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Shannon entropy

How can information be quantified?

® The more valuable, Tthe more information.
useful
surprising

smaller probability — Information I(j) in message j :
decreasing function of p; = prob(j)

Roughly, Information = the degree of (our) ignorance

® Information of a joint event = Sum of information of each event
1(5,k) = 1(j) + I1(k)
(p(4; k) = pjpK)
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Shannon entropy

To satisfy these naive requirements,

e I(j)is a decreasing function of

lets quantify information as I(pj) = —l0dop;  [bit]

The average information per single alphabet for a given probability
distribution {p;}, where Zpi =1 is

[ H(p) = — Zpi 1092 p;. (Shannon) entropy ]

A sequence of N binary numbers, whose information content
is H(p) , can be re-expressed with a NH(p) bit sequence.
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Intuitive meaning of the Shannon entropy

Consider a sequence of N bit string, where O and 1 appear with
probabilities of 1-1/N and 1/N, respectively.

N
0...00.....01
0...00..... 10 One of these sequences would occur
almost for sure (with high probability).
0...01..... 00

l0g> NV bits would be sufficient to specify the sequence that occured.
ex. if N =16, 0000, 0001, ..., 1111,

In fact, 1092 N is a good approximation for NH(1/N),
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Maxwell’'s demon

X7 low speed

. ”(?oleculeshqm
demon allowed (o go tus way
high speed rmolecules are

allowed to go this way
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Maxwell’'s demon

Maxwell’s demon at work

“
)
4

.
y

Temperature

Reser, o

A Maxwell demon controlling a door between two chambers
each initially at temperature 7} and pressure P;
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Maxwell’'s demon

Initial state
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Maxwell’'s demon
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Maxwell’'s demon

Isothermal expansion
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Maxwell’'s demon

Initial state again!
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Maxwell’'s demon paradox a la Szilard

Measurement by the demon
(b)

Isothermal expansion at temperature T

: . : Vo1
Perfect conversion of heat @ into mechanical work W = kT v/ VdV = kT In2.
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Landauer’'s erasure principle
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Where’s the dissipation (entropy increase)?

Szilard (1929): “"Must be in the measurement process.”

Brillouin (1951): "Yes, indeed. It is in the measurement process.”
after calculating the entropy change caused by laser- @
based measurement.

Brillouin : Put thermodynamic and information entropies in the same
equation. o

Second law of thermodynamics applicable to the 'sum’ of entropies.

“Negentropy + information never increases."

[ Conjectured the equivalence between the two entropies. J
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Landauer’s principle

Landauer (1961): "Information is physical.”

[ One—to—one correspondence ]

Logical "0" <—> Physical "0" state o 7, = (29,2, ..., 2N)

2% 7

Logical "1 <=> Physical "1 state #1 A sef of param\g‘rers defining the
physical state "i".

Logically irreversible process (many-to-one mapping)
{1

Physically irreversible process (reduction of degrees of freedom)
28

Dissipation of energy into the environment

Erasing information entails entropy increase in the
environment.

(Landauer’s erasure principle)
15
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Landauer’s principle

Modelling a memory by a one-molecule gas

"L" state "R" state

ss2204d 24nspuJ3]

"L" state "L" state
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Landauer’s principle

The demon's memory (in Szilard's engine) is also a physical object.

Tnitial state of

W =EkTIn2

17

K. Maruyama



measurement?

Measurements can be performed reversibly. (Bennett, 1982)

examples:

measurement (detection) of the blue reversible copying of information
ball without disturbing its motion using a small magnet (Bennett, 1982)
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Fig. 14. Reversible copying using a one-domain ferromagnet. The movable bit, initially zero, is
mapped into the same state as the data bit (zero in left column; one in center column). Right
column shows how the probability density of the movable bit's magnetization, initially
concentrated in the “0” minimum, is deformed continuously until it occupies the “1" mini-
mum, in agreement with a “1” data bit.
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* Violation of the 2" law by wall-insertion

®* No work needed for erasurel

"L" state "R" state

"L" state "L" state

This operation leaves the
information on the initial state

K. Maruyama

Bd'Q
/A S < 8(B) - S(4)

dQ =0
S(B) — S(A) = —kIn2

EEE

lower entropy = larger free energy

N molecules in the cylinder
= no entropy change

Need information to extract work
= demon comes in and erasure hecessary
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an experimental verification of Landauer

A. Berut et al., Nature 483, 187 (2012).
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Figure 1 | The erasure protocol used in the experiment. One bit of

Fig. 1

information stored in a bistable potential is erased by first lowering the central
barrier and then applying a tilting force. In the figures, we represent the
transition from theinitial state, 0 (left-hand wdl), to the final state, 1 (right-hand
well). Wedo notshow the obvious 1 — 1 transition. Indeed the procedure issuch
that irrespective of the initial state, the final state of the particle is always 1. The
potential curves shown are those measured in our experiment (Methods).

silica-bead-trap by optical tweezer
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an experimental verification of Landauer

A. Berut et al., Nature 483, 187 (2012).
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Figure 1 | The erasure protocol used in the experiment. One bit of
information stored in a bistable potential is erased by first lowering the central
barrier and then applying a tilting force. In the figures, we represent the
transition from theinitial state, 0 (left-hand wdl), to the final state, 1 (right-hand
well). We do notshow the obvious 1 — 1 transition. Indeed the procedure issuch
that irrespective of the initial state, the final state of the particle is always 1. The
potential curves shown are those measured in our experiment (Methods).
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Figure 3 | Erasure rate and approach to the Landauer limit. a, Success rate of
the erasure cycle as a function of the maximum tilt amplitude, F,,,,, for
constant F,,.,, 7. b, Heat distribution P(Q) for transition 0— 1 witht =25sand
Frnax = 1.89 X 10~ " N. The solid vertical line indicates the mean dissipated
heat, (Q), and the dashed vertical line marks the Landauer limit, (Q);,,da0er
¢, Mean dissipated heat foran erasure cycle asa function of protocol duration, z,
measured for three different success rates, r: plus signs, r = 0.90; crosses,

r = 0.85; circles, r = 0.75. The horizontal dashed line is the Landauer limit. The
continuous line is the fit with the function [Aexp(—t/tx) + 1)B/t, where 7k is
the Kramers time for the low barrier (Methods). Error bars, 1s.d
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Quantum case

22
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quantum mechanical case?

What if we go into quantum regime?

Classical information encoded in quantum system

(1) () () (1) () () () () ()
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erasure of classical info in quantum states

’

\_

An information source generates ¢ € {1,2,...,n} with probability P; .

Encode ¢ in quantum states P; .

How much entropy increase to erase information in {pq;, pi} ?

Lets thermalise the memory system so that all info will be lost.

‘ » H : Hamiltonian for particles
Assume

P; — |§bz> <¢@| Heat bath at e PH
temperature 7 W = 7 — Z Qj|€j><€j|
J

@i

thermalisation

QO D€

(Lubkin, 1987; Vedral, 2000)
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erasure of classical info in quantum states

von Neumann entropy
S(p) == —Tr[plogs p]

To make a long story short,

[ ASerasure > kIn2S(p), ]

where p = sz|¢z><¢z|

Or

| ASerasure > kI 20S(p) = X piS (o), |

if p= Zpipz', where Pi are mixed states.
L (M. B. Plenio, PLA 1999; KM et al., JPA 2005)
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Some implications of the second law
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the 2nd law is powerful!

The second law can be lead to a humber of interesting implications in
other areas of science that look unrelated at first sight.

e The distinguishability of quantum states

® The linearity of quantum mechanics
® Superposition principle
e Einstein equation

® Quantum channel capacity (Holevo bound)

27
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some implications of the 2nd law

® The linearity of the time evoulution of quantum states (Peres, PRL 1989)
p = p|#) (@ + (1 — p)|¥) (¥

N~

- -pA- 1)

4

1
f = \<¢W>|2 (fidelity) Eigenvalues: A+ = 5 +

in order for entropy to
increase

Let {l#%)} be &Complete orthogonal set = [(Brlv)]* =1
k

= If 3m, fm() = [(emOM)]° < fm(0) = 3n, fult) > fn(0)
= f=18|l¥)* is constant for any |¢) and |%)
~ Time evolution needs to be either unitary or‘M
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some implications of the 2nd law

® Einstein equation (Bekenstein, PRD 1973; Jacobson, PRL 1995)

Black holes : exact solutions of the Einstein equation

=> no randomness involved = B3I caiae)s

=> What if we pour hot (high-entropy) coffee into a black hole?

Still zero? The violation of the second law???

Bekenstein : "The black hole entropy X the area of the event horizon."

. kA G
Hawking :  Spy =5 lp=\/—3 +Planck length
P
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some implications of the 2nd law

® Einstein equation (Bekenstein, PRD 1973; Jacobson, PRL 1995)

Jacobson: in thermodynamics
0Q = T4dS ? Equation of state

S = S(E, V) f(g,uz/, 8ozg,uua aaaﬁg,tw) = Tuv

The Einstein equation <= The equation of state for
gravitational field

0QQ — Energy flow across the horizon

1" —> The Unruh temperature
dS — Surface area of the horizon dS = ndA

R, appears in an equation for the volume change in a
Riemannian manifold.

1 21k k k
[y [ Ruy — ERQW/ +Aguw = — T ] n D

Einstein's field equation !
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Demon and data compression

31

K. Maruyama



Landauer-Bennett's principle strongly suggests the equivalence

between the two entropies.

/

Show the equivalence, using a thermodynamic operational model (of
erasure) for any probability distribution.

Szilard's engine  memory

pV | (1—-p)V

1

[ [ )
‘L \\Ou “1”
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nonequiprobability distribution

What is the optimal work consumption to erase the information of H(p)?

We'll use (Shannon's) data compression. (as you might have guessed)

N cycles of the Szilard's engine LRR ‘- L
0j11]1 e 0
L . J pN OIS
N bitsinOorl (1—-p)N 1's
Data compression 1{1jof --- J0f0 0
N — NH(p) ‘ ' '

NH(p) bitsinOor1 allinO

Information erasure 0/0]0 o 0]0 0
Werasure = kT In2H (p)

At the end of the day, the net work consumption is Werasure — Wsze > 0
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the equivalence between two entropies

The cleverest strategy the demon can take is the data compression,
whose optimality is proven by Shannon.

The (minimum) erasure work Werasure coincides with Wsze,

This fact augments the Landauer-Bennett argument on the
equivalence between the two entropies.

No use of the optimality based on the free energy,
{ a consequence of the second lawr = U — T'S
S is thermodynamic, rather than information theoretic.

A. Hosoya, KM, Y. Shikano, PRE 2011
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towards statistical mechanics

Any insight into statistical mechanics as well?

Take the Boltzmann distribution, for example.
p; x exp(—E;/kT)

The Boltzmann distribution can be derived under the "principle of maximum (Shannon)
entropy (PME)". But why should the Shannon entropy be maximised physically?

Lets derive it operationally, using the physics of erasure.
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thermo-turing model

A system of a long tape and particles

(in contact with a heat bath of temperature T)

2.
A tape storing a bit string @X An ensemble of two-level particles

&P

Each cell can be modelled as a /

memory with a single molecule Demon manipulating the tape and the particles

[ Want to find P0 and P1 in the equilibrium condi’rion.]
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thermo-turing model

A system of a long tape and particles

(in contact with a heat bath of temperature T)

O R — — 7 @Zz@ @

Consider a cost function
F=¢ep1 —kTIn2H(p1)

The equilibrium condition can be defined as AF = O, against random
occurrences of NOTs (bit flips).
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thermo-turing model

A system of a long tape and particles

(in contact with a heat bath of temperature T)

O R — — 7 @Zz@ @

Consider a cost function
F=¢ep1 —kTIn2H(p1)

Intuitively,
the 15" term : (average) energy to excite particles

the 2"d term : (average) energy to erase info on the tape
®  An operational way to justify the Principle of Maximum Entropy
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Boltzmann distribution

The net change in ' due to a NOT is

AF =e(p1 —po) — NKTIn2AH (pg)

dH (p)
dp

=ec(2pog—1) — kTIn2(1 — 2pg)

AF=0 = Loexp(—c/kT) @
Po

(No reference to a thin energy shell £~ £+ AE)

Possible to generalise to multi-level systems

A. Hosoya, KM, Y. Shikano, in preparation
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Fluctuation-Dissipation relation

The thermo-Turing model may be applicable to nonequilibrium situations.

Now we attempt to obtain the Einstein relation D = okT

N
Diffusion

(fluctuation) mobility

Consider an ensemble of tapes o
(dissipation)

/'/'/*
e T
o

For n-th cell, AFn =un # 0

An energy Un from (unspecified) external source causes a bit flip to
change the probability distribution, Pn.
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Fluctuation-Dissipation relation

AFp = up ) Zﬂ = eXD(—(€ -+ un)/k:T)

Po

The average of work to make this change (%) happen (assuming _un = 0):
n

x —D/KT,

where D = 2“721

Regarding (W) as mobility 0, this is essentially the Einstein relation .

A. Hosoya, KM, Y. Shikano, in preparation
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e Information is physical and is also subject to laws of physics

* The second law of thermodynamics is applicable to the 'sum’ of
entropies (thermodynamic + information)

* The second law is a cool meta-theory

e Thermo-Turing model could be useful in understanding
thermodynamics/statistical mechanics in an operational way through

info-thermo duality
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