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The dynamical chiral symmetry breaking and the color superconductivity in finite density QCD
are analyzed using the non-perturbative renormalization group (NPRG) approach. We show that
an approximation almost respecting the gauge independence can be realized in the framework of
NPRG, and also report the result of analyzing the “ladder approximated” color superconductivity.
The non-ladder extended approximation at finite density encounters a singularity of the β function
for the 4-fermi coupling constant as long as the normal regulator functions are used.

Introduction.—The dynamical chiral symmetry break-
ing (DχSB) has been analyzed by non-perturbative ap-
proaches such as the lattice simulation, the Schwinger-
Dyson (SD) equation and so on. The lattice simulation
is a most powerful tool to analyze QCD, but the sim-
ulation in the dense QCD is essentially difficult due to
its sign problem. On the other hand, the SD approach
does not suffer from the sign problem. Unfortunately,
however, it is difficult to solve the SD equation beyond
the ladder approximation, which has the strong gauge
dependence of the physical quantities. Including the cor-
rections of the non-ladder diagrams, which are crucial to
recover the gauge independence, is difficult in the SD ap-
proach. In contrast to them, the non-perturbative renor-
malization group (NPRG) approach does not have the
sign problem and may include the non-ladder corrections
using the systematic approximation.
In this article, we show that in the NPRG approach we

can define an approximation almost respecting the gauge
independence. (The detailed discussion can been found
in [1].) Also we report the result of analyzing the color
superconductivity (CS), which is theoretically expected
in dense QCD.
Effective action.—In order to evaluate the DχSB and

the CS in QCD, we use the Wetterich-type flow equa-
tion [2] as a formulation of NPRG. The flow equation is
a functional differential equation of the effective action
ΓΛ[Φ], which is defined by suppressing the corrections of
the quantum fluctuation with the momentum lower than
the scale Λ, that is the infrared cutoff. Therefore, solving
the flow equation toward the infrared limit, we obtain the
full effective action, which is corrected by the full quan-
tum fluctuations without the infrared cutoff, from a bare
action of theories such as QCD. Here we skip the details
of the flow equation (see reviews [3]).
The Wetterich-type flow equation is an exact equation

giving the full effective action, however we cannot ex-
actly solve it. For an approximation, we project the full
operator space of the effective action of QCD onto the
subspace of the following effective action:
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where the ghost sector is not displayed for simplicity. The
operator subspace consists of the operators of the bare
QCD action and the multi-Fermi operators V (ψ, ψ̄; Λ),
which we call the fermion potential. The β function

for the gauge coupling constant agrees with the result of
the one-loop perturbation theory because we ignore the
higher dimensional operators including the gluon fields.
Here we concentrate on evaluating the β function for the
fermion potential, which plays the most important role
for the DχSB. Note that we work with the only fermion
operators without relying on the bosonization as adopted
in [4–6].

Lowering the cutoff scale, the gauge interaction induces
the infinite number of multi-Fermi operators. Especially
the 4-Fermi operator, whose β function is diagrammat-
ically represented in Fig. 1, brings about the DχSB at
an intermediate scale as the Nambu–Jona-Lasinio model
does. All the possible multi-Fermi operators cannot be
evaluated, and we extract a class of the multi-Fermi op-
erators relevant to the DχSB. They are the scalar multi-
Fermi operators represented by powers of σ(≡ ψ̄ψ), and
hence we evaluate the fermion potential as a function of
σ, V (σ; t).

Furthermore we need to limit the infinite number of in-
teractions to constitute the β function. At first, we select
the infinite number of the ladder type diagrams. The lad-
der diagrams of the the 4-Fermi β function correspond to
the ones surrounded by the dashed line in Fig. 1. Then,
the ladder-approximated flow equation [4] is given by the
following partial differential equation (PDE),
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where the ξ is the gauge-fixing parameter of the covariant
gauge, C2 is the second Casimir invariant of the quark
representation in SU(3) and αs(≡ Z2

1 ḡ
2
s/4πZ

2
ψZA) is the

running gauge coupling constant which obeys the one-
loop perturbation theory. We introduce the infrared cut-
off which stops running of the gauge coupling constant
in order to take into account of the confinement [7]. The
anomalous dimension of the quark field, ηψ, is evaluated
at σ = 0 using the momentum scale expansion as the
sharp cutoff regulator function [8] is used here. We note
that the ladder flow equation (2) gives the result equiv-
alent to the improved ladder SD equation in the Landau
gauge [4].

Solving the flow equation as PDE—Usually, in order to
solve the flow equation, we expand the equation with re-
spect to polynomials in the field operators, and define the
coupled ordinary differential equations for the coupling
constants of operators. The coupled equations, namely
the RG equations, are numerically solvable, but the RG
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FIG. 1: β function for the 4-Fermi operator.

flow cannot go below a critical infrared scale Λc because
the flow of the 4-Fermi coupling constant diverges at Λc.
Actually, the infrared singularity is related to the DχSB
by the correspondence between the 4-Fermi coupling con-
stant and the susceptibility of the system, that is, the
inverse mass of the composite channel meson.
Here we go beyond the critical scale Λc by solving the

flow equation as a partial differential equation (PDE)
without the bosonization and the field operator expan-
sion. In the practical analysis, using the grid method,
we numerically solve the PDE of the mass function
M(σ; t) ≡ ∂σV (σ; t), which is obtained by differentiat-
ing the flow equation (2). As realized by the name of the
mass function, its value at σ = 0 is the effective quark
mass.
The mass function is an odd function of σ because

the operator subspace has the discrete chiral symmetry
where the fermion potential is invariant under the γ5
transformation: σ → −σ (ψ → γ5ψ, ψ̄ → ψ̄γ5). There-
fore the mass function at σ = 0 vanishes due to the chiral
symmetry as long as it maintains the continuity. The nu-
merical solution of the PDE of the mass function is shown
in Fig. 2. The mass function at the ultraviolet scale,
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FIG. 2: Revolution of the mass function

namely its initial condition, vanishes since the bare QCD
action has no multi-Fermi operators. Lowering the cut-
off scale Λ(t), the mass function grows up, but its value
at the origin keeps vanishing above the critical scale Λc

due to the chiral symmetry as noted above. At the scale
Λc the slope of the mass function at the origin diverges.
This divergence corresponds to the infrared singularity of
the 4-Fermi coupling constant, which is the signal of the
DχSB in the fermionic system. Below the critical scale,
the function loses the analyticity at the origin , and it
has the finite jump around the origin. Actually it is im-
possible to solve the PDE with such singular point. In
the practical numerical computation, we drop the singu-
lar point by transforming σ to the logarithmic variable
x = log σ. A solution allowing singular points can be
mathematically authorized as a global solution, which is
called the weak solution [9].

Beyond “the ladder”—The ladder approximation suf-
fers from strong gauge dependence of the physical quan-
tities. As for the β function for the 4-Fermi coupling
constant, the contributions of the pair of the box and
the crossed box diagrams surrounded by a red dashed
line in Fig. 1 are crucial for the gauge independence.
So we attempt to include such paired contributions of
non-ladder diagrams at all orders. For this purpose, we
introduce the corrected vertex, which consists of the lad-
der element and the crossed ladder element as shown in
Fig. 3 [5]. Here the ingoing (outgoing) external line de-
notes a quark (antiquark) field, and the internal quark
line denotes the dressed propagator, which consists of
the infinite number of the ladder (large-N leading) inter-
actions of the multi-Fermi operators as shown in Fig. 4.
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FIG. 3: Corrected vertex.
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FIG. 4: Dressed inverse propagator of the fermion.

Now the non-ladder extended flow equation for the
fermion potential are represented by the infinite number
of the ladder form diagrams using the corrected vertex,
and can be summed up by the logarithmic functions as
follows,
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where B =M + 2Λ−2C2αsσ and G = 2Λ−2C2αsσ. Here
the commutator contributions of the generator of the
SU(3)c is ignored, that is, the interactions are evaluated
by Abelian factors only.

FIG. 5: Non-ladder extended flow equation

Numerical results—Evaluating the PDEs (2) or (3),
we obtain the dynamical mass, defined by mdyn. =
limσ→+0 limt→∞M(σ; t), the chiral order parameter.
Moreover, we also obtain the chiral condensates
〈ψ̄ψ〉1GeV (renormalized at 1 GeV) by introducing the
bare mass term as its source term.

Figs. 6 and 7 show the gauge dependence of the chi-
ral condensates and the dynamical mass, respectively.
These results show that the chiral condensates obtained
by the non-ladder flow equation (3) are much more sta-
ble against the gauge-fixing parameter than the ones ob-
tained by the ladder approximated flow equation (2).
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However the dynamical mass looks different. Indeed
the dynamical mass is an off-shell quantity that is non-
observable, although the chiral condensates are the ob-
servable. Therefore we claim that the non-ladder ex-
tended flow equation respects the gauge invariance for
the physically observable quantities. Here it should be
noted that, in the Landau gauge (ξ = 0), the almost
gauge independent non-ladder result of the chiral con-
densates coincides with the gauge dependent ladder one.
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FIG. 6: Gauge dependence of the chiral condensates 〈ψ̄ψ〉1GeV
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FIG. 7: Gauge dependence of the dynamical mass (mdyn.).

Color superconductivity—In extremely dense matters
such as the interior of compact stars, the color supercon-
ductivity (CS) is theoretically predicted, where the color
antisymmetric diquark pair behaves like the Cooper pair
in the BCS theory due to its attractive channel of ex-
changing gluons. In the rest of this article, we show the
result of analyzing the two flavor color superconductiv-
ity (2SC) with the massless quarks. So as to evaluate the
2SC in our framework, we extract the diquark-type scalar
operator, ∆ ≡ ψ̄Ciσ2λ2γ5ψ+ ψ̄iσ2λ2γ5ψ

C , where σ2 and
λ2 are the antisymmetric elements of the Pauli matrices
in the flavor space and the Gell-Mann matrices in the
color space, respectively. Using the ladder approxima-
tion, we can write down the flow equation (PDE) of the

fermion potential which is a function of two variables,
σ and ∆. Fig. 8 shows the dependence on the density
µ of the chiral condensates 〈ψ̄ψ〉1GeV and diquark con-
densates

∣∣〈ψ̄Ciγ5σ2λ2ψ〉1GeV

∣∣ calculated by the PDE. In-
creasing the density, the chiral condensates vanishes at
the critical density, µc = 0.43 GeV, and the diquark con-
densates has a finite value at this density µc.

The ladder approximated result has strong gauge de-
pendence, and therefore we extend the approximation
to the non-ladder one. However the non-ladder β func-
tion for the 4-Fermi coupling constant has a singularity
around µ ∼ 0.3 MeV. This singularity is induced by the
non-ladder type diagrams in Fig. 1. The loop integrals of
these diagrams has a singular factor, 1/(Λ2−µ2+m2), as
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FIG. 8: Phase transition of the chiral symmetry and color
superconductivity at finite density. 〈σ〉 and 〈∆〉 denote the
chiral condensates and the diquark condensates, respectively.

long as the diquark condensates vanishes. This singular-
ity should be distinguished from the infrared divergence
of the 4-Fermi coupling constant induced by its quadratic
term in the β function.

We guess the β function singularity of the non-ladder
diagrams comes from the fact that the regulator function
does not properly evaluate the fluctuations of the modes
around the Fermi surface. Therefore, by adopting an ap-
propriate regulator function respecting the Fermi surface
structure, we may resolve the singularity problem.

Conclusion—We developed a non-ladder extended flow
equation of the fermion potential in QCD, and it gives
gauge independent results for the chiral condensates. We
also analyzed the finite density QCD and showed the
phase transition between the dynamical chiral symmetry
breaking and the color superconductivity. Non-ladder ex-
tension of the finite density system has a new singularity
which requires improvement of the regulator function.
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