

格子上の細谷機構

「幡中久樹[H. Hatanaka] (KIAS) G. Cossu(KEK), Y. Hosotani (Osaka U), E. Itoh (KEK), J. Noaki (KEK) との共同研究 (論文:coming soon)

基研研究会「熱場の量子論とその応用」

2013/Aug/26

ロイントロダクション 摂動論での計算と予想 格子ゲージ理論での計算結果 まとめと展望

※基研研究会「素粒子物理学の進展2013」での野秋氏の講演も参照ください

□細谷機構(Hosotani mechanism)[Hosotani('83)]

- コンパクト化した余剰次元を回るWilson-loopの
 真空期待値でゲージ対称性を破る
- □応用:素粒子現象論における「ゲージ・ヒッグス 統合模型」[Manton('74), H-Inami-Lim('98)]

ロヒッグスの質量が2次発散する問題を解決

■ 動的な起源: Coleman-Weinberg型の量子補正に よる

□これまでの研究は主に1ループ摂動論の範囲内

□ 摂動によらない手法へ

□ ヒッグス質量の有限性を非摂動的にも確認したい

□ 非摂動的な解析:格子ゲージ理論 □ ユークリッド化した理論での対応

□ 余剰1次元がコンパクト化した3+1次元理
 論⇔有限温度の場の理論

□ウイルソンライン⇔ポリヤコフライン

□余剰次元方向のフェルミオンのtwisted b.c.⇔虚 数化学ポテンシャル

□まずとっかかりとして両者の対応を確認する

摂動論での解析

□ 3 + 1 次元でのSU(3)ゲージ理論の 1 ルー プ摂動論

ケース1ーゲージ場と随伴表現フェルミオン
 ュ主にフェルミオン質量への依存性を見る
 ケース2ーゲージ場と基本表現フェルミオン
 ュ主にフェルミオン境界条件への依存性を見る
 ウイルソンラインの真空期待値の周りでの摂動論

$2\pi Rg\langle A_y \rangle = \operatorname{diag}(\theta_1, \theta_2, \theta_3)$

有効ポテンシャル

$$\begin{split} &2\pi Rg \langle A_y \rangle = \operatorname{diag}(\theta_1, \theta_2, \theta_3) \\ &V_{\mathrm{eff}} = V_{\mathrm{eff}}^{\mathrm{g+gh}} + N_{\mathrm{f}} V_{\mathrm{eff}}^{\mathrm{f}} + N_{\mathrm{ad}} V_{\mathrm{eff}}^{\mathrm{ad}} \\ &V_{\mathrm{eff}}^{\mathrm{g+gh}}(\theta_j) = (d-2) \sum_{j,k=1}^{3} V(\theta_j - \theta_j, 0), \\ &V_{\mathrm{eff}}^{\mathrm{f}}(\theta_j) = -2^{\lfloor d/2 \rfloor} \sum_{j=1}^{3} V(\theta_j + \alpha_{\mathrm{f}}, m_{\mathrm{f}}), \\ &V_{\mathrm{eff}}^{\mathrm{ad}}(\theta_j) = -2^{\lfloor d/2 \rfloor} \sum_{j,k=1}^{3} V(\theta_j - \theta_k + \alpha_{\mathrm{ad}}, m_{\mathrm{ad}}), \end{split}$$

$$V(\theta,m) = -\frac{\Gamma(d/2)}{\pi^{d/2}(2\pi R)^{d-1}} \sum_{n=1}^{\infty} \frac{\cos n\theta - 1}{n^d} B_{d/2}(2\pi nRm)$$

$$B_{d/2}(x) \equiv \frac{x^{d/2} K_{d/2}(x)}{2^{\frac{d}{2}-1} \Gamma(d/2)}, \quad B_{d/2}(0) = 1$$

d : (余剰次元を含む)時空の次元

B_{d/2}はフェルミオン質量による 抑制因子を表す

2013/Aug/26

2

基研研究会「熱場の量子論とその応用」

,

6

ゲージ場+随伴表現フェルミオン

フェルミオンの寄与の大きさにより、 ゲージ対称性が破れのパターンが変わる 周期的境界条件のとき

 $\begin{array}{ll} 0.499 < m_{ad}R & :U(1)^2 \quad [\text{reconfined phase}] \\ 0.421 < m_{ad}R \leq 0.499 & :SU(2) \times U(1) \quad [\text{split phase}] \\ 0 \leq m_{ad}R \leq 0.421 & :SU(3) \quad [\text{deconfined phase}] \end{array}$

各相の名前はCossu-D'Elia (2009)から採った

ポリャコフライン P₃ = $\frac{1}{3}(e^{i\theta_1} + e^{i\theta_2} + e^{i\theta_3})$ P₅ = $\frac{1}{4}1 + \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1)$

A1,A2,A3: deconfined phase
B1,B2,B3:split phase
C (reconfined), X (confined)

Table 1: Classification of the location of the global minima of $V_{\text{eff}}(\theta_j)$. In the last column the names of the corresponding phases termed in ref. [32] are also listed for X, A, B, C.

	$(heta_1, heta_2, heta_3)$	P_3	P_8	Symmetry
	with permutations			Phase
X	Large quantum	0	$-\frac{1}{8}$	SU(3)
	fluctuations			confined
A_1	(0,0,0)	1	1	SU(3)
$A_{2,3}$	$(\pm \frac{2}{3}\pi, \pm \frac{2}{3}\pi, \pm \frac{2}{3}\pi)$	$e^{\pm 2\pi i/3}$		deconfined
B_1	$(0,\pi,\pi)$	$-\frac{1}{3}$	0	$SU(2) \times U(1)$
$B_{2,3}$	$(\pm \frac{2}{3}\pi, \mp \frac{1}{3}\pi, \mp \frac{1}{3}\pi)$	$\frac{1}{3}e^{\mp\pi i/3}$		split
С	$(0, \tfrac{2}{3}\pi, -\tfrac{2}{3}\pi)$	0	$-\frac{1}{8}$	$U(1) \times U(1)$
				reconfined
$\Theta_1(a)$	(-2a, a, a)	$\frac{1}{3}(2e^{ia}+e^{-2ia})$	$\frac{1}{2}(1+\cos 3a)$	$SU(2) \times U(1)$
$\Theta_{2,3}(a)$	$(-2a \pm \frac{2}{3}\pi, a \pm \frac{2}{3}\pi, a \pm \frac{2}{3}\pi)$	$\frac{1}{3}e^{\pm 2\pi i/3}(2e^{ia}+e^{-2ia})$		$SU(2) \times U(1)$
	$(0 < a < \frac{1}{3}\pi)$			
$\Phi_1(b)$	(0, b, -b)	$\frac{1}{3}(1+2\cos b)$	$\frac{1}{2}\cos b\left(1+\cos b\right)$	$U(1) \times U(1)$
$\Phi_{2,3}(b)$	$(\pm \frac{2}{3}\pi, b \pm \frac{2}{3}\pi, -b \pm \frac{2}{3}\pi)$	$\frac{1}{3}e^{\pm 2\pi i/3}(1+2\cos b)$		$U(1) \times U(1)$
	$\left(\frac{2}{3}\pi < b < \pi\right)$			

2013/Aug/26

ゲージ場+基本表現フェルミオン

 $\psi(x, y + 2\pi R) = e^{i\alpha_f}\psi(x, y)$

 $\alpha_f = 0$

 $\alpha_f = \pi/3$

1.0

A1, A2, A3は もはや同等ではない ⇒Z3対称性の破れ

2013/Aug/26

基研研究会「熱場の量子論とその応用」

-0.5

0.0

0.5

1.0

格子QCDによる非摂動的解析

- □ ゲージ理論の強力な非摂動的解析手段
- 観測量がゲージ不変なものに限られる(Elitzuerの) 定理)
 - ポリヤコフラインのトレースがゲージ不変量
 - □ 今回はポリヤコフラインP3の固有値分布にも着目してみる (摂動論との比較のため)
- □ 摂動論では無視した、Haar測度因子の影響を無視でき $\sin^2(\frac{\theta_1-\theta_2}{2})\sin^2(\frac{\theta_2-\theta_3}{2})\sin^2(\frac{\theta_3-\theta_1}{2})$ ない(θ_i間の「斥力」となる。)

i < j

□格子数:16^3x4

□フェルミオン: Kogut-Suskindで

□基本(随伴)表現は4(2)の倍数

□ 質量の他に、ゲージ結合定数βも変化させる。

随伴表現フェルミオン

(右) 格子ゲージ理論での ポリャコフラインの分布を 濃度で表したもの

(左上) 摂動論での図[再掲] ma=0.1, βの小さい順

基研研究会「熱場の量子論とその応用」

2013/Aug/26

相転移点を定量的に決定する ために、感受率χを基本表現、 随伴表現ポリャコフラインに ついて計算。

$$\chi_{\mathcal{O}} = Vol(\langle \mathcal{O}^2 \rangle - \langle \mathcal{O} \rangle^2)$$

confined⇔deconfined⇔spl itの境界で感受率にピーク。 split⇔reconfinedでの相転 移はあまりよく見えていない。

連続的に変化

 $\langle P_3 \rangle$

βが大きくなると ポリャコフラインが A1,A2,A3近傍に分かれる ⇒非連続的な変化に近づく

2013/Aug/26

[左図]境界条件 α fとポリャコフラインP3の偏角 θ の関係

[下図] 随伴表現ポリャコフラインP8と β の関係 $P_8 \equiv \frac{1}{8} \text{Tr} W_8$

 $= \frac{1}{4} \left[1 + \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) \right]$

2013/Aug/26

基研研究会「熱場の量子論とその応用」

18

Roberge-Weiss('86)の結果を再現

2013/Aug/26

基研研究会「熱場の量子論とその応用」

19

- 3+1次元のSU(3)ゲージ理論について

 (1)ゲージ場と随伴表現フェルミオン(質量の効果)
 (2)ゲージ場と基本表現フェルミオン(境界条件の効果)
 を1ループ摂動論と格子ゲージ理論で調べた
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</
 - □(近い方)split phaseの確立、両表現フェルミオ ンの共存した系での解析、質量スペクトルの測定
 - □ (遠い方)オービフォールドの格子上での実現 [カイラルフェルミオン、基本表現ヒッグスetc.]

予備スライド

confined

deconfined

split

reconfined

2013/Aug/26