
京大基研	


熱場の量子論とその応用	
  
京都大学基礎物理学研究所	
  

2013年8月27日	


段下 一平	


I.	
  Danshita,	
  Phys.	
  Rev.	
  Le8.	
  111,	
  025303	
  (2013)	


一次元量子気体の二重極振動の減衰に
おける量子位相滑り	




Outline:	


1.	
  IntroducAon	
  
	
  

2.	
  Hand-­‐waving	
  picture	
  	
  
	
  

3.	
  Numerical	
  corroboraAon	
  in	
  the	
  hardcore	
  boson	
  limit	
  
	
  

4.	
  Mechanism	
  of	
  the	
  damping	
  in	
  soNcore	
  bosons	
  
	
  

5.	
  Finite	
  temperature	
  effects	
  
	
  

6.	
  Conclusions	
  	


Damping	
  rate	
  ⇔	
  NucleaAon	
  rate	


Special	
  thanks	
  to	
  Nikolay	
  Prokof’ev	
  (UMass	
  Amherst)	
  	




1.	
  Introduc1on	




1.1.	
  Experiments	
  on	
  transport	
  of	
  1D	
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・	
  They	
  observed	
  a	
  dissipa1ve	
  flow	
  (significant	
  damping)	
  even	
  though	
  	
  
	
  	
  	
  the	
  flow	
  velocity	
  is	
  much	
  smaller	
  than	
  the	
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  predicted	
  	
  
	
  	
  	
  by	
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  mean-­‐field	
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・	
  The	
  damping	
  rate	
  rapidly	
  increases	
  when	
  deepening	
  the	
  laXce.	


1.2.	
  Damped	
  dipole-­‐oscilla1on	
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  quantum	
  tunneling.	


InterpretaAon	
  by	
  Polkovnikov	
  et	
  al.	
  PRA	
  (2005):	


NIST:	
  C.	
  D.	
  FerAg	
  et	
  al.,	
  PRL	
  (2005)	
  

Ce
nt
er
	
  o
f	
  m

as
s	
  v

el
oc
ity

	
  (m
m
/s
)	


Time	
  (ms)	


LaXce	
  depth:	


Maximum	
  velocity	
  	
   MF	
  criAcal	
  velocity	
  for	
  	
   0 2.0 RV E=

∼ 0.1 ERd/� � 0.3 ERd/� ∼



1.3.	
  Superflow	
  decay	
  via	
  phase	
  slips	


A ring lattice	


A supercurrent is flowing 

The	
  flow	
  momentum	
  	
  
is	
  quanAzed	
  as	


pn =
2π�
Ld

n
	
  	
  	
  	
  	
  	
  	


Free	
  energy:	
  F(p)	


CriAcal	
  momentum:	
  pc	


δF

A	
  state	
  with	
  finite	
  flow	
  velocity	
  can	
  be	
  metastable.	
 Persistent	
  current	

The	
  momentum	
  at	
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  δF	
  reaches	
  zero.	
 Superfluid	
  criAcal	
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  n:	
  winding	
  number	
  

	
  L:	
  #	
  of	
  laXce	
  sites,	
  
	
  d:	
  laXce	
  spacing.	


Strong	
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  or	
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The	
  concept	
  of	
  phase	
  slip	
  is	
  central	
  also	
  to	
  the	
  understanding	
  of	
  1D	
  
superfluids	
  (superconductors)	
  in	
  these	
  condensed	
  ma8er	
  systems.	


Tc	


1.4.	
  Other	
  1D	
  superfluids	
  (superconductors)	


	
  etc.	


	
  etc.	


	
  ・	
  Unified	
  view	
  of	
  1D	
  superfluids	
  
	
  ・	
  Study	
  of	
  QPS	
  in	
  a	
  highly	
  controllable	
  manner	


QPS	
  in	
  ultracold	
  atoms	




A	
  ring	
  laXce	
 	
  Supercurrent	
  
	
  is	
  flowing	
  

Damping	
  rate：G	
 	
  Phase-­‐slip	
  nucleaAon	
  rate:	
  Γ	

？？？	


G(v) ∝ Γ(v)/v・	
  We	
  find	
  the	
  relaAon	
  between	
  G	
  and	
  Γ:	


・Using	
  the	
  relaAon,	
  we	
  elucidate	
  the	
  mechanism	
  of	
  the	
  damping	
  at	
  T=0.	
  

・	
  Universal	
  damping	
  behavior:	
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1.5.	
  What	
  we	
  do	
  in	
  this	
  work	
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I. WHAT WE FIND

First, from the numerical analyses on the hardcore Bose-Hubbard model in the presence of a single barrier potential,
we find the relation between the rate of the quantum nucleation of phase slips in 1D superfluid Γ and the damping
rate of the dipole oscillation of trapped 1D ultracold gases G,

G(v) ∝ Γ(v)/v, (1)

where v is the flow velocity. A qualitative explanation of this relation is presented in the attached pdf file (PhaseS-
lipDamping.pdf).

Second, we find that in the case of the softcore Bose-Hubbard model without a barrier potential, the damping
rate does not obey the scaling formula for a periodic potential Gprd ∝ v2K−3, but obeys the one for a single barrier
Gsb ∝ v2K−2 (see Fig. 7). This is counter-intuitive in the sense that there is no explicit barrier potential. However,
we might be able to interpret this as meaning that the unit filling regions of the trapped gas behave as if they are
barrier potentials for the other part of the gas. When a Bose gas is trapped in a combined potential of parabolic and
periodic potentials and the maximum density (per site) is larger than 1, there are two points where the filling factor
is equal to (or very close to) unity. Since the Umklapp process is the most relevant at these points, the transport is
strongly suppressed there. Hence, the unit-filling points move much slower than the other part of the gas, and act as
barriers for the other part of the gas.

II. HARDCORE BOSE-HUBBARD MODEL WITH A SINGLE BARRIER
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FIG. 1: Dipole oscillation dynamics of the hardcore Bose-Hubbard model Eq. (2) for N = 31, V/J = −1.4, Ω/J = 0.00032,
λ/J = 1.0, and x0 = 8d. Left: Time evolution of the center of mass position xcom(t). Right: Time evolution of the center of
mass velocity vcom(t).

In this section, we analyze the 1D hardcore Bose-Hubbard model with a single barrier:

Ĥ = −J
∑

j

(ĉ†j ĉj+1 + h.c.) + V
∑

j

m̂jm̂j+1 +
∑

j

[
Ω(j − Xc(t)/d)2 + λδj,0

]
m̂j , (2)

where J is the hopping energy, V the nearest neighbor interaction, Ω the trap curvature, X(t) the position of the trap
center, d the lattice spacing, and λ the barrier strength. We set X(t) = x0(θ(t) − 1), where θ(t) is the step function.
Using the time-evolving block decimation method, we calculate the exact quantum dynamics of the dipole oscillation
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3.	
  Numerical	
  corrobora1on	
  of	
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  rela1on	




3.1.	
  1D	
  hardcore	
  Bose-­‐Hubbard	
  model	
  with	
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  single	
  barrier	
  poten1al	
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(ĉ†j ĉj+1 + h.c.) + V

�

j

m̂jm̂j+1+
�

j

�
Ω(j −Xc(t)/d)

2 + λδj,0
�
m̂j ,

:	
  Nearest	
  neighbor	
  interacAon,	


:	
  Curvature	
  of	
  the	
  trapping	
  potenAal,	
 :	
  Displacement	
  of	
  the	
  trap	
  center,	

:	
  Strength	
  of	
  the	
  barrier	
  potenAal	
  	
V

Ω Xc

λ

(λ<<J)	
  Yu.	
  Kagan	
  et	
  al.,	
  PRA	
  (2000)	
  
(λ>>J)	
  H.	
  P.	
  Büchler	
  et	
  al.,	
  PRL	
  (2001)	


・	
  NucleaAon	
  rate	
  of	
  a	
  quantum	
  phase	
  slip	
  at	
  T=0:	
Γ ∝ v2K−1 v � vcwhen	
 &	
K > 1

J :	
  Hopping	
  energy,	


Advantages:	


・	
  The	
  Tomonaga-­‐LuXnger	
  (TL)	
  parameter	
  K	
  	
  
	
  	
  	
  	
  at	
  ν=0.5	
  is	
  related	
  to	
  V/J	
  as	


K =

�
2− 2

π
arccos

�
V

2J

��−1

	
  e.g.	
  M.	
  Cazalilla	
  et	
  al.,	
  RMP	
  (2011)	


!1.5 !1.0 !0.5 0.0 0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

V!J

TL
pa
ra
m
et
er
:K

Superfluid	


∼ π

2
�

2 + V/J

∼ 1

2
+

�
2− V/J

2π

TL
	
  p
ar
am

et
er
:	
  K
	


V/J	


・	
  This	
  model	
  is	
  numerically	
  solvable	
  with	
  TEBD	
  
	
  	
  	
  	
  [G.	
  Vidal,	
  PRL	
  (2004)],	
  which	
  can	
  precisely	
  	
  
	
  	
  	
  capture	
  quantum	
  phase	
  slips.	
  
	
  	
  	
  I.	
  Danshita	
  &	
  A.	
  Polkovnikov,	
  PRB	
  (2010);	
  PRA	
  (2012)	




!60 !40 !20 0 20 40 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

position: j

de
ns
ity
:n

j

!60 !40 !20 0 20 40 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

position: j

de
ns
ity
:n

j

0.3	


extern
alp

otential
:
�
j /J

0	


0.1	


0.2	


potenAal	


density	


,	


,	


Damping of dipole oscillations of ultracold gases induced by quantum phase slips

Ippei Danshita1

1Computational Condensed Matter Physics Laboratory,
RIKEN, Wako, Saitama 351-0198, Japan

(Dated: December 14, 2011)

PACS numbers: 03.65.Xp,03.75.Kk, 03.75.Lm

I. WHAT WE FIND

First, from the numerical analyses on the hardcore Bose-Hubbard model in the presence of a single barrier potential,
we find the relation between the rate of the quantum nucleation of phase slips in 1D superfluid Γ and the damping
rate of the dipole oscillation of trapped 1D ultracold gases G,

G(v) ∝ Γ(v)/v, (1)

where v is the flow velocity. A qualitative explanation of this relation is presented in the attached pdf file (PhaseS-
lipDamping.pdf).

Second, we find that in the case of the softcore Bose-Hubbard model without a barrier potential, the damping
rate does not obey the scaling formula for a periodic potential Gprd ∝ v2K−3, but obeys the one for a single barrier
Gsb ∝ v2K−2 (see Fig. 7). This is counter-intuitive in the sense that there is no explicit barrier potential. However,
we might be able to interpret this as meaning that the unit filling regions of the trapped gas behave as if they are
barrier potentials for the other part of the gas. When a Bose gas is trapped in a combined potential of parabolic and
periodic potentials and the maximum density (per site) is larger than 1, there are two points where the filling factor
is equal to (or very close to) unity. Since the Umklapp process is the most relevant at these points, the transport is
strongly suppressed there. Hence, the unit-filling points move much slower than the other part of the gas, and act as
barriers for the other part of the gas.

II. HARDCORE BOSE-HUBBARD MODEL WITH A SINGLE BARRIER

0 50 100 150 200 250 300 350

-5

0

5

t J

x
c
o
m

/ 
d

/ h

t J / h1

Ax1

Ax0

0 50 100 150 200 250 300 350

-0.2

-0.1

0.0

0.1

0.2

v
co
m

h
/ 
(J

 d
)

t J / h

Av1

Δt J / h Av2

FIG. 1: Dipole oscillation dynamics of the hardcore Bose-Hubbard model Eq. (2) for N = 31, V/J = −1.4, Ω/J = 0.00032,
λ/J = 1.0, and x0 = 8d. Left: Time evolution of the center of mass position xcom(t). Right: Time evolution of the center of
mass velocity vcom(t).

In this section, we analyze the 1D hardcore Bose-Hubbard model with a single barrier:

Ĥ = −J
∑

j

(ĉ†j ĉj+1 + h.c.) + V
∑
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  damping	
  rate	
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  trap	
  curvature	
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3.3.	
  The	
  damping	
  rate	
  vs	
  the	
  velocity	
  (hardcore	
  BHM)	

・	
  In	
  the	
  fiXng	
  region,	
  	
  
	
  	
  	
  the	
  damping	
  rate	
  obeys	
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  changes	
  	
  
	
  	
  	
  for	
  different	
  λ	
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Gt1 < 1/4 G > 10G0

x0 ≥ d vmax ≤ vc/5
ii)	
  	
(thin	
  solid),	


iii)	
  	

(thick	
  solid)	
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 (do8ed)	
(dashed),	


G ∝ vη



3.4.	
  The	
  exponent	
  vs	
  V/J	
  (hardcore	
  BHM)	


	
  The	
  damping	
  rate	
  obeys	
  	
  
the	
  following	
  scaling	
  formula:	
  

∴	
  The	
  relaAon	
  has	
  been	
  corroborated.	
  	


f(x) = a xη
Using	
  the	
  fiXng	
  funcAon,	


	
  we	
  extract	
  the	
  exponent	
  η.	


3

the system is known to be well described by the TL liq-
uid model [42]. Previous analytical studies have shown
that the nucleation rate of a QPS in the TL liquid with a
single impurity exhibits the following power-law behav-
ior with respect to v as Γsi ∝ v2K−1 for any λ when
v " vc [36, 37]. Here vc is the mean-field critical veloc-
ity and K is the TL parameter [2], the inverse of which,
namely 1/K, quantifies the strength of quantum fluctu-
ations. To hold K under control, we fix N = 31, and ad-
just Ω/J depending on V/J such that nmax # 0.5, where
nmax is the maximum density [see Fig. 1(a)]. In such
a situation, the analytical expression at half filling [2],
K = π/[2π − 2 arccos

(
V
2J

)
], is approximately valid, and

K can be controlled by changing only V/J .
If the relation (1) is correct, the damping rate should

obey G ∝ v2K−2. To corroborate this, we plot in
Figs. 2(a) and (b) G versus vmax for V/J = 0 and −1,
taking different values of λ. Note that we vary x0 to
control vmax. As indicated by the shaded area in Fig. 2,
we find the parameter region in which the damping rate
safely obeys the power-law formula. This region is de-
termined by the following four conditions: i) Gt1 < 1/4,
ii) G > 10G0, where G0 is the damping rate at λ = 0,
iii) x0 ≥ d, and iv) vmax < vc/5 [43]. We recall that the
relation (1) is supposed to be valid when Gt1 " 1 and
the source of the damping is mainly due to PS. While
the first condition obviously corresponds to the former
requirement, ii) and iii) stem from the latter. As for ii),
we see from the black circles in Fig. 2 that there is small
but finite damping because of dephasing effects even in
the absence of an impurity that induces QPS [27]. To
distinguish the QPS from the dephasing, the damping
at λ > 0 has to be much larger than that at λ = 0,
thus requiring ii). The condition iii) is necessary be-
cause otherwise a mismatch of the initial density and
the displaced trap causes additional damping or revival
of the DI that blurs the QPS effects. The last condition
has to be satisfied to validate Γ ∝ v2K−1, as mentioned
above. These four conditions are indicated by the thin-
solid, thick-solid, dashed, and dotted lines in Fig. 2.

The damping rates in the shaded area surrounded by
the four lines indeed exhibit the power-law behavior. By
fitting a function Ḡ(v̄) = Cv̄η to the data in the area,
we extract the exponent η and the prefactor C, where
Ḡ ≡ !G/J and v̄ ≡ !vmax/(Jd). In Figs. 3(a) and
(b), we plot η and C for V/J = 0 and −1 as functions
of λ/J . When λ/J increases, η is almost constant and
nearly equal to 2K−2, and C quadratically increases for
λ < J . This is consistent with the previous results that
Γsi ∝ v2K−1 holds for any λ [36, 37] and that Γsi ∝ λ2

for small λ [36]. In Figs. 3(c), we plot η versus V/J for
different values of λ/J . There we see that the exponents
agree very well with the expected value, i.e., η = 2K − 2
that is represented by the solid line in Fig. 3(c).

Having corroborated the relation (1) in both qualita-
tive and quantitative manners, we now consider the case
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FIG. 3: The exponent η and the prefactor C for the hardcore
limit with N = 31. (a) and (b): η and C as functions of
λ/J for (V/J, Ω/J) = (0, 0.001) (red circles) and (−1, 0.0005)
(black squares). The red dashed and black solid lines in (a)
represent η = 2K − 2 for V/J = 0 and −1. The red dashed
and black solid lines in (b) represent a parabolic function
f(λ/J) = a(λ/J)2 for V/J = 0 and −1 with the constant
a determined such that the lines pass on the data points at
λ/J = 0.6. (c): η versus V/J for several values of λ/J . The
solid line represents η = 2K − 2.
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FIG. 4: The case of the softcore Bose-Hubbard model (U <
∞) with V = 0 and λ = 0. (a): G versus vmax for U/J = 3.2
and Ω/J = 1/900. The thin solid, thick solid, dashed, and
dotted lines represent 1/(4t1) at x0 = d, 10Glow, vmax at
x0 = d, and vmax = vc/8. The dashed dotted line represents
the best fit to the data inside the shaded region. (b): η versus
U/J . The solid and dashed lines represent 2K − 2 and 2K −
3. The shaded regions mean the error bars of these lines
originating from the errors in numerically evaluating K.

of softcore bosons (U < ∞) without the nearest neigh-
bor interaction and the impurity. This case is of direct
relevance to the experiments of Refs. [7–9, 11], where
the damped DO of 1D Bose gases in optical lattices has
been studied, and is of great importance for understand-
ing whether the damping observed in the experiments is
due to QPS. To address QPS effects, we choose N and Ω
such that 1 < nmax < 2. In this situation, there exist the
regions of nj # 1, where the underlying lattice structure
induces strong umklapp scattering leading to QPS. Since
the nucleation rate of such a QPS obeys Γprd ∝ v2K−2

when v < vc [17], we naively speculate G ∝ v2K−3. We
take U < Uc for the system to be safely in the superfluid
state, where Uc # 3.3J [44] is the Mott transition point.

G ∝ v2K−2 ∝ Γ/v
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  with	
  respect	
  to	
  the	
  momentum	
  p.	


	
  which	
  corresponds	
  to	
  actual	
  experiments.	


4.1.	
  The	
  soXcore	
  Bose-­‐Hubbard	
  model	
  with	
  no	
  barrier	
  poten1al	


※	
  Previous	
  works	
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  studied	
  dipole	
  oscillaAons	
  of	
  the	
  same	
  model	
  with	
  different	
  parameters:	
  
I.	
  Danshita	
  and	
  C.	
  W.	
  Clark,	
  PRL	
  (2009);	
  S.	
  Montangero	
  et	
  al.,	
  PRA	
  (2009)	
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the system is known to be well described by the TL liq-
uid model [42]. Previous analytical studies have shown
that the nucleation rate of a QPS in the TL liquid with a
single impurity exhibits the following power-law behav-
ior with respect to v as Γsi ∝ v2K−1 for any λ when
v " vc [36, 37]. Here vc is the mean-field critical veloc-
ity and K is the TL parameter [2], the inverse of which,
namely 1/K, quantifies the strength of quantum fluctu-
ations. To hold K under control, we fix N = 31, and ad-
just Ω/J depending on V/J such that nmax # 0.5, where
nmax is the maximum density [see Fig. 1(a)]. In such
a situation, the analytical expression at half filling [2],
K = π/[2π − 2 arccos

(
V
2J

)
], is approximately valid, and

K can be controlled by changing only V/J .
If the relation (1) is correct, the damping rate should

obey G ∝ v2K−2. To corroborate this, we plot in
Figs. 2(a) and (b) G versus vmax for V/J = 0 and −1,
taking different values of λ. Note that we vary x0 to
control vmax. As indicated by the shaded area in Fig. 2,
we find the parameter region in which the damping rate
safely obeys the power-law formula. This region is de-
termined by the following four conditions: i) Gt1 < 1/4,
ii) G > 10G0, where G0 is the damping rate at λ = 0,
iii) x0 ≥ d, and iv) vmax < vc/5 [43]. We recall that the
relation (1) is supposed to be valid when Gt1 " 1 and
the source of the damping is mainly due to PS. While
the first condition obviously corresponds to the former
requirement, ii) and iii) stem from the latter. As for ii),
we see from the black circles in Fig. 2 that there is small
but finite damping because of dephasing effects even in
the absence of an impurity that induces QPS [27]. To
distinguish the QPS from the dephasing, the damping
at λ > 0 has to be much larger than that at λ = 0,
thus requiring ii). The condition iii) is necessary be-
cause otherwise a mismatch of the initial density and
the displaced trap causes additional damping or revival
of the DI that blurs the QPS effects. The last condition
has to be satisfied to validate Γ ∝ v2K−1, as mentioned
above. These four conditions are indicated by the thin-
solid, thick-solid, dashed, and dotted lines in Fig. 2.

The damping rates in the shaded area surrounded by
the four lines indeed exhibit the power-law behavior. By
fitting a function Ḡ(v̄) = Cv̄η to the data in the area,
we extract the exponent η and the prefactor C, where
Ḡ ≡ !G/J and v̄ ≡ !vmax/(Jd). In Figs. 3(a) and
(b), we plot η and C for V/J = 0 and −1 as functions
of λ/J . When λ/J increases, η is almost constant and
nearly equal to 2K−2, and C quadratically increases for
λ < J . This is consistent with the previous results that
Γsi ∝ v2K−1 holds for any λ [36, 37] and that Γsi ∝ λ2

for small λ [36]. In Figs. 3(c), we plot η versus V/J for
different values of λ/J . There we see that the exponents
agree very well with the expected value, i.e., η = 2K − 2
that is represented by the solid line in Fig. 3(c).

Having corroborated the relation (1) in both qualita-
tive and quantitative manners, we now consider the case
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FIG. 3: The exponent η and the prefactor C for the hardcore
limit with N = 31. (a) and (b): η and C as functions of
λ/J for (V/J, Ω/J) = (0, 0.001) (red circles) and (−1, 0.0005)
(black squares). The red dashed and black solid lines in (a)
represent η = 2K − 2 for V/J = 0 and −1. The red dashed
and black solid lines in (b) represent a parabolic function
f(λ/J) = a(λ/J)2 for V/J = 0 and −1 with the constant
a determined such that the lines pass on the data points at
λ/J = 0.6. (c): η versus V/J for several values of λ/J . The
solid line represents η = 2K − 2.
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FIG. 4: The case of the softcore Bose-Hubbard model (U <
∞) with V = 0 and λ = 0. (a): G versus vmax for U/J = 3.2
and Ω/J = 1/900. The thin solid, thick solid, dashed, and
dotted lines represent 1/(4t1) at x0 = d, 10Glow, vmax at
x0 = d, and vmax = vc/8. The dashed dotted line represents
the best fit to the data inside the shaded region. (b): η versus
U/J . The solid and dashed lines represent 2K − 2 and 2K −
3. The shaded regions mean the error bars of these lines
originating from the errors in numerically evaluating K.

of softcore bosons (U < ∞) without the nearest neigh-
bor interaction and the impurity. This case is of direct
relevance to the experiments of Refs. [7–9, 11], where
the damped DO of 1D Bose gases in optical lattices has
been studied, and is of great importance for understand-
ing whether the damping observed in the experiments is
due to QPS. To address QPS effects, we choose N and Ω
such that 1 < nmax < 2. In this situation, there exist the
regions of nj # 1, where the underlying lattice structure
induces strong umklapp scattering leading to QPS. Since
the nucleation rate of such a QPS obeys Γprd ∝ v2K−2

when v < vc [17], we naively speculate G ∝ v2K−3. We
take U < Uc for the system to be safely in the superfluid
state, where Uc # 3.3J [44] is the Mott transition point.
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the system is known to be well described by the TL liq-
uid model [42]. Previous analytical studies have shown
that the nucleation rate of a QPS in the TL liquid with a
single impurity exhibits the following power-law behav-
ior with respect to v as Γsi ∝ v2K−1 for any λ when
v " vc [36, 37]. Here vc is the mean-field critical veloc-
ity and K is the TL parameter [2], the inverse of which,
namely 1/K, quantifies the strength of quantum fluctu-
ations. To hold K under control, we fix N = 31, and ad-
just Ω/J depending on V/J such that nmax # 0.5, where
nmax is the maximum density [see Fig. 1(a)]. In such
a situation, the analytical expression at half filling [2],
K = π/[2π − 2 arccos

(
V
2J

)
], is approximately valid, and

K can be controlled by changing only V/J .
If the relation (1) is correct, the damping rate should

obey G ∝ v2K−2. To corroborate this, we plot in
Figs. 2(a) and (b) G versus vmax for V/J = 0 and −1,
taking different values of λ. Note that we vary x0 to
control vmax. As indicated by the shaded area in Fig. 2,
we find the parameter region in which the damping rate
safely obeys the power-law formula. This region is de-
termined by the following four conditions: i) Gt1 < 1/4,
ii) G > 10G0, where G0 is the damping rate at λ = 0,
iii) x0 ≥ d, and iv) vmax < vc/5 [43]. We recall that the
relation (1) is supposed to be valid when Gt1 " 1 and
the source of the damping is mainly due to PS. While
the first condition obviously corresponds to the former
requirement, ii) and iii) stem from the latter. As for ii),
we see from the black circles in Fig. 2 that there is small
but finite damping because of dephasing effects even in
the absence of an impurity that induces QPS [27]. To
distinguish the QPS from the dephasing, the damping
at λ > 0 has to be much larger than that at λ = 0,
thus requiring ii). The condition iii) is necessary be-
cause otherwise a mismatch of the initial density and
the displaced trap causes additional damping or revival
of the DI that blurs the QPS effects. The last condition
has to be satisfied to validate Γ ∝ v2K−1, as mentioned
above. These four conditions are indicated by the thin-
solid, thick-solid, dashed, and dotted lines in Fig. 2.

The damping rates in the shaded area surrounded by
the four lines indeed exhibit the power-law behavior. By
fitting a function Ḡ(v̄) = Cv̄η to the data in the area,
we extract the exponent η and the prefactor C, where
Ḡ ≡ !G/J and v̄ ≡ !vmax/(Jd). In Figs. 3(a) and
(b), we plot η and C for V/J = 0 and −1 as functions
of λ/J . When λ/J increases, η is almost constant and
nearly equal to 2K−2, and C quadratically increases for
λ < J . This is consistent with the previous results that
Γsi ∝ v2K−1 holds for any λ [36, 37] and that Γsi ∝ λ2

for small λ [36]. In Figs. 3(c), we plot η versus V/J for
different values of λ/J . There we see that the exponents
agree very well with the expected value, i.e., η = 2K − 2
that is represented by the solid line in Fig. 3(c).

Having corroborated the relation (1) in both qualita-
tive and quantitative manners, we now consider the case
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FIG. 3: The exponent η and the prefactor C for the hardcore
limit with N = 31. (a) and (b): η and C as functions of
λ/J for (V/J, Ω/J) = (0, 0.001) (red circles) and (−1, 0.0005)
(black squares). The red dashed and black solid lines in (a)
represent η = 2K − 2 for V/J = 0 and −1. The red dashed
and black solid lines in (b) represent a parabolic function
f(λ/J) = a(λ/J)2 for V/J = 0 and −1 with the constant
a determined such that the lines pass on the data points at
λ/J = 0.6. (c): η versus V/J for several values of λ/J . The
solid line represents η = 2K − 2.
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FIG. 4: The case of the softcore Bose-Hubbard model (U <
∞) with V = 0 and λ = 0. (a): G versus vmax for U/J = 3.2
and Ω/J = 1/900. The thin solid, thick solid, dashed, and
dotted lines represent 1/(4t1) at x0 = d, 10Glow, vmax at
x0 = d, and vmax = vc/8. The dashed dotted line represents
the best fit to the data inside the shaded region. (b): η versus
U/J . The solid and dashed lines represent 2K − 2 and 2K −
3. The shaded regions mean the error bars of these lines
originating from the errors in numerically evaluating K.

of softcore bosons (U < ∞) without the nearest neigh-
bor interaction and the impurity. This case is of direct
relevance to the experiments of Refs. [7–9, 11], where
the damped DO of 1D Bose gases in optical lattices has
been studied, and is of great importance for understand-
ing whether the damping observed in the experiments is
due to QPS. To address QPS effects, we choose N and Ω
such that 1 < nmax < 2. In this situation, there exist the
regions of nj # 1, where the underlying lattice structure
induces strong umklapp scattering leading to QPS. Since
the nucleation rate of such a QPS obeys Γprd ∝ v2K−2

when v < vc [17], we naively speculate G ∝ v2K−3. We
take U < Uc for the system to be safely in the superfluid
state, where Uc # 3.3J [44] is the Mott transition point.
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  (soXcore	
  BHM)	
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Hence, if Eq. (1) is correct, the damping rate should obey G ∝ v2K−2. This is indeed the case. To show this, in Fig. 2,
we plot the damping rates G1 and G2 versus the maximum flow-momentum p = arcsin(!Av1/(2Jd))×!/d, where the
power-law behavior is clearly seen. Extracting the exponents η by fitting a function f(x) = axη to the damping rates,
we plot the exponents versus V/J in Fig. 3. There we see that the exponents agree very well with the expected value,
i.e. η = 2K − 2 which is represented by the solid line in Fig. 3. Especially, the agreement in η1 is almost perfect.

III. SOFTCORE BOSE-HUBBARD MODEL

!60 !40 !20 0 20 40 60
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

position: j

de
ns
ity
;n

j

FIG. 4: The local density of the ground state of the softcore Bose-Hubbard model Eq. (6) for N = 99, U/J = 3, Ω/J = 1/900,
and x0/d = 8.
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FIG. 5: The damping rates G1 (blue squares) and G2 (red circles) for N = 67, U/J = 2, and Ω = 0.0025J . The dashed green
line represents the best fit to the data of G2 for pd/! ≤ π/18 with a function f(x) = a xη, where the fitting parameters turn
out to be a = 0.13 and η = 4.2. The exponent η is plotted as a function of U/J in Fig 7.

Having corroborated that the damping rate in the presence of a single barrier obeys the scaling formula of Eq. (1),
we next investigate the 1D softcore Bose-Hubbard model:

Ĥ = −J
∑

j

(b̂†j b̂j+1 + h.c.) +
U

2

∑

j

n̂j(n̂j − 1) +
∑

j

Ω(j − Xc(t)/d)2n̂j . (6)

We do not include a barrier potential in the softcore case. Instead, we choose the total number N and trap curvature
Ω such that the maximum density (per site) is between 1 and 2. An example of the ground state (initial state for the
dipole oscillation) is shown in Fig. 4.

We compute the dipole-oscillation dynamics of Eq. (6) and extract the damping rate from the time evolution of
the center of mass position and velocity. In Fig. 5, we plot the damping rates G1 and G2 versus the maximum flow
momentum p, which clearly exhibit a power-law behavior at low momentum. We extract the exponent η by fitting a
function f(x) = axη to the numerical date of G versus p and plot it as a function of U/J in Fig. 7. Interestingly, the
exponents obey the scaling formula for a single barrier η = 2K − 2 (black solid line) rather than that for a periodic
potential η = 2K − 3 (green dashed line).

	
  Transport	
  in	
  the	
  regions	
  near	
  the	
  unit	
  filling	
  points	
  is	
  much	
  more	
  suppressed	
  
	
  than	
  in	
  the	
  other	
  regions.	
  	


Unit	
  filling	
  points	


The	
  unit-­‐filling	
  regions	
  act	
  as	
  barrier	
  potenAals	
  for	
  the	
  other	
  parts	
  	
  
of	
  the	
  gas.	


	
  The	
  damping	
  rate	
  obeys	
  the	
  scaling	
  formula	
  for	
  a	
  single	
  impurity.	
  

4.3.	
  Effec1ve	
  impuri1es	
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  velocity.	
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This	
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  for	
  the	
  determinaAon	
  of	
  K.	
 Mo]	
  transi1on	
  point	
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Note:	
  vc	
  is	
  the	
  mean-­‐field	
  criAcal	
  velocity	
  and	
  EJ	
  is	
  the	
  Josephson	
  plasma	
  energy.	
  	


The	
  same	
  behavior	
  may	
  be	
  seen	
  universally	
  in	
  systems	
  whose	
  low-­‐energy	
  
physics	
  can	
  be	
  described	
  as	
  the	
  single-­‐component	
  TL	
  liquid.	




5.3.	
  Implica1on	
  to	
  a	
  disorder	
  poten1al	


S.	
  Khlebnikov	
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  (2005)	


In	
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  case	
  of	
  a	
  weak	
  disorder,	


Γ ∝ v2K−1

vT 2K−2{ Regime	
  A	


Regime	
  B	


The	
  same	
  universal	
  damping	
  behavior	
  
	
  

→	
  LocalizaAon	
  transiAon	
  of	
  the	
  
	
  	
  	
  	
  	
  Giamarchi-­‐Schultz	
  type	
  (K=3/2)	


Disorder	
  potenAal	
  
Stony	
  Brook:	
  B.	
  Gadway	
  et	
  al.,	
  PRL	
  (2011)	


lim
x→∞

�V (x)V (0)� = 0

In	
  the	
  case	
  of	
  a	
  strong	
  disorder,	


Γ ∼ ???
The	
  TEBD-­‐based	
  analyses	
  may	
  answer	
  this	
  quesAon.	
  
	
  

→	
  may	
  also	
  address	
  the	
  localizaAon	
  transiAon	
  	
  
	
  	
  	
  	
  	
  in	
  a	
  strong	
  disorder.	




6.	
  Conclusions	
  

	
  ・	
  We	
  have	
  found	
  the	
  relaAon	
  between	
  the	
  damping	
  rate	
  G	
  and	
  	
  
	
  	
  	
  	
  the	
  phase-­‐slip	
  nucleaAon	
  rate	
  Γ:	


	
  We	
  have	
  studied	
  the	
  transport	
  of	
  1D	
  Bose	
  gases	
  in	
  strong	
  connecAon	
  	
  
	
  with	
  quantum	
  nucleaAon	
  of	
  phase	
  slips.	
  	


G(v) ∝ Γ(v)/v

・	
  We	
  corroborate	
  that	
  the	
  damping	
  of	
  the	
  dipole	
  oscillaAon	
  of	
  	
  
	
  	
  	
  1D	
  laXce	
  bosons	
  is	
  due	
  to	
  the	
  nucleaAon	
  of	
  QPS.	


・	
  We	
  suggest	
  that	
  the	
  damping	
  rate	
  vs	
  the	
  flow	
  velocity	
  exhibits	
  	
  
	
  	
  	
  the	
  universal	
  behavior,	
  which	
  can	
  be	
  tested	
  in	
  future	
  experiments.	


・	
  Such	
  experiments	
  could	
  be	
  interpreted	
  as	
  a	
  quantum	
  simulaAon	
  	
  
	
  	
  	
  of	
  1D	
  superfluids	
  (or	
  superconductors).	


・	
  This	
  relaAon	
  allows	
  to	
  analyze	
  QPS	
  in	
  cold	
  atom	
  experiments	
  
	
  	
  	
  (and	
  in	
  the	
  exact	
  TEBD	
  or	
  tDMRG	
  simulaAons).	


I.	
  Danshita,	
  Phys.	
  Rev.	
  Le8.	
  111,	
  025303	
  (2013)	




In	
  1D,	
  the	
  superfluid	
  fracAon	
  ρs	
  →	
  0	
  in	
  the	
  thermodynamic	
  limit	
  at	
  any	
  T	
  >	
  0.	

Well-­‐known	
  fact:	


Naive	
  guess:	
  	
The	
  system	
  is	
  not	
  in	
  the	
  SF	
  phase.	
 ,	
  which	
  is	
  wrong.	


momentum modulation amplitude. The critical momen-
tum, where the onset of dissipation begins, was identified
from a log-log plot as in the 3D case. Since the transitions
became very broad, we characterized them by an error
function fit, with the center of the fitted error function
taken as the center of the transition (Fig. 4).

In the 1D system, at a very shallow lattice depth of 0.25
ER (corresponding to u=uc ! 0:08) a sharp transition was
observed, and the measured critical momentum agreed
very well with the prediction [9,28] of a critical momentum
of 0.39 pr. However, a slight increase of the interaction
strength (to u=uc ! 0:09 at a lattice depth of 0.5 ER) led to
a significant decrease of the critical momentum as well as a
dramatic broadening of the transition as shown in Fig. 4.
For lattice depths larger than 2 ER, the transition became
very broad and showed complex behavior, and we could
not obtain quantitative fits. Our results show a significant
deviation from the mean-field theory predictions and are in
agreement with previous works [25,29,30].

The observed broadening of the transition confirms
theoretical studies which emphasize the importance of
quantum fluctuations in the 1D system. Quantum tunneling
out of metastable states which are ignored in the mean-field
description can lead to a decay of the superfluid current at
very low momenta [28]. In addition to quantum fluctua-
tions, thermal fluctuations provide a mechanism for current
decay [28]. In our experiment, we used a ‘‘pure’’ BEC
without a discernible thermal component. The close agree-
ment with T ! 0 predictions indicates that thermal fluctu-
ations were not dominant.

In conclusion, we have used transport studies to connect
a well-known dynamical instability for weakly interacting
bosons with the equilibrium superfluid to Mott insulator
transition. A comparison of 3D and 1D systems confirms

the applicability of a mean-field description in three di-
mensions and the crucial importance of fluctuations in one
dimension. The disappearance of superfluid currents at the
SF-MI phase transition precisely located the phase transi-
tion. Our results illustrate the control and precision of
condensed matter physics experiments done with ultracold
atoms and their suitability to test many-body theories.
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FIG. 4 (color online). Critical momentum for a 1D gas in an
optical lattice. (a) The gray line indicates the mean-field theory
prediction. The interaction strengths are normalized by the
mean-field prediction for uc ! 5:8" 2 [1,4]. Squares (crosses)
represent the measured critical momentum (the center of the
transition). Measurements were taken at lattice depths of 0.25,
0.50, 0.75, 1.0, 2.0 ER. The lines between crosses and squares
indicate the width of the transition region. (b) Condensate frac-
tion measured at 0.25 ER and 0.75 ER. The data were fitted with
an error function. Squares (the critical momentum) and crosses
(the center of the transition) are indicated on the plots.
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momentum modulation amplitude. The critical momen-
tum, where the onset of dissipation begins, was identified
from a log-log plot as in the 3D case. Since the transitions
became very broad, we characterized them by an error
function fit, with the center of the fitted error function
taken as the center of the transition (Fig. 4).

In the 1D system, at a very shallow lattice depth of 0.25
ER (corresponding to u=uc ! 0:08) a sharp transition was
observed, and the measured critical momentum agreed
very well with the prediction [9,28] of a critical momentum
of 0.39 pr. However, a slight increase of the interaction
strength (to u=uc ! 0:09 at a lattice depth of 0.5 ER) led to
a significant decrease of the critical momentum as well as a
dramatic broadening of the transition as shown in Fig. 4.
For lattice depths larger than 2 ER, the transition became
very broad and showed complex behavior, and we could
not obtain quantitative fits. Our results show a significant
deviation from the mean-field theory predictions and are in
agreement with previous works [25,29,30].

The observed broadening of the transition confirms
theoretical studies which emphasize the importance of
quantum fluctuations in the 1D system. Quantum tunneling
out of metastable states which are ignored in the mean-field
description can lead to a decay of the superfluid current at
very low momenta [28]. In addition to quantum fluctua-
tions, thermal fluctuations provide a mechanism for current
decay [28]. In our experiment, we used a ‘‘pure’’ BEC
without a discernible thermal component. The close agree-
ment with T ! 0 predictions indicates that thermal fluctu-
ations were not dominant.

In conclusion, we have used transport studies to connect
a well-known dynamical instability for weakly interacting
bosons with the equilibrium superfluid to Mott insulator
transition. A comparison of 3D and 1D systems confirms

the applicability of a mean-field description in three di-
mensions and the crucial importance of fluctuations in one
dimension. The disappearance of superfluid currents at the
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tion. Our results illustrate the control and precision of
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atoms and their suitability to test many-body theories.
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FIG. 4 (color online). Critical momentum for a 1D gas in an
optical lattice. (a) The gray line indicates the mean-field theory
prediction. The interaction strengths are normalized by the
mean-field prediction for uc ! 5:8" 2 [1,4]. Squares (crosses)
represent the measured critical momentum (the center of the
transition). Measurements were taken at lattice depths of 0.25,
0.50, 0.75, 1.0, 2.0 ER. The lines between crosses and squares
indicate the width of the transition region. (b) Condensate frac-
tion measured at 0.25 ER and 0.75 ER. The data were fitted with
an error function. Squares (the critical momentum) and crosses
(the center of the transition) are indicated on the plots.
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momentum modulation amplitude. The critical momen-
tum, where the onset of dissipation begins, was identified
from a log-log plot as in the 3D case. Since the transitions
became very broad, we characterized them by an error
function fit, with the center of the fitted error function
taken as the center of the transition (Fig. 4).

In the 1D system, at a very shallow lattice depth of 0.25
ER (corresponding to u=uc ! 0:08) a sharp transition was
observed, and the measured critical momentum agreed
very well with the prediction [9,28] of a critical momentum
of 0.39 pr. However, a slight increase of the interaction
strength (to u=uc ! 0:09 at a lattice depth of 0.5 ER) led to
a significant decrease of the critical momentum as well as a
dramatic broadening of the transition as shown in Fig. 4.
For lattice depths larger than 2 ER, the transition became
very broad and showed complex behavior, and we could
not obtain quantitative fits. Our results show a significant
deviation from the mean-field theory predictions and are in
agreement with previous works [25,29,30].

The observed broadening of the transition confirms
theoretical studies which emphasize the importance of
quantum fluctuations in the 1D system. Quantum tunneling
out of metastable states which are ignored in the mean-field
description can lead to a decay of the superfluid current at
very low momenta [28]. In addition to quantum fluctua-
tions, thermal fluctuations provide a mechanism for current
decay [28]. In our experiment, we used a ‘‘pure’’ BEC
without a discernible thermal component. The close agree-
ment with T ! 0 predictions indicates that thermal fluctu-
ations were not dominant.

In conclusion, we have used transport studies to connect
a well-known dynamical instability for weakly interacting
bosons with the equilibrium superfluid to Mott insulator
transition. A comparison of 3D and 1D systems confirms

the applicability of a mean-field description in three di-
mensions and the crucial importance of fluctuations in one
dimension. The disappearance of superfluid currents at the
SF-MI phase transition precisely located the phase transi-
tion. Our results illustrate the control and precision of
condensed matter physics experiments done with ultracold
atoms and their suitability to test many-body theories.
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[5] S. Fölling et al., Nature (London) 434, 481 (2005).
[6] F. Gerbier et al., Phys. Rev. Lett. 95, 050404 (2005).
[7] G. K. Campbell et al., Science 313, 649 (2006).
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FIG. 4 (color online). Critical momentum for a 1D gas in an
optical lattice. (a) The gray line indicates the mean-field theory
prediction. The interaction strengths are normalized by the
mean-field prediction for uc ! 5:8" 2 [1,4]. Squares (crosses)
represent the measured critical momentum (the center of the
transition). Measurements were taken at lattice depths of 0.25,
0.50, 0.75, 1.0, 2.0 ER. The lines between crosses and squares
indicate the width of the transition region. (b) Condensate frac-
tion measured at 0.25 ER and 0.75 ER. The data were fitted with
an error function. Squares (the critical momentum) and crosses
(the center of the transition) are indicated on the plots.
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The	
  system	
  
is	
  in	
  the	
  SF	
  state.	


1D	
  Bose	
  gases	
  at	
  finite	
  temperatures	
  exhibit	
  superfluidity	
  as	
  long	
  as	
  	
  
the	
  “lifeAme”	
  of	
  superflow	
  is	
  longer	
  than	
  the	
  Ame	
  scale	
  in	
  experiment.	


Yu.	
  Kagan	
  et	
  al.	
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  (2000)	


Also	
  in	
  the	
  context	
  of	
  liquid	
  4He:	
  T.	
  Eggel	
  et	
  al.,	
  PRL	
  (2011)	


3.2.	
  Isn’t	
  it	
  due	
  to	
  trivial	
  finite	
  temperature	
  effects	
  ??	



