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QCD phase diagram

• Rich structure is expected.

• The sign problem exists for finite baryon-chemical 
potential thus Lattice calculation is not available.

The phase diagram of dense QCD 5
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Figure 1. Conjectured QCD phase diagram with boundaries that define various
states of QCD matter based on S�B patterns.

The chiral transition is a notion independent of the deconfinement transition. In
section 3.2 we classify the chiral transition according to the S�B pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the phase structure of QCD
matter including conjectures which are not fully established. At present, relatively firm
statements can be made only in limited cases – phase structure at finite T with small
baryon density (µB ⌧ T ) and that at asymptotically high density (µB � ⇤QCD).
Below we will take a closer look at figure 1 from a smaller to larger value of µB in
order.

Hadron-quark phase transition at µB = 0: The QCD phase transition at finite
temperature with zero chemical potential has been studied extensively in the numerical
simulation on the lattice. Results depend on the number of colours and flavours as
expected from the analysis of e↵ective theories on the basis of the renormalization
group together with the universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the finite size scaling analysis
on the lattice [37], and the critical temperature is found to be Tc ' 270MeV. For
Nf > 0 light flavours it is appropriate to address more on the chiral phase transition.
Recent analyses on the basis of the staggered fermion and Wilson fermion indicate a
crossover from the hadronic phase to the quark-gluon plasma for realistic u, d and s
quark masses [38, 39]. The pseudo-critical temperature Tpc, which characterizes the
crossover location, is likely to be within the range 150MeV� 200MeV as summarized
in section 4.2.

Even for the temperature above Tpc the system may be strongly correlated and
show non-perturbative phenomena such as the existence of hadronic modes or pre-
formed hadrons in the quark-gluon plasma at µB = 0 [28, 40] as well as at µB 6= 0
[41, 42, 43]. Similar phenomena can be seen in other strong coupling systems such as

Fukushima and Hatsuda(2010)

µI
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Isospin chemical potential

• Three-dimensional phase diagram
Temperature [T]
Quark-chemical potential [µ]
Isospin-chemical potential [µI]

• Quark Determinant is real (µ=0).

• The important sampling method is available . 

µu = µ+ µI

µd = µ� µI

M. Alford, A. Kapustin and F. Wilczek, Phys. Rev. D59, 054502 (1999).
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Property at T = 0 (Silver blaze)

• At T = 0, nothing happens before µI reaches to the mass 
of the lightest charged particle (charged pion).

T. D. Cohen, Phys. Rev. Lett. 91, 222001 (2003) “Silver blaze”  Arthur Conan Doyle

µI �m�

m�

FIG. 20: The isospin chemical potential, µI , is plotted as a function of the isospin density, ⇢I ,
from three lattice ensembles, B1 (red), B3 (blue) and B4 (green). The solid black line is from
expectations of �PT [8]

T

µIm⇡

A

< d�5u >= 0

< ⇡+ >6= 0 < d�5u >6= 0

FIG. 21: Expected QCD phase diagram following Ref. [8]. Our calculations at a fixed temperature,
T ⇠ 20 MeV probe the phase structure along the red dashed line from µI = m⇡ to µI = 4.5 m⇡.

28

�I = � �P

�µI

W. Detmold, K. Orginos and Z. Shi, arXiv:1205.4224 

a typical lattice result

〈σ〉 = ξ ,
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2

, (80)

we obtain the effective Lagrangian at tree level,
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with the classical potential
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where the two condensates are determined by minimizing
the potential,

∂U

∂ξ
= 0,

∂U

∂ρ
= 0 . (83)

We have chosen pion condensate to be real as in the NJL
model. In this section we use ξ and ρ standing for the
chiral and pion condensates in order to avoid confusion
with the definitions in the NJL model.

In the vacuum the constraints (83) on the potential
give ξ = fπ and ρ = 0, and the sigma mass can be read
out from the quadratic term in the sigma field in the
effective Lagrangian (81), m2

σ = 4g2
πf2

π + m2
π.

At finite isospin density the two condensates in the
ground state satisfy ξ = 0, ρ = fπ

√

1 + 2µ2
I/m2

σ in the
chiral limit. This is consistent with the NJL model: Any
small isospin density can force the chiral symmetry to be
restored in the chiral limit. In the real world, we obtain
ξ = fπ, ρ = 0 for µI < mπ which is the same as in the
vacuum, and [5]

ξ = fπ
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π
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√
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+ 2
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π
, (84)

for µI > mπ. This result is qualitatively consistent
with the NJL model and the chiral perturbation theory.
Especially the critical behaviors of the two condensates

around the phase transition point µc
I = mπ in the three

effective models are almost the same.
The thermodynamic functions can be evaluated from

the potential U . The isospin density nI , pressure p and
energy density ε are analytically written as
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. (85)
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FIG. 16. The ratio p/ε (upper panel) and the chiral and
pion condensates (lower panel) as functions of isospin chem-
ical potential µI at T = µB = 0 in the NJL model (NJL),
linear sigma model (LSM), and chiral perturbation theory
(CPT).

If we take the limit mσ → ∞, we reproduce the result
in the chiral perturbation theory [8,12]. However, the
finite sigma mass leads to a big difference at large µI .
At large µI , the ratio p/ε approaches 1 in the chiral per-
turbation theory, but only about 1/3 in the linear sigma
model and 0.7 in the NJL model, as shown in Fig.(16).
While the three effective models are very different in high

15

L. He, M. Jin, and P. Zhuang, Phys. Rev. D 71 (2005) 
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Fluctuations beyond mean-field
��� =

1
2

�
µ2

�
�� = � � ���

U = �1
2
µ2�2 + ��4

= a�� + b��2 + c��3 + d��4

U

q

•Neglect Φ’3 and Φ’4 terms (mean-field approximation.)
breaks down in a critical region (b ~ 0)
• Include the effects of c or d by solving functional-RG

b � 0

L =  ̄ [i/@ + g(� + i�5~⇡ · ~⌧) + µI�0⌧3] 

+
1

2
@�@� +

1

2
@⇡0@⇡0 + ~@⇡+~@⇡+ + ~@⇡�~@⇡� + (@0 + 2µI)(⇡+ + i⇡�)(@0 � 2µI)(⇡+ � i⇡�)

+ U(�2 + ~⇡2)� c�

quark-meson model with  µI ��+� �= 0��� �= 0
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Functional Renormalization Group (FRG)

C. Wetterich, Phys. Lett. B301, 90 (1993)

: effective potential at scale k�k[�]

+ 1
2−∂kΓk =

classical

quantum�k=0[�] = �[�]

�k=⇤[�] = S[�]{
�LPA

k = Kinetic part + Uk(�2 + �2
0 ,�2

+ + �2
�)� c�

the pion mass. It is of course desirable to fix the model parame-
ters entirely in the vacuum, which requires the use of a different
mass definition. As in [22] we therefore consider pole masses
which are defined via the poles in the corresponding propaga-
tors or equivalently via zeros in the corresponding 2-point cor-
relation functions, which amounts for the pion to require

Γ(0,2)
π (p0,σmin)

∣∣∣∣∣
p0=mπ

= 0. (14)

This meson mass definition has been used frequently in NJL
model calculation and can be shown to be exactly consistent
with the Silver Blaze property at mean-field level [22]. In this
section, we point out a procedure to calculate the pion pole mass
at least approximately within the FRG framework which is con-
sistent with our truncation for the effective action. Although a
flow equation for the sigma meson 2-point function can be ob-
tained by similar means, the determination of a sigma meson
pole mass is beyond the scope of this work. The difficulties are
associated to the finite width and the possible decay channel
σ → ππ which would require to search for poles of the sigma
2-point function in the complex plane instead of the real axis.

Applying two functional derivatives to the flow equation
Eq. (6), we obtain the exact flow equation for 2-point corre-
lation functions. Fig. 2 shows the diagrammatic expression for
2-point function flow equation, which in turn depends on scale-
dependent 3- and 4-point functions.

−
1
2×

Γ(2,1)
k

Γ(2,2)
k

Γ(2,1)
k

∂kΓ
(0,2)
k =

Γ(0,4)
k

Γ(0,3)
k Γ(0,3)

k
−2× +

Figure 2: Diagrammatic representation of the flow equation for the mesonic
2-point function. The upper (lower) panel shows fermionic (bosonic) contribu-
tions. Solid (dashed) lines represent scale-dependent boson (fermion) propaga-
tors and white circles correspond to insertions of ∂tRk(q).

In order to close the infinite tower of equations for the n-
point functions truncations are required. One approximation
scheme to obtain a closed set of flow equation up to 2-point
correlation function with full momentum dependence has been
proposed under the name of the BMW approximation[25, 26].
The idea is that, because of the insertion of the cutoff function,
the external momentum dependence for scale-dependent 3- and
4-point function is weaker than the internal momentum depen-
dence, which allows us to expand 3- and 4-point functions in
the external momentum. Keeping only the leading contribution
and expressing 3- and 4-point correlation functions via deriva-

tives of the 2-point correlation functions

Γ(0,3)
abi [p,−p, 0] =

∂Γ(0,2)
ab [p]
∂φi

, Γ(0,4)
abi j [p,−p, 0, 0] =

∂2Γ(0,2)
ab [p]

∂φi∂φ j
,

(15)
then leads to a closed coupled system of flow equations for the
2-point correlation functions. The BMW approximation has
been applied for example to scalar models[27, 28]. However,
the consistency between the LPA and the BMW approxima-
tion at zero external momentum where the 2-point function can
also be calculated via derivatives of the effective potential is not
guaranteed but rather has to be put in by hand.

Here we choose a simpler truncation which is manifestly
consistent with the LPA approximation. In our truncation we
neglect the external momentum dependence of 3- and 4-point
function and just replace them by the corresponding value ob-
tained from the LPA ansatz for the effective potential i.e.

Γ(0,3)
abi →

∂3ΓLPA

∂φi∂φa∂φb
, Γ(0,4)

abi j →
∂4ΓLPA

∂φi∂φ j∂φa∂φb
, (16)

Γ(2,1)
i → ∂3ΓLPA

∂ψ̄∂ψ∂φi
, Γ(2,2)

i j → ∂4ΓLPA

∂ψ̄∂ψ∂φi∂φ j
. (17)

In the quark sector we find

Γ(2,1)
k,0 = −g, Γ(2,1)

k,i = −igγ5τi, Γ
(2,2)
k,i j = 0, (18)

which quite naturally leads to the random phase approximation
(RPA) frequently used in the NJL model [29]. The external
momentum dependence of the 2-point correlation function now
comes entirely from the propagators in the loop. As our main
interest lies in the check of the consistency of the vacuum pion
mass with the Silver Blaze property, we restrict ourselves to the
vacuum case of zero temperature and zero isospin and baryon
chemical potential. In our truncation we obtain the following
expressions for the flow of pion 2-point function for Euclidean
external momentum (ωn,)0)

∂kΓ
(0,2)
π,k [iωn] =

k4

6π2

(
− (N + 1)U′′

E3
π

− U′′ + 2σ2U′′′

E3
σ

+

2U′′(E2
σ − E2

π)
(
(Eσ + Eπ)3(E2

σ + EσEπ + E2
π)−(E3

σ+E3
π)ω2

n

)

E3
πE3

σ((Eπ + Eσ)2 + ω2
n)2

+
8Nf Ncg2(4E2

q − ω2
n)

Eq
(
4E2

q + ω
2
n

)2

)
,

(19)

where we define U(n) = ∂nUk
(∂X)n , Eπ =

√
k2 + 2U′ and Eσ =√

k2 + 2U′ + 4XU′′ and N = 4 in the present case. For zero
external momentum ωn = 0 we can easily check the consis-
tency between Eq. (19) and the flow equation for 2U′k obtained
from Eq. (11).

We solve the flow equation for the real-time 2-point func-
tion, which one obtains from Eq. (19) via the analytical contin-
uation iωn → p0 + iε taken before the integration of the flow
equation. The initial condition in the UV is then chosen to be

∂kΓ
(0,2)
π,ΛUV

[p2
0](X) = −p2

0 + 2U′(X). (20)

4

local potential approximation

−1
2×
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k =
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k
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−2 +
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Pion masses

Real part of pion 2-point function

• Pion pole mass and pion curvature mass are difference at 20%.

• The pole mass well agree the onset of pion condensation
(the difference is just at 3%).
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Isospin density (T=0, µ=0)

• Both QM and χPT models reproduce the charge density 
of the LQCD near the onset of the pion condensation.

•  The difference comes from the mass of sigma.

�I(x, y) = 2f2
�m� x

�
y2 � 3
y2 � 1

� 1
x4

+
2

y2 � 1
x2

�
,

x = 2µI/m�, y = m�/m�

the lattice data is from W. Detmold, K. Orginos and Z. Shi, arXiv:1205.4224 [hep-lat]
χPT calculation is from D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592 (2001)

Figure 5: Isospin chemical potential over isospin density at zero temperature
and baryon chemical potential in comparison to the lattice data from Ref. [17].
The isospin densities are rescaled here to adjust to the lattice parameters. This
mainly compensates for the larger pion mass and decay constant on the lattice.

our eMF and FRG solutions in comparison with very recent lat-
tice data from Ref. [17] and the leading order chiral effective
field theory (χPT) result [12]. The isopin density remains zero
below the onset of pion condensation at µcI = mπ/2 in the eMF
calculation as it must while the full FRG result shows a slight
residual Silver Blaze problem here, which might be due to nu-
merical integration and infrared cutoff uncertainties. For large
µI , deep into the pion condensation phase, it gets increasingly
difficult to control systematic errors in the full FRG calcula-
tions due to, e.g., an increasing sensitivity to the sigma mass
assignment and the ultraviolet cutoff.

While the chiral effective field theory result describes the
BEC phase well, it appears to miss some essential dynamics
in the BEC-BCS crossover, which we estimate to occur around
2µI/mπ − 1 ≈ 2/3 in our calculations by the simple criterion
that the quarks’ Dirac mass falls below µI there. Because the
vacuum realignment in this crossover is characterized by the
mixing between the sigma meson with the charged pions in the
QM model, this suggests that it might indeed be this mixing
of the meson mass eigenstates which is responsible for the ob-
served inflection point and back-bending of the isospin density
at large µI . The analogous mixing is seen in the mass spectrum
of the QMD model for two-color QCD [44], between diquarks
and the sigma meson. Basically, the latter is infinitely heavy
in χPT, so the low-lying excitation spectrum of the QM model
is essentially different from that of the non-linear sigma model,
especially in the crossover region where the mixing occurs. The
qualitative effect on the isospin density can be illustrated in the
linear sigma model, where a simple calculation yields,

ρI(x, y) = 2 f 2πmπ x
(

y2 − 3
y2 − 1

−
1
x4
+

2
y2 − 1

x2
)

, (22)

for x ≡ 2µI/mπ ≥ 1, and with y ≡ mσ/mπ. In the y → ∞ limit,
this reduces to the χPT result ρI(x) = 2 f 2πmπ x

(

1 − x−4
)

[12].
Compared to that, a finite sigma mass y < ∞ in the linear sigma
model has the same qualitative effect as observed in the eMF
results of Fig. 5 for parameter sets A,B and C in Tab. 2.

The general structure of the phase diagram in the T = 0
plane is also strongly constrained by the Silver Blaze property.
The key to its understanding is the fact that different degrees of
freedom couple to different combinations of the chemical po-
tentials. While up(down)-quarks couple to µ ± µI , charged pi-
ons obviously only couple to the isospin chemical potential µI .
The partition function and, correspondingly, thermodynamic
observables must remain independent of µ and µI as long as
µ + µI < mq ≡ gσmin = g fπ and µI < mπ/2, where mq and
mπ are the vacuum quark and pion masses, respectively. This
defines a quadrilateral area in the zero-temperature phase dia-
gram, which we refer to as first Silver Blaze region in the fol-
lowing. The physical picture is that in absence of bound quark
matter, the horizontal line in the (µI , µ) plane defines the bound-
ary of this region beyond which a degenerate Fermi gas of up-
quarks forms, just as the vertical line marks the onset of pion
condensation. Another constraint arises inside the pion conden-
sation phase: For µI > mπ/2 the vacuum changes and the grand
potential becomes µI-dependent, of course. Nevertheless, for
constant µI , it has to remain independent of the isosymmetric
quark chemical potential µ as long as this stays below the light-
est quark mass, i.e., for µ < m−q (µI), where

m±q (µI) =
√

g2d2 + (gρ ± µI)2 (23)

are the quark masses at µ = 0. They no longer correspond
to pure up- and down- quark excitations as these mix in the
pion condensation phase, and the quark masses are obtained by
diagonalizing Γ(2,0)k . More generally, from the quark dispersion
relation

E−q (%p2) =

√

g2d2 +
(

√

%p2 + g2ρ2 − µI
)2

, (24)

one furthermore notes that for µI > gρ it becomes energeti-
cally favorable to excite quarks with a finite spatial momentum
%p2 = µ2I − g

2ρ2 and minimal energy E−min = gd [37]. This
might be an indication for an inhomogeneous phase at large
isospin chemical potential such as the FFLO phases [27, 28]
also discussed for two-color QCD with isospin chemical poten-
tial [58, 59] or in the 1+1 dimensional NJL model [60].

Therefore, the conditions µI > mπ/2 with µ < m−q (µI) for
µI < gρ, or µ < E−min for µI > gρ, together define a region in
the zero-temperature phase diagram in which the µI-dependent
grand potential still remains independent of µ, nevertheless. We
will call this the second Silver Blaze region in the following.

Note however that the whole argument holds only as long
as there are no first order transitions in these regions of the
phase diagram. This concerns in particular the possible first
order transition for large µ and small µI which may intersect
with the first Silver Blaze region. If it does, the CEP where it
ends must lie outside, however. This could then be the chiral
first order transition or a liquid-gas transition to bound quark
matter below the threshold for free quarks, for example, which
are of course not excluded. In contrast, a first order line with
an endpoint inside the Silver Blaze region would be thermody-
namically inconsistent. It is reassuring that we never observe
this in our numerical calculations either.

7

1
2
�I

2µI �m�

m�

C
AB

FRG
χPT

A B C FRG
M� [MeV] 457 504 698 524

analytic form for linear sigma model

Thursday, August 23, 12



Quarks in pion condensation phase

• quark dispersion relation in pion condensation phase

• up and down quarks are mixed by the charged pion 
condensation.

gh�i > µI gh�i < µI

 0

 0

E

k

E+E-

 0

 0

E

k

E+E-

gh⇡+i
M� =

p
g2h⇡+i2 + (gh�i � µI)2

E±(�k) =

�

g2��+�2 + (
�

�k2 + g2���2 ± µI)2

E
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k k
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Results (T = 0)
µ-µI phase diagram
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Figure 6: (µI , µ) phase diagram at T = 0 from an eMF calculation (parameter
set A). The SB line marks the boundary of the first/second Silver Blaze region.

eMF calculation. Fig. 6 shows the phase diagram in the (µI , µ)
plane from an eMF calculation. As discussed above, there is a
chiral first order transition outside the pion condensation phase
for large baryon chemical potential and small isospin chemi-
cal potential. With parameter set A, the first order transition
lies completely outside the first Silver Blaze region bounded by
µ+µI < mq. The vertical line in the phase diagram separates the
charged pion condensation phase from the normal chiral sym-
metry breaking phase. This phase boundary stays at the con-
stant µI = mπ/2 until µ > mq − mπ/2 from where on it bends
to larger values of µI when further increasing µ. For µI > mπ/2
the general arguments from above require the phase boundary
of the pion condensation phase, as long as it is of second or-
der, to stay outside the second Silver Blaze region. Indeed, in
perfect agreement with these general arguments, the boundary
of the pion condensation phase crosses the Silver Blaze line
only after it has become of first order, beyond a tricritical point
(TCP) which is here observed at (µI , µ) = (0.56mπ, 253MeV).
We will see, however, that this first order line is washed out by
mesonic fluctuations, and that it thus is a mean-field artifact.

At the mean-field level the Silver-Blaze property is manifest
in the explicit expressions for the partition function. This has
been observed in [41] as a property of the zero temperature par-
tition function. It also holds for the explicit eMF expression for
the effective potential Eq. (19): one verifies that it remains con-
stant throughout the first Silver Blaze region with µ + µI < mq
and µI < mπ. Moreover, with Eq. (19), the condition for the
second-order phase boundary of charged pion condensation,

∂U
∂d2

(µcI )
∣

∣

∣

∣

∣

∣

ρ2= f 2π , d2=0
= 0, (25)

which defines the critical isospin chemical potential µcI (µ), is in
fact independent of µ for µ + µI ≤ g fπ ≡ mq. This implies that
the boundary of the pion condensation phase stays constant at
µcI = mπ/2 for µ < mq − mπ/2 as also seen in Fig. 6. In fact,
Eq. (25) coincides with

Γ(0,2)π (p;σ)
∣

∣

∣

∣

−p2=(2µcI )2,σ= fπ
= 0, (26)
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Figure 7: (µI , µ) phase diagram at T = 0 from the full FRG calculation (param-
eter set C). The SB line represents µ = m−q .

from Eq. (20) there. This establishes explicitly that the pole
mass agrees with the onset of pion condensation at µcI = mπ/2
for all µ < mq − mπ/2 in the eMF calculation.

FRG calculation. Fig. 7 shows the corresponding phase dia-
gram from the full FRG calculation. As in mean-field calcu-
lations there is a first order transition at large µ and small µI .
However, the mesonic fluctuations tend to weaken this first or-
der transition and correspondingly the CEP is at a smaller µI
than in eMF. For small chemical potential µ, the second order
transition separating charged pion condensation from the nor-
mal χSB phase again occurs at µI = mπ/2. And again, the
phase boundary stays constant until it hits the first Silver Blaze
boundary line at µ = mq−mπ/2, which defines the edge between
the first and the second Silver Blaze region.

In contrast to mean-field calculations, however, the pion
condensation transition with the mesonic fluctuations remains
second order for the whole range of isospin chemical potentials
we have investigated. Note also that this second order phase
transition occurs outside the Silver Blaze region. Interestingly,
one observes another first order transition inside this region for
large isospin chemical potentials which was not present in the
eMF calculation. This implies that the zero temperature parti-
tion function and correspondingly also the chiral and charged
pion condensates at fixed µI stay independent of µ only below
this first order transition line which seems to end in a CEP right
at the boundary of the second Silver Blaze region.

4.4. Three dimensional (µI , µ, T) phase diagram
At finite temperature the phase boundaries in Figs. (6) and

(7) extend into surfaces in the three dimensional parameter space
with temperature T over the (µI , µ) plane. These are shown for
a representative eMF calculation in Fig. 8, and a full FRG solu-
tion on the two-dimenional grid in field space with fluctuations
in the chiral as well as the charged pion condensate in Fig. 9.

The green surfaces in these figures represent the boundary
of the pion condensation phase. The zero temperature TCP of
Fig. 6 in the eMF calculation extends into the purple line in

8

µI/m�

• µIc = 1/2 Mπ is satisfied.

• Another 1st-order transition appear. 
Baryon-density jumps at the boundary.

µ
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h⇡+i 6= 0

Phase diagram

Mean-field FRG

• Meson fluctuation hide TCP line.

• Ordinary chiral 1st-order phase boundary (red surface) is 
shrunken by the fluctuations.
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Summary

• Silver Blaze relation is satisfied by the pion pole mass.

• The result of QM model agree with the Lattice QCD 
calculation.

• The result for higher µI depends on the sigma meson 
mass. We need to a light sigma mode.

• At low T, We have found the extra 1st-order phase 
transition at which quark density jumps. 

• Meson fluctuations hide the TCP line which exists on 
the pion condensation surface.
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