
Equilibration of Saler Fields in an Expanding SystemAkihiro Nishiyama1 and Yoshitaka Hatta21Maskawa Institute for Siene and Culture, Kyoto Sangyo University, Kyoto 603-8555, Japan,2 Graduate Shool of Pure and Applied Sienes, University of Tsukuba, Ibaraki 305-8571, JapanSeptember 28, 2012AbstratWe present numerial analyses of nonequilibrium �eld theoretial approah of O(N) saler modelwith longitudinal expansion in 2+1 dimensions. We inlude Next-to-Leading Order of 1=N expan-sion as self energy in the presene of bakground lassial �eld. We ompare quantum dynamisand lassial statistial approximation. Then we see the di�erene of two approahes in �nal dis-tribution funtions in strongly oupled regimes, where Boltzmann tail of distribution funtion isgiven only in quantum dynamis.1 IntrodutionReently experiments have been done to reate and study Quark-Gluon Plasma (QGP) by ollidingtwo nulei at enter-of-energy 200GeV at RHIC and 2.76TeV at LHC. For produed QGP nearlyideal hydrodynamis sueeds in desribing dynamis after thermalization of Glasma, for whihinitial ondition is given by lassial longitudinal olor eletri and magneti �elds with vauumquantum utuations. Its suess is based on early thermalization of Glasma teq = 0:6-1:0fm=[1℄. This time sale is omparable with the formation time of partons [2℄. Then normal partonpiture might fail to desribe thermalization of Glasma, where parton piture estimates 2-3 fm=[3℄.Hene it is neessary to adopt dynamis beyond parton piture. Furthermore other instability orlassial statistial approahes do not desribe late-time Bose-Einstein distribution. Thus we shouldadopt approahes whih desribe late time true thermalization. As a andidate of approahesthat are beyond the parton piture and desribe late time Bose-Einstein distribution, we adoptnonequilibrium quantum �eld theoretial approah, whih is represented by Kadano�-Baym(KB)equation [4℄ with equation of motion of lassial �elds.One of the merits of solving these equation is that �eld-partile onversion ours. If partiles areprodued from lassial �elds, they ollide eah other, so that late time Bose-Einstein distributionis realized. The other merit is presene of the spetral funtion with �nite deay width, whihindues rapid hange of distribution funtion due to 2-to-2 ollisions ompared with semi-lassialBoltzmann equation. They might play a signi�ant role in desribing early thermalization of gluons[5℄. Setion 2 is devoted to introdution of time evolution equation for lassial �elds and quantumutuations. In Se. 3 we give numerial results. We summarize our work in Se. 4.2 Time evolution equationIn this setion we write down KB equation and time evolution equation of lassial �elds. First westart with ation of salar O(N) model,S = Z dd+1x �12��a��a � 12m2�a�a � �24N (�a�a)2� ; (1)
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where partile omponents a runs over 1, � � �; N and d represents the spatial dimension. Themerit of adopting this model is to over all time evolution of instability by use of 1=N expansion.Then the equations of motion of lassial �elds ��a � h�ai = ��Æa1 and quantum utuationsFab(x; y) � 12 hf~�a(x); ~�b(y)gi �ab(x; y) � h[ ~�a(x); ~�b(y)℄i (that are Fourier transformed), where~�a = �a � ��a, are given by24�2� + 1� �� +m2 + �6N 0���(�)2 + F11(�; �) +Xb 6=1 Fbb(�; �)1A35 ��(�) = � Z ��0 � 0d� 0��11(�; � 0)��(� 0); (2)G�10 F (�; � 0; p) = � Z ��0 � 00d� 00��(�; � 00; p)F (�; � 0; p) + Z � 0�0 � 00d� 00�F (�; � 00; p)�(� 00; � 0; p); (3)G�10 �(�; � 0; p) = � Z �� 0 � 00d� 00��(�; � 00)�(�; � 0; p); (4)G�10 � " �2��2 + 1� ��� + p2��2 + p2T# Æab +M2ab(��)Here we adopt proper time � = pt2 � z2, rapidity � = tanh�1 zt and its Fourier transformed p�to treat longitudinal expansion (we adopt spatial homogeneity) and set initial time �0, loal massshift Mab(��) and Next-to-Leading Order self-energy �F;� of 1=N expansion whih ontains 2-to-2ollisions non-perturbatively.As an initial ondition, we set ��a(�0) = q 6N� �Æa1 with vauum quantum utuations for Fand �. Numerial simulations are done in 2+1 dimensions for strongly oupled � = 10 regimes inan expanding system. Then we ompare quantum dynamis and lassial statistial approximationwhih omit �� terms in self-energy [5, 6, 7℄.3 Numerial analyses in 2+1 dimension
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Figure 1: Time evolution of thelassial �eld �� for quantum (blak solid line)and lassial statistial approximation(red dashed line).
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τ/τ0Figure 2: Time evolution ofF11(�; �; p� = 0; pT = 0; ��=8; ��=4)for for quantum (blak solid line)and lassial statistial approximation(red dashed line).In this setion we show time evolution of lassial �eld ��(�) (Fig. 1) and statistial funtionsF11(�; �; p) (Fig. 2). In Fig.1 lassial �elds damps (due to ��� �� term in Eq. (2)) with osillation.2



Then �eld partile onversion ours, whih means that partile prodution ours due to deay oflassial �elds. Time evolution of F in Fig.2 shows this partile prodution, where F hanges fromO(1) to O(1=�). Finally we present the distribution funtion np (Fig. 3) by use of funtional �t F =C�pm2eff+p2T �np + 12� where C and me� are �tting parameter. In quantum dynamis the distributionfuntion is Bose-Einstein type and shows Boltzmann tail (np = 1epT =T�1 with temperature T ) , whileit gives power law np = TpT � 12 in lassial statistial approximation. In lassial approah truethermalization is not realized.
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Figure 3: Number distribution funtion np at late time �=�0 = 150.4 SummaryIn this work we have solved the Kadano�-Baym equation and time evolution equation of lassial�elds for O(N) salar model in a spatially homogeneous expanding system in 2+1 dimensions. Wehave inluded NLO nonloal self-energy representing 2-to-2 by use of 1=N expansion whih oversall time evolution of instability of F from O(1) to O(1=�). In strongly oupled regimes � = 10, whilequantum dynamis shows Bose-Einstein distribution, lassial statistial approximation gives powerlaw behavior in distribution funtion, whih is not true thermalization. Thus we need quantumdynamis in order to realize the Bose-Einstein distribution.Referenes[1℄ U. W. Heinz and P. F. Kolb, Nul. Phys. A702 (2002), 269; U. W. Heinz, AIP Conf. Pro.739 (2005), 163.[2℄ B. Muller and A. Shafer, Phys. Rev. C 73 (2006) 054905 [arXiv:hep-ph/0512100℄.[3℄ R. Baier, A. H. Mueller, D. Shi� and D. T. Son, Phys. Lett. B 502 (2001) 51 [arXiv:hep-ph/0009237℄.[4℄ L.P. Kadano� and G. Baym, Quantum Statistial Mehanis (Benjamin, New York, 1962);G. Baym, Phys. Rev. 127 (1962) 1391.[5℄ Y. Hatta and A. Nishiyama, Phys. Rev. D in press.[6℄ J. Berges, S. She�er and D. Sexty, Phys. Rev. D 77, 034504 (2008) [arXiv:0712.3514 [hep-ph℄℄.[7℄ T. Epelbaum and F. Gelis, Nul. Phys. A 872, 210 (2011) [arXiv:1107.0668 [hep-ph℄℄.
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