Magnetic monopole loops generated
from calorons with nontrivial holonomy
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Introduction

* The dual superconductor picture is the promising mechanism
for explaining quark confinement.

— quark confinement is realized by squeezing color electric fields
connecting quark and antiquark due to the dual Meissner effect
which originates from condensation of magnetic monopoles.

— there must exist a Yang-Mills field configuration from which a
magnetic monopole originated draws a trajectory of a closed
loop in four-dimensional space-time (as guaranteed from the
magnetic current conservation), while a magnetic monopole is a
point-like object in three-dimensional space-time
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Introduction (cont’) : static potential

quark-antiquark potential arXiv:0911.0755 [hep-lat]

from Wilson loop operator

gauge-independent V(R)=c+ 2 +oR
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Introduction (cont’)

What is a Yang-Mills field configuration which contributes to
the quark confinement, or causes monopole condensations.

* A candidate for such a Yang-Mills field configuration will be
the classical solution of the Yang-Mills field equation, which
is expected to give a dominant contribution to the path-
integral of the Yang-Mills theory.

=2 we look for the Yang-Mills field having a nontrivial topological
invariant with a desire that it could be related to the magnetic
charge in the dual description of the Yang-Mills theory.



Study of topological classical solutions of the Yang-Mills

field equation for zero temperature case

* We cannot find any loop of
magnetic monopole generated
from one-instanton and one-
meron in a numerical way

 The 2-meron (dimeron) as a

non-self-dual solution generates

closed loops of magnetic
monopole, which go through
two poles of the 2-meron in
analytical and numerical way.
Phys.Rev.D78:065033,2008

PoS LAT2009 (2009) 232

ﬁvo—meron
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Monopoles from two-meron  Postar2009 (2009) 232
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The plot of a magnetic-monopole loop generated by a pair of (smeared) merons in 4-dimensional
Euclidean space where, the gap of the energy between region Il and I/I11 smoothed by using sooling
method. The 3-dimensinal plot is obtained by projecting the 4-dimensional dual lattice space to the 3-
dimensional one, i.e., (x; y; z; t) — (y; z; t). The positions of two meron sources are described by solid
boxes, and the monopole loop by red solid line. In the lattice of the volume [-10, 10]3 X [-16, 16] with
a lattice spacing 2 = 1, the two-merons are located at (-1; -1;-1; -1£6:078), and are smeared with the
instanton cap of size R = 3:0 (d = 12, R1 = 2:833 and R2 = 50:833). The monopole loop is confined in
the 3-dim. space x = -1 and in a 2-dim. plane rotated about t-axis

by 0.46rad. (For guiding the eye, the monopole loop is fitted by an ellipsoid curve (blue dotted line)
with the long radius 6 and the short radius 4.)
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* We have discovered in a numerical
way that a loop of magnetic
monopole is from the two-
instanton solution of the Jackiw-
Nohl-Rebbi (JNR) type.

Phys.Rev. D82 (2010) 045015

Two-instanton of 't Hooft type does
not generate the magnetic monopole
loop. We have clarified why the
using a fact that the two-instanton
of 't Hooft type is obtained as a
special limit of JNR solution.
CHIBA-EP-194-KEK-PREPRINT-2012-10
arXiv:1205.4972 (to be published in PRD)

Two-instanton solution \
Al (x) =nj,0,loge(x)

‘t Hooft type
@) =14 Vi) ol
JNR type

k ¢(x) = Zi:o ﬁ /
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JNR type

bg"=(10.100, 0.100, 0.100, 0.100) = bgf=(5.100, 0.100, 0.100, 0.100) =
b,"=(-4.900, 8.760, 0.100, 0.100) by"=(-2.400, 4.430, 0.100, 0.100)
X3 by"=(-4.900, -8.560, 0.100, 0.100) = X3 b,"=(-2.400, 4.230, 0.100, 0.100) =
8.06-05 1.2e-03
7.00-05 1.0e-03
.Ue-
8.0e-00 8.0e-04
4.0e-05 6.0e-04
3.06-05 4.0e-04
f:ggjgg 2.06-04
0.0e+00 0.0e+00
bg"=(20.100, 0.100,0.100, 0.100) = bg"=(15.100, 0.100, 0.100, 0.100) =
y b,"=(-9.900, 17.421, 0.100, 0.100) . b"=(-7.400, 13.090, 0.100, 0.100)
3 b,"=(-9.900, -17.221, 0.100, 0.100) = 3 b,"=(-7.400, -12.890, 0.100, 0.100) =
1.6e-05
1.46-05
1.2e-05
1.0e-05
8.0e-06
6.06-06
4.0e-06
2.06-06
0.0e+00
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Caloron as a classical solution at finite temperature

* To understand the confinement/deconfinement phase
transition in the Yang-Mills theory at finite temperature from
the viewpoint of magnetic monopoles.

 We study in a numerical way whether or not the caloron can
be a source for loops of magnetic monopoles defined in the
space with the period B on R® X S',

* Focusing on the B dependence on the behavior of the
generated loops.



Caloron
The solution of the self-dual equation for the YM field A on R X S':

*Fuw(X) = Fu(X),
where F,, is the field strength of A, and *F,, is the Hodge dual of F,,
Fuw(X) = 5 Av(X) — 0vAL(X) — 1g[ALX), Av(X)],

*Fu(X) = e wvpo F po (X).

Here the periodic boundary condition should be understood on the
gauge field A,(x) defined on R® x SLA,(X,t + B) = A (X 1);
XeR3 te][0, B], x=(Xt),where g is the periodicity or the

circumference of St

A caloron is classified by
e the topological charge Q with the charge density D:

Q= jd3x jf dt DX, 1) = 16”2 jd3xj dt tr[F () *F 0],

e A holonomy:

p
H = lim Pexp{lg IO dt A4(Y,t)},

Xl-o0

J012/s/WHETE P represents a path-grdered. product along S*.




Numerical Method

* To extract magnetic monopoles from a caloron, we use our

new formulation of Yang-Mills theory prog. Theor. Phys. 115, 201
(2006), Eur. Phys. J. C42 475 (2005), Phys. Rev. D 74, 125003 (2006).

— This method enables one to extract magnetic monopoles from the
original Yang-Mills field without breaking the gauge symmetry.

— For SU(2), this is originaly fomulated by Cho-Duan-Ge-Faddeev-Niemi-
Shabanov (CDGFNS) decomposition.

— For SU(2), this is a gauge-invariant extension of the Abelian projection
invented by 't Hooft, while, for SU(3) this method does not necessarily
reduce to the Abelian projection and there appear non-Abelian

magnetic monopoles.
* To perform in the numerical way, we introduce the lattice

version of the decomposition. Phys. Lett. B 632, 326 (2006), Phys. Lett. B

645, 67 (2007), Phys. Lett. B 653, 101 (2007), Proc. Sci., LATTICE2007 (2007) 331,
Proc. Sci., LATTICE2008 (2008) 268, PoS LAT2009:232,2009
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Numerical Method: gauge configuration on a lattice

« A fundamental variable on a lattice is a link variable, and a gauge
configuration is presented by the link variable.

« To represent the instant solution on a lattice, we introduce a finite
volume hyper cubic lattice:
— Open boundary condition for space direction <R3
— Periodic boundary condition with size 3 for temporal direction <S1

A link variable Uy, is related to a gauge field A, in a continuum theory by
A N-1
. X+ajt
U = Pep{—ig | dyAun | = P[] Uss,
X j=0

where a is a lattice spacing and [i represents the unit vector in the u direction. A link

variable is calculated by path ordered product of the B-divided parallel transporter,
where j-th element is defined by

—i | j+1 .
Uiju = exp%{Aﬂ(x + Jﬁe,u) + A (X + JTE.U)}
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The decomposition of link variables: SU(2)

(X, x+u)eC M-YM

Wc[U] = Tr[P I] UX,HJ/Tr(l) Uy, Ny

Uxy = XxuVixu [SU@)], x [SUR)/U(D)],

Kreduction ]
UX,u — U;(,/,t — Qxe,‘uQ;r(-hu
Viu = Vi = QxVx,HQ;w Yang-Mills @
theory
o X! — 1
XX,‘u XX,,U QXXX,‘HQX [SU(Z)](D Uaj’/l’ [SU(Z)]@ZO_VX”L“ XX“u

iy

Welvl =T P[] Vau /O fwe[u] = constWe[v] 1)
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Reduction condition: determining color field n

* By minimizing the functional
Fln; Ukl = 35, tr] (D5[UInx)' (DS[UINy) ]
* Because of the finite size lattice, we need to decide a
boundary condition of the n configuration:
We recall that one-caloron configuration approaches a pure gauge at
spatial infinity [X|- oo
gA.U(Yi t) - ihT(Y, t)&uh(f(', t) + O(Rl—Z)

Then, n(x) as a solution of the reduction condition is supposed to
behave asymptotically as

nX 1) » h'(X, )Tsh(X, 1) + O(X|™),
for a certain value of ¢ > 0. Under this idea, we adopt a boundary
condition:

N = hi(X, H)Tsh(X,t), X € 6Vgs.



CFNS decomposition on a lattice (cont’)

* We obtain the solution (see Phys.Lett.B691:91-98,2010)

After obtaining the ny configuration for given configurations Uy, in this way,

we introduce a new link variable Vy , on a lattice corresponding to the restricted
field (ref: V) by

Lyu
J 3 trLeulin]

Lx,‘u = Ux”u + nxUX,unx+aﬁ.

Vx"u —

Note that if the YM gauge link is fixed to the MA gauge, the color filed is given by
Ny = T3 and the decoposed variable Vyis obtained by Abalian projection

. . _ 2
Vyu = Uol + IU3073 with Uy, = Upl + 1 Zk=1 UkOok

JU3 + u3
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Wilson loop operator & magnetic monopole on a lattice

Non-Abrelian Stokes’ theorm e.g. K.-I. Kondo PRD77 085929(2008)

tr[ Pexpig :f dx“A . (X) :|/tr(1) - j [du(&)], exp{ j o dSW]-",W[V]}
C o

Jiu@1. exp io [Nt oz + g [Nk . |

=y = *d@zA‘l = 0 * @zA‘l,Nz = 5@2A‘1
D-dimensional Laplacian A = dé + &d

Oy : the vorticity tensor with support on the surface X¢ sppaned by Willson loop C
64/ (0) = [ dS"(X(0))5"(z - X(0)
by

|—| >((WC[V]> (We[Monol) <exp{ > ka, M_M}>\

lattice Ne,pu = ;kﬂ — 4—6qu081/-7:3:,,00

version fx,/ﬂ/ = a’r‘gTT‘[(l + na:)ViI?,I.LV.’j;‘+[.L r/VaL—y 7 33,1/]
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HS caloron

Li| B || |kep| 1 kepp=—1 kppo =0 kyp = 1) Qv
(a) || 10{1.0 0 3 13729992 4 0.952
(b)|[20]2.0 0 8 13729984 & 0.975
(e) || 30(3.0 0 8 137299584 8 0.980
(d)||40{4.0 0 8 13729984 5 (0.983

TABLE I: The distribution of generated configurations of k. ,
and the charge )y for the HS caloron on the lattice with a
volume V = (2al.)%al; with fixed L. = 35 and various
Ly = 10,20,30,40 (with a = 0.1).
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x4=(0.050, 0.050, 0.050, 0.050) =
x*4=(0.050, 0.050, 0.050, 0.050) =

1r t
2 —
15
2.0e-04
1 1.8e-04
1.6e-04
12
.2€E-!
05 1.0e-04
8.0e-05
6.0e-05
1.8 4.0e-05
2.0e-05
0.0e+00
| | | |
g.ge-gg | 1.2e-04
.Ue-
1.0e-04
7.0e-05
g.ge-gg 8.0e-05
.Ue-
6.0e-05
4.0e-05
g.ge-gg i 4.0e-05
.Ue-
2.0e-05
1.0e-05
0.0e+00 I 0.0e+00
5
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HS caloron

B. J. Harrington and H. K. Shepard ; PRD17, 2122--2125(1978).
e one-caloron having a unit topological charge O=1
e trivial holonomy H=1 for the gauge group SU(2)

gAL (X t) = —n ‘TS, log¢(X, 1),

Ap? sinh(AX — Xo|)
2X — Xo| cosh(AX — Xg|) — cos(A(t —tg))

where Tap = oa/2 (oa: Paull matrices) and nﬁéi) Is the symbol defined by

(X, t) = 1+

= €auva £ Opu0va F 0Av0 4.

Here x; = (Xo,t0) is the center parameter and p is the size parameter,
and A is the parameter associated with g by A = 2x/p.
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KvBLL caloron

C. Kraan, van Baal NPB 533 627(1998) & K.Lee, C.Lu PRD58 025011(1998)
* one-caloron having a unit topological charge O=1
 trivial holonomy H#1 for the gauge group SU(2)

ReM = (M + M")/2 for the matrix, @ =

€:|€

<>
|

—cos(u(t —to)) + cosh(w[r]) cosh(v[s]) + lﬂﬂ smh(wlﬂ) sinh(v[s)),

v =y+ 4T smh(wl?]) sinh(VE]) + 55— cosh(w|?1) sinh(V[g) +
¢ = Mpz( ety SINNQVED smh(w|?|)

lﬂ smh(wlﬂ) cosh(v[s)),

2y 5] i
u:%f, v=%, w=—2”ﬂ_9=y—v,
T=X-%+ 2/39, S=X-%o 25 v0, 6 = (0,0,0),

where x5 = (Xo,to) and p are respectively the center and the size parameters, and 0 is the

parameter related to the holonomy. The KvBLL caloron is characterized by the parameters
X, 02 3/1-23 HIEDEFRETDISH




KvBLL caloron

nontrivial holonomy H is fixed by taking 6=m.

Li| B || |kep| 1 kepp=—1 kepp =0 ke p =1|] Qv
(a) | 10{1.0 0 10 13719980 10 0.973
(b)|[20]2.0 0 22 13719956 22 0.986
(e)||30]3.0 0 12 13719976 12 0.987
(d)|[40]4.0 0 8 13719954 8 0.987

TABLE II: The distribution of generated configurations of
k., and the charge (} for the KvBLL caloron on the lat-
tice with a volume V = {QELJ,}JEL! with fixed L. = 35 and
various L, = 10, 20, 30,40 (with a = 0.1).
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p,"=(0.050, 0.050, 1.620, 0.050) = p4"=(0.050, 0.050, -0.474, 0.050) =

. p2u=(0_050, 0.050, -1.620, 0.050) t p2u=(0.050, 0.050, 0.574, 0.050)
3 —
5.0e-05
6.0e-05 2:56-05
5.0e-05 gge-gg
4.0e-05 30e-08
3.0e-05 2500
2.0e-05 Jde-gg
1.0e-05 5 06-08
0.0e+00 0.0e+00
p4'=(0.050, 0.050, -0.343, 0.050) =
Ho
¢ p>"=(0.050, 0.050, 0.443, 0.050) p,#=(0.050, 0.050, -0.735, 0.050) =
¢ p,"'=(0.050, 0.050, 0.835, 0.050)
2 —
6.0e-05 1.5

5.0e-05 3.0e-05
4.0e-05 1 2.5e-05
3.0e-05 2.0e-05
2.0e-05 0.5 1.5e-05
1.0e-05 1.0e-05
0.0e+00 O 5.0e-06
. 0.0e+00

3
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B dependence of monopole loops

p in the range p?=1,2,3,4,5. FIG.
shows whether the resulting
magnetic loop winds or not along
S for various choices of Lt and p.

FIG. indicates that the critical
circumference Bc at which the
winding number of the loop
varies exists and that Bc depends
on p: Bc and p have a positive
correlation, which is
schematically shown in FIG.
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Summary and Discussion

* We have investigated the possible magnetic monopole content
in the one-caloron solution, i.e., a periodic self-dual solution of
the Yang-Mills field equation with the period B defined on R® X S'.

 We have shown in the numerical way

— the one-caloron solution with nontrivial holonomy, i.e., KvBLL
caloron, can be a source of the closed loop of magnetic
monopoles

— while the one-caloron with trivial holonomy, i.e., HS caloron,
does not generate the magnetic monopole loop.

* The magnetic loop generated from the KvBLL caloron changes its
topological behavior depending on the magnitude of the

periodicity B, which is the length of the circumference of S'in
R3 XS,



* Since the B is identified with the inverse temperature T™'in the
Yang-Mills theory at finite temperature,

— this result could be a clue to understand the phase transition
from confinement phase to the deconfinement phase at
finite temperature from the viewpoint of magnetic monopole
according to the dual superconductor picture for the QCD
vacuum



