有限温度摂動論

g: 弱結合展開 1/g: 強結合展開 1/T: 3D 有効理論 1/N_c: Large-N_c QCD 1/N_c,1/g²N_c: Gauge/gravity対応 ω, k: 流体力学, カイラル摂動論

• 弱結合展開

 Lorentz対称性がない場合の 南部ゴールドストーンの定理

QGPは強給合?

 $\alpha_{\text{eff}}(\mu = 2\pi T_c) \sim 0.4 \quad T = T_c \approx 170 \text{MeV}$ $g_{\text{eff}} \sim 2 \qquad N_c g^2 \sim 12$

小さくは無いが巨大でも無い.

弱結合摂動論 g 《 1

静的な物理量 圧力,エントロピー,感受率など

動的な物理量 輸送係数, スペクトル関数など

ループ展開=結合定数の展開

有限温度: ループ展開≠結合定数の展開 ループ: 量子ゆらぎ+熱ゆらぎ

しばしば無限個のダイアグラムの 足し上げが必要

赤外の振る舞い

有限温度一般 分布関数の特異性:Bose分布 Pinch特異性:運動論的方程式と関係

ゲージ理論特有の赤外特異性 クーロン前方散乱 collinear特異性

超相対論的プラズマ

熱ゆらぎ >> 量子ゆらぎ

半古典的

Soft, ultrasoftな励起に対して ボルツマン方程式が良い近似に

超相対論的プラズマの典型的なスケール $T \gg m$

1粒子励起 1/粒子間距離

集団励起 (plasmon,plasmino) Debye遮蔽質量

gT

 g^2T

 q^4T

magnetic質量 1/平均自由行程 ultrasoftモード

1/(輸送)平均自由行程

流体モード

ずれ粘性 $\eta_0 \sim pn\lambda_{mfp} \sim p/\sigma$ Maxwell (1860) **"Virial" 展開** $\frac{\eta}{\eta_0} = 1 + c_1 na^3 + c_2 (na^3)^2 \ln(na^3) + \cdots$ n:粒子密度 $\sim 1/R^3$

R

a:粒子のサイズ 超相対論的プラズマ $n \sim T^3$ $a^3 \sim \sigma/T \sim g^4/T^3$ $\rightarrow na^3 \sim g^4$

(実際は赤外の振る舞いによりより複雑に)

 $P/T^{4} = c_{0} + c_{2}g^{2} + c_{3}g^{3} + (c_{4}' \ln g + c_{4})g^{4} + (c_{5}' \ln g + c_{5})g^{5} + (c_{6}' \ln g)g^{6} + \mathcal{O}(g^{6})$

Zhai and Kastening('95)

Kajantie, Laine, Rummukainen, and Schröder ('03)

Lindeの問題

g⁶には無限個のダイヤグラムが寄与

圧力:摂動論

改善された摂動論

Blaizot, Iancu, Rebhan('03), Kraemmer, Rebhan('04), Andersen, Strickland('05)

2PI形式 Dの汎関数

$$\beta \Omega[D] = -\log Z = \frac{1}{2} \operatorname{Tr} \log D^{-1} - \frac{1}{2} \operatorname{Tr} \Pi D + \Phi[D],$$

$$-\Phi[D] = 1/12 + 1/8 + 1/48 + ...$$

Hard-thermal loop 摂動論

Andersen, Braaten, Strickland ('99) ('00), Andersen, Braaten, Petitgirard, Strickland ('02), Andersen, Petitgirard, Strickland ('04), Andersen, Strickland, Su('09) ('10), Andersen, Leganger, Strickland, Su('11)

$$\mathcal{L} = \left(\mathcal{L}_{\text{QCD}} + \mathcal{L}_{\text{HTL}}\right) \Big|_{g \to \sqrt{\delta}g} + \Delta \mathcal{L}_{\text{HTL}}.$$

$$\mathcal{L}_{\rm HTL} = -\frac{1}{2}(1-\delta)m_D^2 \operatorname{Tr}\left(G_{\mu\alpha}\left\langle\frac{y^{\alpha}y^{\beta}}{(y\cdot D)^2}\right\rangle_y G^{\mu}{}_{\beta}\right) + (1-\delta)im_q^2\bar{\psi}\gamma^{\mu}\left\langle\frac{y_{\mu}}{y\cdot D}\right\rangle_y \psi$$

 δ について展開 $(\delta \rightarrow 1) m_D, m_f$ はパラメータ. $\frac{\partial}{\partial m_D} \Omega = \frac{\partial}{\partial m_f} \Omega = 0$ となるように決める.

格子QCDとの比較(Pure glue)

2PI形式

HTL摂動論

ダイナミカル ボソン的集団励起 フェルミオン的集団励起

ボソン的集団励起

Hard Thermal loop 近似

内線:hard $k \sim T$

 $\Pi_{\mu\nu}(p) = \mathbf{\sim}$

 $p \sim p \sim gT$ 外線:soft

 $\Pi_{\mu\nu}(p) \simeq 2m^2 \int \frac{d\Omega}{4\pi} \left(\frac{k^0 \hat{k}_\mu \hat{k}_\nu}{p \cdot k} + \delta_{\mu 0} \delta_{\nu 0} \right)$

熱質量 $m^2 = 4g^2 \int \frac{d^3k}{(2\pi)^3} \frac{n(k)}{k} = \frac{g^2T}{6}$

Debye 速蔽 $\langle A_0(\boldsymbol{x})A_0(\boldsymbol{y})\rangle \sim \frac{1}{r}\exp(-m_{\mathrm{D}}r) \quad m_D \sim gT$

Plasmon励起(集団励起モード)

 $\omega \sim gT$ 縦波も存在

運動論的方程式との対応 Vlasov方程式(簡単のためQED) $\hat{k}^{\mu}\partial_{\mu}f(t,x,k) = -e\hat{k}^{\mu}F_{\mu i}\partial_{k i}f(t,x,k)$ 線形化 $f = n(k) + \delta f(t, x, k)$ $\delta f = -\frac{1}{\hat{k} \cdot \partial} e^{\hat{k}\mu} F_{\mu i} \partial_{k i} n(k)$ $\delta j_{\rm ind}^i = e \int \frac{d^3k}{(2\pi)^3} \hat{k}^i \delta f = 2m^2 \int \frac{d\Omega}{p \cdot k} k^i \hat{k}_m E_m$ Hard thermal近似と同じ結果を与える. $\overline{p \cdot k}$

Kubo and Tomita('54), Nakano('56), Kubo('57)

輸送係数 イングリーン関数

ずれ粘性: $\eta = \frac{1}{10} \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \int d^4 x e^{i\omega t} i\theta(t) \langle [\pi_{ij}(x), \pi^{ij}(0)] \rangle$ 体積粘性: $\zeta = \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \int d^4 x e^{i\omega t} i\theta(t) \langle [\mathcal{P}(x), \mathcal{P}(0)] \rangle$

 $\mathcal{P}(x) = -T^{i}{}_{i}(x)/3, \ \pi_{ij}(x) = T_{ij}(x) + g_{ij}\mathcal{P}(x)$

動的 e.g., ずれ粘性

$$\eta/T^3 = \frac{1}{g^4(c_1' \ln g + c_1)} (1 + \cdots)$$

Arnold, Moore, Yaffe ('03)

cf., AdS/CFT $\eta/s=1/4\pi$

摂動の最低次しかわかっていない.

c.f 静的

Shuryak ('78), Chin('78) Kapusta('79) Toimela('83) Arnold and C. Zhai('94) $P/T^4 = c_0 + c_2 g^2 + c_3 g^3 + (c'_4 \ln g + c_4) g^4$ $+ (c'_5 \ln g + c_5) g^5 + (c'_6 \ln g) g^6 + \mathcal{O}(g^6)$ Zhai and B. Kastening('95) Kajantie, Laine, Rummukainen, and Schröder ('03)

運動学的解析 $\eta \approx \frac{1}{3} \bar{p} n \lambda_{mfp}$ Maxwell('60) **1ループ解析はオーダーは正しい**

$\frac{1}{\lambda^{2}} \lambda \frac{1}{\lambda^{2}} \lambda \frac{1}{\lambda^{2}} \lambda \frac{1}{\lambda^{2}} \frac{\lambda}{\lambda^{2}}$ 1ループと同じオーダー 足し上げ必要.

光学定理

散乱振幅の2乗 ループダイアグラムの虚部

自己無撞着方程式

=線形ボルツマン方程式

Jeon('95)

喻民祭 $\lambda_{\mathrm{mfp}} \quad \lambda_{\mathrm{mfp}} = 1/(n\sigma)$ $np\lambda$ 散乱 (A)(B)(C)(D)(E)Baym, Monien, Pethick, Ravenhall('90), ('91) Arnold, Moore, Yaffe('01) (F)(H)Arnold, Moore, Yaffe, hep-ph/0010177

 $\frac{d\sigma}{d\Omega} \sim \frac{g^4}{\sin \theta^4} \qquad \sigma_{\rm tr} = \int d\Omega \frac{d\sigma}{d\Omega} (1 - \cos \theta) \sim g^4 \int \frac{d\theta}{\theta}$ 前方散乱に発散 Debye遮蔽で有限に $\sigma_{\rm tr} \sim \frac{g^4}{T^2} \ln 1/g \longrightarrow \eta \sim np\lambda_{\rm mfp} \sim \frac{T^3}{g^4 \ln 1/g}$

ずれ粘性 (leading log order) Arnold, Moore, Yaffe ('01)

$$\eta \simeq 270 d_A \zeta(5)^2 \left(\frac{2}{\pi}\right)^5 (v^t c^{-1} v) \frac{T^3}{g^4 \ln 1/g}$$

 $v = \begin{bmatrix} d_A \\ \frac{15}{8}N_f d_F \end{bmatrix} \quad c = (d_A C_A + N_f d_F C_F) \begin{bmatrix} d_A C_A & 0 \\ 0 & \frac{7}{4}N_f d_F C_F \end{bmatrix} + \frac{9\pi^2}{128}N_f d_F C_F^2 d_A \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ $d_F = C_A = N_c, C_F = (N_c^2 - 1)/(2N_c), d_A = N_c^2 - 1$

輸送係数 Leading order 2→2散乱 2→3散乱 $\theta \sim g$ $\sim gT$ 2→3体Collinear散乱の寄与は 2→2体散乱のleading orderと同じorder. Aurenche, Gelis, Kobes, Zaraket ('98) 3→4体, 4→5体,....も同じオーダー Aurenche, Gelis, Zaraket ('00), Arnold, Moore, Yaffe('01)

LPN effect Landau, Pomeranchuk ('53), Migdal ('56) ('57)

2→2体, effective 1→2体散乱を含んだ

ボルツマン方程式をとけば良い

Arnold, Moore, Yaffe('03)

c.f. Diagrammatic derivation

Gagnon, Jeon('07)

さらに高次項は? Open question. Challenging problem.

Beyond the Boltzmann Eq. YH, Kunihiro('10)

Incading phile in orders

フェルミオン励起

フェルミオン集団励起

Klimov ('82), Weldon ('83), Braaten, Pisarski ('89)

1.5

Ultrasoft Fermionic mode

原点にピーク massless fermion massive boson

Dressed perturbation theory

Dressed propagators

$$D_R(k) = \frac{k}{k^2 - m_f^2 + 2ik^0\gamma_f} \qquad G_A(k) = \frac{1}{k^2 - m_b^2 - 2ik^0\gamma_b}$$
$$m_f^2, m_h^2 : 熱質量 \qquad \gamma_f, \gamma_b : 減衰率$$

$$\begin{array}{c} k \\ \hline \\ p \\ p \\ p \\ k \end{array}$$

$$\begin{array}{c} \rho \to \mathbf{0} \\ \to g^2 \int \frac{d^4 k}{(2\pi)^4} \ \ k (n_F(k) + n_B(k)) \frac{1}{\delta m^2 + 2(ik^0\gamma)} \end{array}$$

where

$$\delta m^2 = m_b^2 - m_f^2 \quad \gamma = \gamma_b + \gamma_f$$

高次項も同じオーダーで効く

自己無撞着方程式

Ultrasoft Fermionic pole YH, Satow, Kunihiro ('11)

cf. Lebedev, Smilga ('90)

	γ	С
Yukawa model	$\sim g^4 T$	2/9
QED	$\sim g^2 T$	1/9
QCD	$\sim g^2 T$	$4(N_f + 5)/3$

 マェルミオン励起の運動論的方程式 YH, Satow ('12)

低エネルギーの有効理論

流体力学 保存電荷に対する有効理論 $\partial_{\mu}T^{\mu\nu} = 0, \partial_{\mu}J^{\mu} = 0$

自発的対称性の破れがある場合 南部-Goldstoneモードも自由度

自発的対称性の破れの数と NGモードの数の関係は?

南部-Goldstone(NG)の定理 Lorentz不変性がある場合

$N_{NG} = N_{BS}$

 N_{BS} :破れた対称性の数 N_{NG} :NGモードの数

分散関係:

 $E_k = v|k|$ Type-I NGモード ($E_k = vk^2$ Type-II NGモード)

南部-Goldstoneの定理 Lorentz不変性がない場合(ゼロ温度) Nielsen and Chadha ('76) $N_{\rm type-I} + 2N_{\rm type-II} \ge N_{\rm BS}$ Schafer, Son, Stephanov, Toublan, and Verbaarschot ('01) Watanabe and Brauner ('11) $N_{\rm BS} - N_{\rm NG} \leq \frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$

Watanabe-Brauner予想 ('11)

$$N_{\rm BS} - N_{\rm NG} = \frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$$

	N_{BS}	$N_{\mathrm{type-I}}$	$N_{\mathrm{type-II}}$	$\left \frac{1}{2}\mathrm{rank}\langle [Q_a, Q_b] ight angle$	WB予想
Helium4超流動 U(1)		1	0	0	OK
強磁性体 O(3)→O(2)	2	0	1	1	OK

等号は成立する! ^{有効理論, ゼロ温度: Watanabe-Murayama ('12)}

射影演算子法: YH ('12)

自発的対称性の破れ

平らな方向の数=破れた対称性の数 しかし、 NGモードの数≠破れた対称性の数

運動方程式

$$\partial_t A_n = \{A_n, H\}_P = \{A_n, A_m\}_P H^{ml} A_l + \cdots$$

モードは $H^{ml} \equiv \frac{\partial^2 H}{\partial A_m \partial A_l} \& \{A_n, A_m\}_P$ で決まる. 簡単な例: 自由度: A_1, A_2 $\{A_1, A_2\}_P = 1$ $H_{nm} = \begin{pmatrix} k^2 & 0 \\ 0 & a^2 \end{pmatrix}$ 運動方程式: $\partial_t A_1 = a^2 A_2$ $\partial_t A_2 = -k^2 A_1$ $\partial_t^2 A_1 = -a^2 k^2 A_1 \ 1) \mathcal{O} \mathcal{E} - \mathcal{K} E = ak$ ポテンシャルが平ら $k \to 0 E \to 0$ ゼロモード

Type-II発現機構

$$\partial_t \begin{pmatrix} \phi \\ \varphi \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & C \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} \phi \\ \varphi \end{pmatrix}$$

 $\phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \varphi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix} A = \begin{pmatrix} a^2 & 0 \\ 0 & a^2 \end{pmatrix} B = \begin{pmatrix} k^2 & 0 \\ 0 & k^2 \end{pmatrix} C = \begin{pmatrix} 0 & c \\ -c & 0 \end{pmatrix}$
C=0: 2つのゼロモード $E = ak$
C≠0: 1つのmassive mode $E = c + O(k^2)$
1つのzero mode $E = \frac{k^2}{c} + O(k^4)$
 φ_1 が φ_2 独立な自由度では無くなった.
逆ヒッグス機構 Nambu ('04)

 $H(A_n)$ 有効作用 $\{A_n, A_m\}_P = -i\langle [A_n, A_m] \rangle$

射影演算子法で導出 Mori('12)

自発的対称性の破れ: ∂H $\partial A_n \partial A_m$ 平な方向は破れた対称性の数だけ存在 $\operatorname{rank}(\langle [Q_a, \phi_i]) \rangle = N_{BS}$ 逆Higgs機構により $N_{\text{massive}} = \frac{1}{2} \operatorname{rank}(\langle [Q_a, Q_b] \rangle)$ $N_{\rm type-II} = N_{\rm massive}$ $N_{\text{type-I}} = N_{BS} - N_{\text{type-II}} - N_{\text{massive}}$ $N_{\rm BS} - N_{\rm NG} = \frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$

有限温度の場合 Langevin方程式 $\partial_0 A_n = \{A_n, A_m\}_P \frac{\partial H}{\partial A_m} + L_{nm} \frac{\partial H}{\partial A_m} + R_n$ ${A_n, A_m}_T = {A_n, A_m}_P + L_{nm}$ とすると同じ議論が可能 $N_{\rm BS} - N_{\rm NG} = \frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$

まとめ

弱結合摂動論 単純な摂動論はg⁶で破綻. 改善された摂動論はT>3T。でよさそう. 動的な計算の高次補正は挑戦的問題 Lorentz 対称性がない 場合の 南部-Goldstoneの定理 $N_{\rm BS} - N_{\rm NG} = \frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$