant counterterm is the standard one-loop running of QCD [122, 123].
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について展開 はパラメータ.

となるように決める.
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FIG. 7. Comparison of LO, NLO, and NNLO predictions for the scaled pressure for pure-glue QCD with lattice data from
the Bielefeld collaboration [131] (left panel) and Nf = 3 QCD with Nf = 2 + 1 lattice data from the hotQCD [132] and
Wuppertal-Budapest [133] collaborations (right panel). Shaded bands show the result of varying the renormalization scale µ
by a factor of 2 around µ = 2πT for the NNLO result.

spacings corresponding to Nτ = 8 and Nτ = 10 [133], which were essentially on top of the Nτ = 6 measurement
[134].5 Using standard lattice techniques, the continuum-estimated pressure is computed from an integral of the trace
anomaly. The Nf = 2+1 lattice data from the hotQCD collaboration are their Nτ = 8 results using both the asqtad
and p4 actions [132]. The hotQCD results have not been continuum extrapolated and the error bars correspond to
only statistical errors and do not factor in the systematic error associated with the calculation which, for the pressure,
is estimated by the hotQCD collaboration to be between 5 - 10%. As can be seen from the right panel of Fig. 7,
the successive HTLpt approximations represent an improvement over the successive approximations coming from a
weak-coupling expansion; however, as in the pure-glue case in the left panel of Fig. 7, the NNLO result represents a
significant correction to the LO and NLO results. That being said, the NNLO HTLpt result agrees quite well with
the available lattice data down to temperatures on the order of 2Tc ∼ 340MeV for QCD with Nf = 3.6 Below these
temperatures the successive approximations give large corrections with the correction from NLO to NNLO reaching
100% near Tc.

3. T 4 scaled trace anomaly

In the left panel of Fig. 8 we show the NNLO HTLpt prediction for the trace anomaly of pure-glue QCD normalized
to T 4 as a function of T . The points are lattice data for pure-glue with Nc = 3 from the Wuppertal-Budapest
collaboration [135]. For temperatures below approximately 2Tc ∼ 500MeV, there is a large discrepancy between the
HTLpt prediction and lattice data. The discrepancy decreases as increasing temperature, and for temperatures above
approximately 4Tc ∼ 1000MeV, the NNLO HTLpt result is in good agreement with the lattice result.
In the right panel of Fig. 8 we show the NNLO HTLpt prediction for the trace anomaly of QCD with Nf = 3

normalized to T 4 as a function of T . The data from both the Wuppertal-Budapest collaboration and the hotQCD
collaboration are taken from the same data sets displayed in the right panel of Fig. 7 and described previously. In
the case of the hotQCD results we note that the results for the trace anomaly using the p4 action show large lattice
size affects at all temperatures shown and the asqtad results for the trace anomaly show large lattice size effects for
T ∼> 200MeV. We see very good agreement between the HTLpt prediction and the available lattice data down to
temperatures on the order of T ∼ 2Tc.

5 It is noted that the Wuppertal-Budapest group has published a few data points for the trace anomaly with Nτ = 12 and within statistical
error bars these are consistent with the published continuum estimated results.

6 The Wuppertal-Budapest and hotQCD data were obtained using a physical strange quark mass; however, HTLpt calculations use
massless quarks. The difference between massive and massless quarks is expected to be significant only for T <

∼
32MeV corresponding

to the temperature where the lowest fermionic Matsubara mode equals the strange quark mass.

State of the art

• Compare Lattice – 2PI

• J.-P. B., E. Iancu, A. Rebhan: Phys.Rev.D63:065003,2001

• F. Karsch, Nucl.Phys.A698:199-208,2002;

• G. Boyd et al., Nucl. Phys. B469, 419 (1996).

from J.-P. B., E. Iancu, A. Rebhan:

Nucl.Phys.A698:404-407,2002

pure-glue SU(3) Yang-Mills theory

Blaizot, Iancu, Rebhan(’03)

格子QCDとの比較(Pure glue)
2PI形式 HTL摂動論

Andersen, Strickland, Su(’10)
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Hard Thermal loop 近似

外線:soft

内線:hard k ⇠ T

p ⇠ gT

m2 = 4g2
Z

d3k

(2⇡)3
n(k)

k
=

g2T

6
熱質量

⇧µ⌫(p) =

⇧µ⌫(p) ' 2m2

Z
d⌦

4⇡

 
k0k̂µk̂⌫
p · k + �µ0�⌫0

!



Plasmon励起(集団励起モード)

Debye遮蔽

! ⇠ gT

hA0(x)A0(y)i ⇠
1

r
exp(�mDr)

縦波も存在

mD ⇠ gT



運動論的方程式との対応
Vlasov方程式(簡単のためQED)

k̂

µ
@µf(t, x, k) = �ek̂

µ
Fµi@kif(t, x, k)

f = n(k) + �f(t, x, k)

�f = � 1

k̂ · @
ek̂µFµi@kin(k)

�jiind = e

Z
d3k

(2⇡)3
k̂i�f = 2m2

Z
d⌦

p · kk
ik̂mEm

線形化

Hard thermal近似と同じ結果を与える.
1

p · k



久保公式
輸送係数 グリーン関数

Kubo and Tomita(‘54), Nakano(‘56), Kubo(‘57)

ずれ粘性:

体積粘性:

⌘ =
1

10
lim
!!0

1

!

Im

Z
d

4
xe

i!t
i✓(t)h[⇡ij(x),⇡

ij(0)]i

⇣ = lim
!!0

1

!

Im

Z
d

4
xe

i!t
i✓(t)h[P(x),P(0)]i

P(x) = �T

i
i(x)/3, ⇡ij(x) = Tij(x) + gijP(x)



摂動論
e.g., ずれ粘性動的

摂動の最低次しかわかっていない．

Arnold, Moore, Yaffe (’03)

cf., AdS/CFT η/s=1/4π

�/T 3 =
1

g4(c�
1 ln g + c1)

(1 + · · · )

c.f 静的

Kajantie, Laine, Rummukainen, and Schröder (’03)Zhai and B. Kastening(’95)

Arnold and C. Zhai(’94)Toimela(’83)Kapusta(’79)Shuryak (’78), Chin(’78)

P/T 4 = c0 + c2g
2 + c3g

3 + (c�
4 ln g + c4)g4

+(c�
5 ln g + c5)g5 + (c�

6 ln g)g6 +O(g6)



1ループ解析はオーダーは正しい．
Maxwell(’60)

� �mfp� 1
�2

cut

� 1

⌘ ⇡ 1

3
p̄n�mfp

1ループ解析
1
p·k ! 1

p·k+2ik0�k
減衰率も考慮

⇠ 1
�k

運動学的解析

(Φ4 理論)

cut

1

⇠
p ! 0



高次項
�� �

� � �1
�2

1
�2

1
�2

1
�2

1ループと同じオーダー
足し上げ必要．



散乱振幅の２乗 ループダイアグラムの虚部

光学定理
2



自己無撞着方程式

＝線形ボルツマン方程式
Jeon(’95)

= +



2kµ@µf = C[f ]ボルツマン方程式

2kµ@µf0 = C 0[f0]�f

線形化 f = f0 + �f f0 =

1

exp(�(x)uµ(x)k
µ
)± 1

2kµ@µf0⇠ kikj@iuj ⇠ @iuj

C 0[f0]�f �f �f+⇠

�f⇠

= �



Baym, Monien, Pethick, Ravenhall(’90), (’91) Arnold, Moore, Yaffe(’01)

輸送係数
2→2散乱

�mfp = 1/(n�)⌘ ⇠ np�mfp

前方散乱に発散 Debye遮蔽で有限に

d�

d⌦
⇠ g4

sin ✓4
�tr =

Z
d⌦

d�

d⌦
(1� cos ✓) ⇠ g4

Z
d✓

✓

)

(F ) (G )

(E)

(J )(I)

(D)

(H )

(C)(B)(A

FIG. 2. Leading-order diagrams for all 2 ↔ 2 particle scattering processes in a gauge theory with
fermions. Solid lines denote fermions and wiggly lines are gauge bosons. Time may be regarded as running
horizontally, either way, and so a diagram such as (D) represents both f f̄ → gg and gg → f f̄ . The diagrams
of the first row [(A)–(E)] contribute to the leading log transport coefficients, while the diagrams of the second
row [(F )–(J)], and all interference terms, do not.

which leads to a logarithmically IR divergent scattering cross section. However, we are not
directly interested in the total scattering cross section; we need to know the size of the
contribution to (χi···j, Cχi···j) in the channels relevant to transport coefficients. As we shall
review, these transport collision integrals can be less singular than the total scattering rate.

A. Kinematics

It is convenient to arrange the phase space integrations so that the transfer momentum is
explicitly an integration variable. This will make it easy to isolate the contribution from the
potentially dangerous small momentum exchange region. We choose to label the outgoing
particles so that any infrared singularity in (a given term of) the square of the amplitude
|M|2 occurs only when (p′−p)2 → 0.18 In the collision integral (2.24) it is convenient to
use the spatial δ function to perform the k′ integration, and to shift the p′ integration into
an integration over p′−p ≡ q. We may write the angular integrals in spherical coordinates
with q as the z axis and choose the x axis so p lies in the x-z plane. This yields

(

χi···j , Cχi···j

)

=
β3

(4π)6

ff̄hc
∑

abcd

∫ ∞

0
q2dq p2dp k2dk

∫ 1

−1
d cos θpq d cos θkq

∫ 2π

0
dφ

×
1

p k p′ k′

∣

∣

∣Mab
cd

∣

∣

∣

2
δ(p+k−p′−k′) fa

0 (p) f b
0(k) [1 ± f c

0(p
′)] [1 ± fd

0 (k′)]

×
[

χa
i···j(p) + χb

i···j(k) − χc
i···j(p

′) − χd
i···j(k

′)
]2

, (3.2)

18There is one case where this is impossible, namely, scattering between identical fermions, where the
interference term between outgoing leg assignments in diagram (C) makes a contribution to the matrix
element M2 ∝ s2/ut, which is divergent for both t → 0 and u → 0. As will be discussed shortly, this
interference does not contribute at leading-log level. Regardless, one could also put this case in the desired
form by using s = −u− t and rewriting the matrix element (squared) as (s/t) + (s/u), so that each piece is
now singular in only one momentum region. Diagram (A) apparently has the same problem; but when one
sums all gg → gg processes (only the sum is gauge invariant) one finds M2 ∝ (3 − su/t2 − st/u2 − tu/s2),
so there is no problem.
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Arnold, Moore, Yaffe,hep-ph/0010177

�tr ⇠
g4

T 2
ln 1/g ⌘ ⇠ np�mfp ⇠ T 3

g4 ln 1/g



輸送係数
ずれ粘性 (leading log order)

Arnold, Moore, Yaffe (’01)
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輸送係数
Leading order

2→2散乱 2→3散乱

⇠ gT

✓ ⇠ g

3→4体, 4→5体,.....も同じオーダー
Aurenche, Gelis, Zaraket (’00), Arnold, Moore, Yaffe(’01)

2→3体Collinear散乱の寄与は
Aurenche, Gelis, Kobes, Zaraket (’98)

2→2体散乱のleading orderと同じorder.

LPM effect Landau, Pomeranchuk (’53), Migdal (’56) (’57)



輸送係数

c.f. Diagrammatic derivation
Gagnon, Jeon(’07)

2→2体，effective 1→2体散乱を含んだ
ボルツマン方程式をとけば良い．

Arnold, Moore, Yaffe(’03)

Arnold, Moore, Yaffe(’03)
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さらに高次項は？
Open question.
Challenging problem.



Leading order

= +

Beyond the Boltzmann Eq.

Including higher orders
YH, Kunihiro(’10)

= + + · · ·+

= + +++

· · ·+

=
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フェルミオン励起



フェルミオン集団励起
HTL近似

�/mT
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Ultrasoft Fermionic mode
Kitazawa, Kunihiro, Nemoto(’06)
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Fig. 9. The quark spectral function ρ+(p,ω) (left) and the quasi-dispersion relations ω±(p) (right)

for T/m = 1.0, 1.4, and 1.8 from the top. In the right panels, the (ω,p) dependence of ρ±(p,ω)

is represented by the color density. ω+ (ω−) and ρ+ (ρ−) are shown in the right (left) halves

of these panels. Note the direction of the momentum scale in the left half-plane is opposite to

that of the right half-plane.
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原点にピーク

massive boson
massless fermion



Dressed perturbation theory
Dressed propagators

熱質量 減衰率
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高次項も同じオーダーで効く

自己無撞着方程式



Pole Residue

Yukawa model
QED
QCD ⇠ g2T

⇠ g2T

⇠ g4T 2/9

1/9

4(Nf + 5)/3

� c

Z =
g2

16⇡2
c! = ±1

3
p+ i�

Ultrasoft Fermionic pole
YH, Satow, Kunihiro (’11)

cf. Lebedev, Smilga (’90)



= +

= +

線形ボルツマン方程式

YH, Satow (’12)
フェルミオン励起の運動論的方程式？



微分展開



低エネルギーの有効理論

自発的対称性の破れがある場合
南部-Goldstoneモードも自由度

流体力学
保存電荷に対する有効理論
@µT

µ⌫ = 0 , @µJ
µ = 0



自発的対称性の破れの数と
NGモードの数の関係は？



NBS
NNG

NNG = NBS

南部-Goldstone(NG)の定理
Lorentz不変性がある場合

:破れた対称性の数
:NGモードの数

Ek = v|k|
分散関係:

Type-I NGモード
Ek = vk2(                Type-II NGモード)



 Nielsen and Chadha (’76)

Ntype-I + 2Ntype-II � NBS

Schafer,  Son, Stephanov, Toublan, and Verbaarschot

NNG = NBS

(’01)
h[Qa, Qb]i = 0

Watanabe and Brauner (’11)
NBS �NNG � 1

2
rank�[Qa, Qb]�

南部-Goldstoneの定理
Lorentz不変性がない場合(ゼロ温度)



NBS �NNG =
1

2
rankh[Qa, Qb]i

Watanabe-Brauner予想 (’11)

有効理論, ゼロ温度: Watanabe-Murayama (’12)
射影演算子法: YH (’12)

等号は成立する!

NBS Ntype-I Ntype-II
1

2
rankh[Qa, Qb]i WB予想

Helium4超流動
U(1) 1 1 0 0 OK

強磁性体
O(3)→O(2) 2 0 1 1 OK



自発的対称性の破れ

平らな方向の数＝破れた対称性の数

NGモードの数≠破れた対称性の数
しかし，



運動方程式

モードは と で決まる.Hml ⌘ @2H

@Am@Al
{An, Am}P

@tAn = {An, H}P = {An, Am}PHmlAl + · · ·

簡単な例: {A1, A2}P = 1A1, A2 Hnm =

✓
k2 0
0 a2

◆
自由度:

@tA2 = �k2A1@tA1 = a2A2運動方程式:
1つのモードE = ak@2

tA1 = �a2k2A1

ポテンシャルが平ら ゼロモードk ! 0 E ! 0



Type-II発現機構
@t

✓
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◆
=

✓
0 1
�1 C

◆✓
A 0
0 B
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◆

が 独立な自由度では無くなった.
Nambu (’04)逆ヒッグス機構
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C=0: 2つのゼロモード E = ak

1つのmassive mode
1つのzero mode

C≠0: E = c+O(k2)

E =
k2

c
+O(k4)



{An, Am}P = �ih[An, Am]i

場の量子場の理論では,
有効作用H(An)

自発的対称性の破れ:
平な方向は破れた対称性の数だけ存在

@H

@An@Am

rank(h[Qa,�i])i = NBS

逆Higgs機構により Nmassive =
1

2
rank(h[Qa, Qb]i)

Ntype-II = Nmassive

Ntype-I = NBS �Ntype-II �Nmassive

NBS �NNG =
1

2
rankh[Qa, Qb]i

YH(’12)

Mori(’12)
射影演算子法で導出



有限温度の場合
Langevin方程式

とすると同じ議論が可能
{An, Am}T = {An, Am}P + Lnm

@0An = {An, Am}P
@H

@Am
+ Lnm

@H

@Am
+Rn

NBS �NNG =
1

2
rankh[Qa, Qb]i



まとめ
弱結合摂動論

Lorentz対称性がない場合の
南部-Goldstoneの定理

NBS �NNG =
1

2
rankh[Qa, Qb]i

動的な計算の高次補正は挑戦的問題．

単純な摂動論はg6で破綻.
改善された摂動論はT>3Tcでよさそう．


