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Abstract

We present numerical analyses of nonequilibrium field theoretical approach of O(N) scaler model
with longitudinal expansion in 2+1 dimensions. We include Next-to-Leading Order of 1/N expan-
sion as self energy in the presence of background classical field. We compare quantum dynamics
and classical statistical approximation. Then we see the difference of two approaches in final dis-
tribution functions in strongly coupled regimes, where Boltzmann tail of distribution function is
given only in quantum dynamics.

1 Introduction

Recently experiments have been done to create and study Quark-Gluon Plasma (QGP) by colliding
two nuclei at center-of-energy 200GeV at RHIC and 2.76TeV at LHC. For produced QGP nearly
ideal hydrodynamics succeeds in describing dynamics after thermalization of Glasma, for which
initial condition is given by classical longitudinal color electric and magnetic fields with vacuum
quantum fluctuations. Its success is based on early thermalization of Glasma teq = 0.6-1.0fm/c
[1]. This time scale is comparable with the formation time of partons [2]. Then normal parton
picture might fail to describe thermalization of Glasma, where parton picture estimates 2-3 fm/c[3].
Hence it is necessary to adopt dynamics beyond parton picture. Furthermore other instability or
classical statistical approaches do not describe late-time Bose-Einstein distribution. Thus we should
adopt approaches which describe late time true thermalization. As a candidate of approaches
that are beyond the parton picture and describe late time Bose-Einstein distribution, we adopt
nonequilibrium quantum field theoretical approach, which is represented by Kadanoff-Baym (KB)
equation [4] with equation of motion of classical fields.

One of the merits of solving these equation is that field-particle conversion occurs. If particles are
produced from classical fields, they collide each other, so that late time Bose-Einstein distribution
is realized. The other merit is presence of the spectral function with finite decay width, which
induces rapid change of distribution function due to 2-to-2 collisions compared with semi-classical
Boltzmann equation. They might play a significant role in describing early thermalization of gluons
[5].

Section 2 is devoted to introduction of time evolution equation for classical fields and quantum
fluctuations. In Sec. 3 we give numerical results. We summarize our work in Sec. 4.

2 Time evolution equation

In this section we write down KB equation and time evolution equation of classical fields. First we
start with action of scalar O(N) model,
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where particle components a runs over 1, - - -, N and d represents the spatial dimension. The
merit of adopting this model is to cover all time evolution of instability by use of 1/N expansion.
Then the equations of motion of classical fields ¢, = ($,) = ¢da1 and quantum fluctuations
Fo(z,y) = %({qza(ac),gi;b(y)b Pab(z,y) = ([gi;a(ac),gi;b(y)b (that are Fourier transformed), where

P = ¢a — an: are given by
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Here we adopt proper time 7 = v/#2 — 22, rapidity n = tanh ™' 7 and its Fourier transformed p,
to treat longitudinal expansion (we adopt spatial homogeneity) and set initial time 79, local mass
shift M,;(¢) and Next-to-Leading Order self-energy $¥# of 1/N expansion which contains 2-to-2

collisions non-perturbatively.

As an initial condition, we set ¢, (1) = ,/%Jéal with vacuum quantum fluctuations for F'

and p. Numerical simulations are done in 241 dimensions for strongly coupled A = 10 regimes in
an expanding system. Then we compare quantum dynamics and classical statistical approximation
which omit pp terms in self-energy [5, 6, 7).

3 Numerical analyses in 241 dimension
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Figure 2: Time evolution of

Fll(Ta T,Pn = 0,pr =0, 7T0-/87 7T0-/4)
for for quantum (black solid line)

and classical statistical approximation
(red dashed line).

In this section we show time evolution of classical field ¢(r) (Fig. 1) and statistical functions
Fy1(r,7,p) (Fig. 2). In Fig.1 classical fields damps (due to 2=¢ term in Eq. (2)) with oscillation.

Figure 1: Time evolution of the

classical field ¢ for quantum (black solid line)
and classical statistical approximation

(red dashed line).



Then field particle conversion occurs, which means that particle production occurs due to decay of
classical fields. Time evolution of F in Fig.2 shows this particle production, where F changes from
O(1) to O(1/X). Finally we present the distribution function n, (Fig. 3) by use of functional fit F' =

¢ l) where C' and meg are fitting parameter. In quantum dynamics the distribution
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function is Bose-Einstein type and shows Boltzmann tail (n, = ——}— with temperature T') , while
ePT/ T —1
it gives power law n, = plT — % in classical statistical approximation. In classical approach true
thermalization is not realized.
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Figure 3: Number distribution function n, at late time 7 /75 = 150.

4 Summary

In this work we have solved the Kadanoff-Baym equation and time evolution equation of classical
fields for O(N) scalar model in a spatially homogeneous expanding system in 241 dimensions. We
have included NLO nonlocal self-energy representing 2-to-2 by use of 1/N expansion which covers
all time evolution of instability of F' from O(1) to O(1/)\). In strongly coupled regimes A = 10, while
quantum dynamics shows Bose-Einstein distribution, classical statistical approximation gives power
law behavior in distribution function, which is not true thermalization. Thus we need quantum
dynamics in order to realize the Bose-Einstein distribution.
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