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1.	  Introduc1on	



1.1.	  Experiments	  on	  transport	  of	  1D	  la:ce	  bosons	
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・	  They	  observed	  a	  dissipa1ve	  flow	  (significant	  damping)	  even	  though	  	  
	  	  	  the	  flow	  velocity	  is	  much	  smaller	  than	  the	  criAcal	  value	  predicted	  	  
	  	  	  by	  the	  Gutzwiller	  mean-‐field	  theory.	  
	  
	  
	  
	  

・	  The	  damping	  rate	  rapidly	  increases	  when	  deepening	  the	  laXce.	

1.2.	  Damped	  dipole-‐oscilla1on	

This	  breakdown	  of	  superfluidity	  is	  due	  to	  phase	  slips	  via	  	  
	  thermal	  acAvaAon	  or	  quantum	  tunneling.	

InterpretaAon	  by	  Polkovnikov	  et	  al.	  PRA	  (2005):	

NIST:	  C.	  D.	  FerAg	  et	  al.,	  PRL	  (2005)	  
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1.3.	  Superflow	  decay	  via	  phase	  slips	

A ring lattice	

A supercurrent is flowing 

The	  flow	  momentum	  	  
is	  quanAzed	  as	

pn =
2π�
Ld

n
	  	  	  	  	  	  	

Free	  energy:	  F(p)	

CriAcal	  momentum:	  pc	

δF

A	  state	  with	  finite	  flow	  velocity	  can	  be	  metastable.	 Persistent	  current	
The	  momentum	  at	  which	  δF	  reaches	  zero.	 Superfluid	  criAcal	  momentum	

p	
	  	  	  	  	  	  		  n:	  winding	  number	  

	  L:	  #	  of	  laXce	  sites,	  
	  d:	  laXce	  spacing.	

Strong	  thermal	  or	  quantum	  fluctuaAons	   Superflow	  decay	  via	  phase	  slips	

Γ = ΓAT + ΓQTPhase-‐slip	  nucleaAon	  rate:	  	
Thermal	 Quantum	

N.	  Giordano,	  PRL	  (1988)	
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SuperconducAng	  nanowires	  
and	  nanotubes	

R.	  Toda	  et	  al.,	  PRL	  (2007)	  
J.	  Taniguchi	  et	  al.,	  PRB	  (2010)	  
T.	  Eggel	  et	  al.,	  PRL	  (2011)	

A.	  Bezryadin	  et	  al.,	  Nature	  (2000)	  
F.	  Altomare	  et	  al.,	  PRL	  (2006)	  
K.	  Yu.	  Arutyunov	  et	  al.,	  Phys.	  Rep.	  (2008)	  
M.	  Kociak	  et	  al.,	  PRL	  (2001)	  
Z.	  Wang	  et	  al.,	  Nanoscience	  (2012)	

	  D
iss
ip
aA

on
	

Re
sis
te
nc
e	

The	  concept	  of	  phase	  slip	  is	  central	  also	  to	  the	  understanding	  of	  1D	  
superfluids	  (superconductors)	  in	  these	  condensed	  ma8er	  systems.	

Tc	

1.4.	  Other	  1D	  superfluids	  (superconductors)	

	  etc.	

	  etc.	

	  ・	  Unified	  view	  of	  1D	  superfluids	  
	  ・	  Study	  of	  QPS	  in	  a	  highly	  controllable	  manner	

QPS	  in	  ultracold	  atoms	



A	  ring	  laXce	 	  Supercurrent	  
	  is	  flowing	  

Damping	  rate：G	 	  Phase-‐slip	  nucleaAon	  rate:	  Γ	
？？？	

G(v) ∝ Γ(v)/v・	  We	  find	  the	  relaAon	  between	  G	  and	  Γ:	

・Using	  the	  relaAon,	  we	  elucidate	  the	  mechanism	  of	  the	  damping	  at	  T=0.	  

・	  Universal	  damping	  behavior:	

Da
m
pi
ng
	  ra

te
	

Flow	  velocity	
	  where	  vc	  is	  the	  MF	  
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1.5.	  What	  we	  do	  in	  this	  work	
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I. WHAT WE FIND

First, from the numerical analyses on the hardcore Bose-Hubbard model in the presence of a single barrier potential,
we find the relation between the rate of the quantum nucleation of phase slips in 1D superfluid Γ and the damping
rate of the dipole oscillation of trapped 1D ultracold gases G,

G(v) ∝ Γ(v)/v, (1)

where v is the flow velocity. A qualitative explanation of this relation is presented in the attached pdf file (PhaseS-
lipDamping.pdf).

Second, we find that in the case of the softcore Bose-Hubbard model without a barrier potential, the damping
rate does not obey the scaling formula for a periodic potential Gprd ∝ v2K−3, but obeys the one for a single barrier
Gsb ∝ v2K−2 (see Fig. 7). This is counter-intuitive in the sense that there is no explicit barrier potential. However,
we might be able to interpret this as meaning that the unit filling regions of the trapped gas behave as if they are
barrier potentials for the other part of the gas. When a Bose gas is trapped in a combined potential of parabolic and
periodic potentials and the maximum density (per site) is larger than 1, there are two points where the filling factor
is equal to (or very close to) unity. Since the Umklapp process is the most relevant at these points, the transport is
strongly suppressed there. Hence, the unit-filling points move much slower than the other part of the gas, and act as
barriers for the other part of the gas.

II. HARDCORE BOSE-HUBBARD MODEL WITH A SINGLE BARRIER
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FIG. 1: Dipole oscillation dynamics of the hardcore Bose-Hubbard model Eq. (2) for N = 31, V/J = −1.4, Ω/J = 0.00032,
λ/J = 1.0, and x0 = 8d. Left: Time evolution of the center of mass position xcom(t). Right: Time evolution of the center of
mass velocity vcom(t).

In this section, we analyze the 1D hardcore Bose-Hubbard model with a single barrier:

Ĥ = −J
∑

j

(ĉ†j ĉj+1 + h.c.) + V
∑

j

m̂jm̂j+1 +
∑

j

[
Ω(j − Xc(t)/d)2 + λδj,0

]
m̂j , (2)

where J is the hopping energy, V the nearest neighbor interaction, Ω the trap curvature, X(t) the position of the trap
center, d the lattice spacing, and λ the barrier strength. We set X(t) = x0(θ(t) − 1), where θ(t) is the step function.
Using the time-evolving block decimation method, we calculate the exact quantum dynamics of the dipole oscillation
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(a)	  The	  lost	  potenAal	  energy	

The	  definiAon	  of	  the	  damping	  rate:	

・	  Rela1on	  between	  the	  nuclea1on	  rate	  Γ	  and	  the	  damping	  rate	  G	
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2.	  Hand-‐waving	  picture	
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FIG. 1: Dipole oscillation dynamics of the hardcore Bose-Hubbard model Eq. (2) for N = 31, V/J = −1.4, Ω/J = 0.00032,
λ/J = 1.0, and x0 = 8d. Left: Time evolution of the center of mass position xcom(t). Right: Time evolution of the center of
mass velocity vcom(t).

In this section, we analyze the 1D hardcore Bose-Hubbard model with a single barrier:
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(b)	  The	  Joule	  heat	
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3.	  Numerical	  corrobora1on	  of	  the	  rela1on	



3.1.	  1D	  hardcore	  Bose-‐Hubbard	  model	  with	  a	  single	  barrier	  poten1al	
Ĥ = −J
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�
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�
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2 + λδj,0
�
m̂j ,

:	  Nearest	  neighbor	  interacAon,	

:	  Curvature	  of	  the	  trapping	  potenAal,	 :	  Displacement	  of	  the	  trap	  center,	
:	  Strength	  of	  the	  barrier	  potenAal	  	V

Ω Xc

λ

(λ<<J)	  Yu.	  Kagan	  et	  al.,	  PRA	  (2000)	  
(λ>>J)	  H.	  P.	  Büchler	  et	  al.,	  PRL	  (2001)	

・	  NucleaAon	  rate	  of	  a	  quantum	  phase	  slip	  at	  T=0:	Γ ∝ v2K−1 v � vcwhen	 &	K > 1

J :	  Hopping	  energy,	

Advantages:	

・	  The	  Tomonaga-‐LuXnger	  (TL)	  parameter	  K	  	  
	  	  	  	  at	  ν=0.5	  is	  related	  to	  V/J	  as	
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π
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	  e.g.	  M.	  Cazalilla	  et	  al.,	  RMP	  (2011)	
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・	  This	  model	  is	  numerically	  solvable	  with	  TEBD	  
	  	  	  	  [G.	  Vidal,	  PRL	  (2004)],	  which	  can	  precisely	  	  
	  	  	  capture	  quantum	  phase	  slips.	  
	  	  	  I.	  Danshita	  &	  A.	  Polkovnikov,	  PRB	  (2010);	  PRA	  (2012)	
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FIG. 1: Dipole oscillation dynamics of the hardcore Bose-Hubbard model Eq. (2) for N = 31, V/J = −1.4, Ω/J = 0.00032,
λ/J = 1.0, and x0 = 8d. Left: Time evolution of the center of mass position xcom(t). Right: Time evolution of the center of
mass velocity vcom(t).

In this section, we analyze the 1D hardcore Bose-Hubbard model with a single barrier:

Ĥ = −J
∑

j

(ĉ†j ĉj+1 + h.c.) + V
∑

j

m̂jm̂j+1 +
∑

j

[
Ω(j − Xc(t)/d)2 + λδj,0

]
m̂j , (2)

where J is the hopping energy, V the nearest neighbor interaction, Ω the trap curvature, X(t) the position of the trap
center, d the lattice spacing, and λ the barrier strength. We set X(t) = x0(θ(t) − 1), where θ(t) is the step function.
Using the time-evolving block decimation method, we calculate the exact quantum dynamics of the dipole oscillation

Time	  evoluAon	  of	  the	  COM	  posiAon:	
3.2.	  Dipole	  oscilla1on	  and	  damping	  rate	

Ω = 3.2× 10−4J Xc = 8d

λ = 1.0JV = −1.4J

※	  The	  trap	  curvature	  is	  set	  such	  that	  	nmax � 0.5
N = 31,	

Assuming	  the	  under-‐damped	  oscillaAon,	  	  
we	  define	  the	  damping	  rate	  as	

We	  expect	 ∵	

	  t=0	

G ∝ Γ/v ∝ v2K−2
Γ ∝ v2K−1

G =
log(Ax1/Ax0)

t1
Single	  impurity	  potenAal	  
Florence:	  J.	  Catani	  et	  al.,	  PRA	  (2012)	

V (x) � V0δ(x)



3.3.	  The	  damping	  rate	  vs	  the	  velocity	  (hardcore	  BHM)	
・	  In	  the	  fiXng	  region,	  	  
	  	  	  the	  damping	  rate	  obeys	  	  

・	  The	  power	  η	  	  
	  	  	  hardly	  changes	  	  
	  	  	  for	  different	  λ	  .	

η � 2K − 2 ????	

Four	  condiAons	  for	  	  
the	  fiXng	  region:	

i)	  	Gt1 < 1/4 G > 10G0

x0 ≥ d vmax ≤ vc/5
ii)	  	(thin	  solid),	

iii)	  	
(thick	  solid)	

iv)	  	 (do8ed)	(dashed),	

G ∝ vη



3.4.	  The	  exponent	  vs	  V/J	  (hardcore	  BHM)	

	  The	  damping	  rate	  obeys	  	  
the	  following	  scaling	  formula:	  

∴	  The	  relaAon	  has	  been	  corroborated.	  	

f(x) = a xη
Using	  the	  fiXng	  funcAon,	

	  we	  extract	  the	  exponent	  η.	

3

the system is known to be well described by the TL liq-
uid model [42]. Previous analytical studies have shown
that the nucleation rate of a QPS in the TL liquid with a
single impurity exhibits the following power-law behav-
ior with respect to v as Γsi ∝ v2K−1 for any λ when
v " vc [36, 37]. Here vc is the mean-field critical veloc-
ity and K is the TL parameter [2], the inverse of which,
namely 1/K, quantifies the strength of quantum fluctu-
ations. To hold K under control, we fix N = 31, and ad-
just Ω/J depending on V/J such that nmax # 0.5, where
nmax is the maximum density [see Fig. 1(a)]. In such
a situation, the analytical expression at half filling [2],
K = π/[2π − 2 arccos

(
V
2J

)
], is approximately valid, and

K can be controlled by changing only V/J .
If the relation (1) is correct, the damping rate should

obey G ∝ v2K−2. To corroborate this, we plot in
Figs. 2(a) and (b) G versus vmax for V/J = 0 and −1,
taking different values of λ. Note that we vary x0 to
control vmax. As indicated by the shaded area in Fig. 2,
we find the parameter region in which the damping rate
safely obeys the power-law formula. This region is de-
termined by the following four conditions: i) Gt1 < 1/4,
ii) G > 10G0, where G0 is the damping rate at λ = 0,
iii) x0 ≥ d, and iv) vmax < vc/5 [43]. We recall that the
relation (1) is supposed to be valid when Gt1 " 1 and
the source of the damping is mainly due to PS. While
the first condition obviously corresponds to the former
requirement, ii) and iii) stem from the latter. As for ii),
we see from the black circles in Fig. 2 that there is small
but finite damping because of dephasing effects even in
the absence of an impurity that induces QPS [27]. To
distinguish the QPS from the dephasing, the damping
at λ > 0 has to be much larger than that at λ = 0,
thus requiring ii). The condition iii) is necessary be-
cause otherwise a mismatch of the initial density and
the displaced trap causes additional damping or revival
of the DI that blurs the QPS effects. The last condition
has to be satisfied to validate Γ ∝ v2K−1, as mentioned
above. These four conditions are indicated by the thin-
solid, thick-solid, dashed, and dotted lines in Fig. 2.

The damping rates in the shaded area surrounded by
the four lines indeed exhibit the power-law behavior. By
fitting a function Ḡ(v̄) = Cv̄η to the data in the area,
we extract the exponent η and the prefactor C, where
Ḡ ≡ !G/J and v̄ ≡ !vmax/(Jd). In Figs. 3(a) and
(b), we plot η and C for V/J = 0 and −1 as functions
of λ/J . When λ/J increases, η is almost constant and
nearly equal to 2K−2, and C quadratically increases for
λ < J . This is consistent with the previous results that
Γsi ∝ v2K−1 holds for any λ [36, 37] and that Γsi ∝ λ2

for small λ [36]. In Figs. 3(c), we plot η versus V/J for
different values of λ/J . There we see that the exponents
agree very well with the expected value, i.e., η = 2K − 2
that is represented by the solid line in Fig. 3(c).

Having corroborated the relation (1) in both qualita-
tive and quantitative manners, we now consider the case

3

2

1

0
0.0-0.5-1.0-1.5

V / J

E
x

p
o

n
en

t:

0.00

0.01

0.02

0.0 0.4 0.8 1.2
/ J

(c)

(b)

P
re

fa
ct

o
r:

 C

/ J = 0.4
            0.6
            0.8
            1.0
            1.2
            1.4V / J = 0

         -1.0

1

0
0.2

0.8
0.6
0.4

V / J = 0
         -1.0

E
x

p
o

n
en

t:

(a)

FIG. 3: The exponent η and the prefactor C for the hardcore
limit with N = 31. (a) and (b): η and C as functions of
λ/J for (V/J, Ω/J) = (0, 0.001) (red circles) and (−1, 0.0005)
(black squares). The red dashed and black solid lines in (a)
represent η = 2K − 2 for V/J = 0 and −1. The red dashed
and black solid lines in (b) represent a parabolic function
f(λ/J) = a(λ/J)2 for V/J = 0 and −1 with the constant
a determined such that the lines pass on the data points at
λ/J = 0.6. (c): η versus V/J for several values of λ/J . The
solid line represents η = 2K − 2.
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FIG. 4: The case of the softcore Bose-Hubbard model (U <
∞) with V = 0 and λ = 0. (a): G versus vmax for U/J = 3.2
and Ω/J = 1/900. The thin solid, thick solid, dashed, and
dotted lines represent 1/(4t1) at x0 = d, 10Glow, vmax at
x0 = d, and vmax = vc/8. The dashed dotted line represents
the best fit to the data inside the shaded region. (b): η versus
U/J . The solid and dashed lines represent 2K − 2 and 2K −
3. The shaded regions mean the error bars of these lines
originating from the errors in numerically evaluating K.

of softcore bosons (U < ∞) without the nearest neigh-
bor interaction and the impurity. This case is of direct
relevance to the experiments of Refs. [7–9, 11], where
the damped DO of 1D Bose gases in optical lattices has
been studied, and is of great importance for understand-
ing whether the damping observed in the experiments is
due to QPS. To address QPS effects, we choose N and Ω
such that 1 < nmax < 2. In this situation, there exist the
regions of nj # 1, where the underlying lattice structure
induces strong umklapp scattering leading to QPS. Since
the nucleation rate of such a QPS obeys Γprd ∝ v2K−2

when v < vc [17], we naively speculate G ∝ v2K−3. We
take U < Uc for the system to be safely in the superfluid
state, where Uc # 3.3J [44] is the Mott transition point.

G ∝ v2K−2 ∝ Γ/v



4.	  Mechanism	  of	  the	  damping	  in	  a	  1D	  Bose	  gas	  	  
in	  an	  op1cal	  la:ce	
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・	  The	  damping	  rate	  G	  obeys	  the	  power-‐law	  	  
	  	  	  	  with	  respect	  to	  the	  momentum	  p.	

	  which	  corresponds	  to	  actual	  experiments.	

4.1.	  The	  soXcore	  Bose-‐Hubbard	  model	  with	  no	  barrier	  poten1al	

※	  Previous	  works	  have	  studied	  dipole	  oscillaAons	  of	  the	  same	  model	  with	  different	  parameters:	  
I.	  Danshita	  and	  C.	  W.	  Clark,	  PRL	  (2009);	  S.	  Montangero	  et	  al.,	  PRA	  (2009)	
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the system is known to be well described by the TL liq-
uid model [42]. Previous analytical studies have shown
that the nucleation rate of a QPS in the TL liquid with a
single impurity exhibits the following power-law behav-
ior with respect to v as Γsi ∝ v2K−1 for any λ when
v " vc [36, 37]. Here vc is the mean-field critical veloc-
ity and K is the TL parameter [2], the inverse of which,
namely 1/K, quantifies the strength of quantum fluctu-
ations. To hold K under control, we fix N = 31, and ad-
just Ω/J depending on V/J such that nmax # 0.5, where
nmax is the maximum density [see Fig. 1(a)]. In such
a situation, the analytical expression at half filling [2],
K = π/[2π − 2 arccos

(
V
2J

)
], is approximately valid, and

K can be controlled by changing only V/J .
If the relation (1) is correct, the damping rate should

obey G ∝ v2K−2. To corroborate this, we plot in
Figs. 2(a) and (b) G versus vmax for V/J = 0 and −1,
taking different values of λ. Note that we vary x0 to
control vmax. As indicated by the shaded area in Fig. 2,
we find the parameter region in which the damping rate
safely obeys the power-law formula. This region is de-
termined by the following four conditions: i) Gt1 < 1/4,
ii) G > 10G0, where G0 is the damping rate at λ = 0,
iii) x0 ≥ d, and iv) vmax < vc/5 [43]. We recall that the
relation (1) is supposed to be valid when Gt1 " 1 and
the source of the damping is mainly due to PS. While
the first condition obviously corresponds to the former
requirement, ii) and iii) stem from the latter. As for ii),
we see from the black circles in Fig. 2 that there is small
but finite damping because of dephasing effects even in
the absence of an impurity that induces QPS [27]. To
distinguish the QPS from the dephasing, the damping
at λ > 0 has to be much larger than that at λ = 0,
thus requiring ii). The condition iii) is necessary be-
cause otherwise a mismatch of the initial density and
the displaced trap causes additional damping or revival
of the DI that blurs the QPS effects. The last condition
has to be satisfied to validate Γ ∝ v2K−1, as mentioned
above. These four conditions are indicated by the thin-
solid, thick-solid, dashed, and dotted lines in Fig. 2.

The damping rates in the shaded area surrounded by
the four lines indeed exhibit the power-law behavior. By
fitting a function Ḡ(v̄) = Cv̄η to the data in the area,
we extract the exponent η and the prefactor C, where
Ḡ ≡ !G/J and v̄ ≡ !vmax/(Jd). In Figs. 3(a) and
(b), we plot η and C for V/J = 0 and −1 as functions
of λ/J . When λ/J increases, η is almost constant and
nearly equal to 2K−2, and C quadratically increases for
λ < J . This is consistent with the previous results that
Γsi ∝ v2K−1 holds for any λ [36, 37] and that Γsi ∝ λ2

for small λ [36]. In Figs. 3(c), we plot η versus V/J for
different values of λ/J . There we see that the exponents
agree very well with the expected value, i.e., η = 2K − 2
that is represented by the solid line in Fig. 3(c).

Having corroborated the relation (1) in both qualita-
tive and quantitative manners, we now consider the case
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FIG. 3: The exponent η and the prefactor C for the hardcore
limit with N = 31. (a) and (b): η and C as functions of
λ/J for (V/J, Ω/J) = (0, 0.001) (red circles) and (−1, 0.0005)
(black squares). The red dashed and black solid lines in (a)
represent η = 2K − 2 for V/J = 0 and −1. The red dashed
and black solid lines in (b) represent a parabolic function
f(λ/J) = a(λ/J)2 for V/J = 0 and −1 with the constant
a determined such that the lines pass on the data points at
λ/J = 0.6. (c): η versus V/J for several values of λ/J . The
solid line represents η = 2K − 2.
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FIG. 4: The case of the softcore Bose-Hubbard model (U <
∞) with V = 0 and λ = 0. (a): G versus vmax for U/J = 3.2
and Ω/J = 1/900. The thin solid, thick solid, dashed, and
dotted lines represent 1/(4t1) at x0 = d, 10Glow, vmax at
x0 = d, and vmax = vc/8. The dashed dotted line represents
the best fit to the data inside the shaded region. (b): η versus
U/J . The solid and dashed lines represent 2K − 2 and 2K −
3. The shaded regions mean the error bars of these lines
originating from the errors in numerically evaluating K.

of softcore bosons (U < ∞) without the nearest neigh-
bor interaction and the impurity. This case is of direct
relevance to the experiments of Refs. [7–9, 11], where
the damped DO of 1D Bose gases in optical lattices has
been studied, and is of great importance for understand-
ing whether the damping observed in the experiments is
due to QPS. To address QPS effects, we choose N and Ω
such that 1 < nmax < 2. In this situation, there exist the
regions of nj # 1, where the underlying lattice structure
induces strong umklapp scattering leading to QPS. Since
the nucleation rate of such a QPS obeys Γprd ∝ v2K−2

when v < vc [17], we naively speculate G ∝ v2K−3. We
take U < Uc for the system to be safely in the superfluid
state, where Uc # 3.3J [44] is the Mott transition point.
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the system is known to be well described by the TL liq-
uid model [42]. Previous analytical studies have shown
that the nucleation rate of a QPS in the TL liquid with a
single impurity exhibits the following power-law behav-
ior with respect to v as Γsi ∝ v2K−1 for any λ when
v " vc [36, 37]. Here vc is the mean-field critical veloc-
ity and K is the TL parameter [2], the inverse of which,
namely 1/K, quantifies the strength of quantum fluctu-
ations. To hold K under control, we fix N = 31, and ad-
just Ω/J depending on V/J such that nmax # 0.5, where
nmax is the maximum density [see Fig. 1(a)]. In such
a situation, the analytical expression at half filling [2],
K = π/[2π − 2 arccos
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], is approximately valid, and

K can be controlled by changing only V/J .
If the relation (1) is correct, the damping rate should

obey G ∝ v2K−2. To corroborate this, we plot in
Figs. 2(a) and (b) G versus vmax for V/J = 0 and −1,
taking different values of λ. Note that we vary x0 to
control vmax. As indicated by the shaded area in Fig. 2,
we find the parameter region in which the damping rate
safely obeys the power-law formula. This region is de-
termined by the following four conditions: i) Gt1 < 1/4,
ii) G > 10G0, where G0 is the damping rate at λ = 0,
iii) x0 ≥ d, and iv) vmax < vc/5 [43]. We recall that the
relation (1) is supposed to be valid when Gt1 " 1 and
the source of the damping is mainly due to PS. While
the first condition obviously corresponds to the former
requirement, ii) and iii) stem from the latter. As for ii),
we see from the black circles in Fig. 2 that there is small
but finite damping because of dephasing effects even in
the absence of an impurity that induces QPS [27]. To
distinguish the QPS from the dephasing, the damping
at λ > 0 has to be much larger than that at λ = 0,
thus requiring ii). The condition iii) is necessary be-
cause otherwise a mismatch of the initial density and
the displaced trap causes additional damping or revival
of the DI that blurs the QPS effects. The last condition
has to be satisfied to validate Γ ∝ v2K−1, as mentioned
above. These four conditions are indicated by the thin-
solid, thick-solid, dashed, and dotted lines in Fig. 2.

The damping rates in the shaded area surrounded by
the four lines indeed exhibit the power-law behavior. By
fitting a function Ḡ(v̄) = Cv̄η to the data in the area,
we extract the exponent η and the prefactor C, where
Ḡ ≡ !G/J and v̄ ≡ !vmax/(Jd). In Figs. 3(a) and
(b), we plot η and C for V/J = 0 and −1 as functions
of λ/J . When λ/J increases, η is almost constant and
nearly equal to 2K−2, and C quadratically increases for
λ < J . This is consistent with the previous results that
Γsi ∝ v2K−1 holds for any λ [36, 37] and that Γsi ∝ λ2

for small λ [36]. In Figs. 3(c), we plot η versus V/J for
different values of λ/J . There we see that the exponents
agree very well with the expected value, i.e., η = 2K − 2
that is represented by the solid line in Fig. 3(c).

Having corroborated the relation (1) in both qualita-
tive and quantitative manners, we now consider the case
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FIG. 3: The exponent η and the prefactor C for the hardcore
limit with N = 31. (a) and (b): η and C as functions of
λ/J for (V/J, Ω/J) = (0, 0.001) (red circles) and (−1, 0.0005)
(black squares). The red dashed and black solid lines in (a)
represent η = 2K − 2 for V/J = 0 and −1. The red dashed
and black solid lines in (b) represent a parabolic function
f(λ/J) = a(λ/J)2 for V/J = 0 and −1 with the constant
a determined such that the lines pass on the data points at
λ/J = 0.6. (c): η versus V/J for several values of λ/J . The
solid line represents η = 2K − 2.
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FIG. 4: The case of the softcore Bose-Hubbard model (U <
∞) with V = 0 and λ = 0. (a): G versus vmax for U/J = 3.2
and Ω/J = 1/900. The thin solid, thick solid, dashed, and
dotted lines represent 1/(4t1) at x0 = d, 10Glow, vmax at
x0 = d, and vmax = vc/8. The dashed dotted line represents
the best fit to the data inside the shaded region. (b): η versus
U/J . The solid and dashed lines represent 2K − 2 and 2K −
3. The shaded regions mean the error bars of these lines
originating from the errors in numerically evaluating K.

of softcore bosons (U < ∞) without the nearest neigh-
bor interaction and the impurity. This case is of direct
relevance to the experiments of Refs. [7–9, 11], where
the damped DO of 1D Bose gases in optical lattices has
been studied, and is of great importance for understand-
ing whether the damping observed in the experiments is
due to QPS. To address QPS effects, we choose N and Ω
such that 1 < nmax < 2. In this situation, there exist the
regions of nj # 1, where the underlying lattice structure
induces strong umklapp scattering leading to QPS. Since
the nucleation rate of such a QPS obeys Γprd ∝ v2K−2

when v < vc [17], we naively speculate G ∝ v2K−3. We
take U < Uc for the system to be safely in the superfluid
state, where Uc # 3.3J [44] is the Mott transition point.

4.2.	  The	  exponent	  vs	  U/J	  (soXcore	  BHM)	

η = 2K − 2

η = 2K − 3
(periodic	  potenAal)	

(single	  barrier)	

	  The	  damping	  rate	  obeys	  the	  scaling	  formula	  	  
	  for	  the	  quantum-‐phase	  slips	  in	  the	  presence	  of	  
	  a	  single	  impurity	  :	  

	  rather	  than	  that	  for	  a	  periodic	  potenAal	  
	  at	  a	  commensurate	  filling:	
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	  The	  TL	  parameter	  is	  extracted	  from	  
	  the	  one-‐body	  density	  matrix	  	  
	  numerically	  calculated	  with	  TEBD.	  

Yu.	  Kagan	  et	  al.,	  PRA	  (2000)	  
H.	  P.	  Büchler	  et	  al.,	  PRL	  (2001)	

I.	  Danshita	  &	  A.	  Polkovnikov,	  PRA	  (2012)	

G ∝ v2K−2

G ∝ v2K−3
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Hence, if Eq. (1) is correct, the damping rate should obey G ∝ v2K−2. This is indeed the case. To show this, in Fig. 2,
we plot the damping rates G1 and G2 versus the maximum flow-momentum p = arcsin(!Av1/(2Jd))×!/d, where the
power-law behavior is clearly seen. Extracting the exponents η by fitting a function f(x) = axη to the damping rates,
we plot the exponents versus V/J in Fig. 3. There we see that the exponents agree very well with the expected value,
i.e. η = 2K − 2 which is represented by the solid line in Fig. 3. Especially, the agreement in η1 is almost perfect.

III. SOFTCORE BOSE-HUBBARD MODEL
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FIG. 4: The local density of the ground state of the softcore Bose-Hubbard model Eq. (6) for N = 99, U/J = 3, Ω/J = 1/900,
and x0/d = 8.
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FIG. 5: The damping rates G1 (blue squares) and G2 (red circles) for N = 67, U/J = 2, and Ω = 0.0025J . The dashed green
line represents the best fit to the data of G2 for pd/! ≤ π/18 with a function f(x) = a xη, where the fitting parameters turn
out to be a = 0.13 and η = 4.2. The exponent η is plotted as a function of U/J in Fig 7.

Having corroborated that the damping rate in the presence of a single barrier obeys the scaling formula of Eq. (1),
we next investigate the 1D softcore Bose-Hubbard model:

Ĥ = −J
∑

j

(b̂†j b̂j+1 + h.c.) +
U

2

∑

j

n̂j(n̂j − 1) +
∑

j

Ω(j − Xc(t)/d)2n̂j . (6)

We do not include a barrier potential in the softcore case. Instead, we choose the total number N and trap curvature
Ω such that the maximum density (per site) is between 1 and 2. An example of the ground state (initial state for the
dipole oscillation) is shown in Fig. 4.

We compute the dipole-oscillation dynamics of Eq. (6) and extract the damping rate from the time evolution of
the center of mass position and velocity. In Fig. 5, we plot the damping rates G1 and G2 versus the maximum flow
momentum p, which clearly exhibit a power-law behavior at low momentum. We extract the exponent η by fitting a
function f(x) = axη to the numerical date of G versus p and plot it as a function of U/J in Fig. 7. Interestingly, the
exponents obey the scaling formula for a single barrier η = 2K − 2 (black solid line) rather than that for a periodic
potential η = 2K − 3 (green dashed line).

	  Transport	  in	  the	  regions	  near	  the	  unit	  filling	  points	  is	  much	  more	  suppressed	  
	  than	  in	  the	  other	  regions.	  	

Unit	  filling	  points	

The	  unit-‐filling	  regions	  act	  as	  barrier	  potenAals	  for	  the	  other	  parts	  	  
of	  the	  gas.	

	  The	  damping	  rate	  obeys	  the	  scaling	  formula	  for	  a	  single	  impurity.	  

4.3.	  Effec1ve	  impuri1es	  	



5.	  Finite	  temperature	  effects	
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Note:	  vc	  is	  the	  mean-‐field	  criAcal	  velocity	  and	  EJ	  is	  the	  Josephson	  plasma	  energy.	  	

The	  same	  behavior	  may	  be	  seen	  universally	  in	  systems	  whose	  low-‐energy	  
physics	  can	  be	  described	  as	  the	  single-‐component	  TL	  liquid.	



5.3.	  Implica1on	  to	  a	  disorder	  poten1al	

S.	  Khlebnikov	  &	  L.	  P.	  Pryadko,	  PRL	  (2005)	

In	  the	  case	  of	  a	  weak	  disorder,	

Γ ∝ v2K−1

vT 2K−2{ Regime	  A	

Regime	  B	

The	  same	  universal	  damping	  behavior	  
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	  	  	  	  	  Giamarchi-‐Schultz	  type	  (K=3/2)	

Disorder	  potenAal	  
Stony	  Brook:	  B.	  Gadway	  et	  al.,	  PRL	  (2011)	
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In	  the	  case	  of	  a	  strong	  disorder,	

Γ ∼ ???
The	  TEBD-‐based	  analyses	  may	  answer	  this	  quesAon.	  
	  

→	  may	  also	  address	  the	  localizaAon	  transiAon	  	  
	  	  	  	  	  in	  a	  strong	  disorder.	



6.	  Conclusions	  

	  ・	  We	  have	  found	  the	  relaAon	  between	  the	  damping	  rate	  G	  and	  	  
	  	  	  	  the	  phase-‐slip	  nucleaAon	  rate	  Γ:	

	  We	  have	  studied	  the	  transport	  of	  1D	  Bose	  gases	  in	  strong	  connecAon	  	  
	  with	  quantum	  nucleaAon	  of	  phase	  slips.	  	

G(v) ∝ Γ(v)/v

・	  We	  corroborate	  that	  the	  damping	  of	  the	  dipole	  oscillaAon	  of	  	  
	  	  	  1D	  laXce	  bosons	  is	  due	  to	  the	  nucleaAon	  of	  QPS.	

・	  We	  suggest	  that	  the	  damping	  rate	  vs	  the	  flow	  velocity	  exhibits	  	  
	  	  	  the	  universal	  behavior,	  which	  can	  be	  tested	  in	  future	  experiments.	

・	  Such	  experiments	  could	  be	  interpreted	  as	  a	  quantum	  simulaAon	  	  
	  	  	  of	  1D	  superfluids	  (or	  superconductors).	

・	  This	  relaAon	  allows	  to	  analyze	  QPS	  in	  cold	  atom	  experiments	  
	  	  	  (and	  in	  the	  exact	  TEBD	  or	  tDMRG	  simulaAons).	

I.	  Danshita,	  Phys.	  Rev.	  Le8.	  111,	  025303	  (2013)	



In	  1D,	  the	  superfluid	  fracAon	  ρs	  →	  0	  in	  the	  thermodynamic	  limit	  at	  any	  T	  >	  0.	
Well-‐known	  fact:	

Naive	  guess:	  	The	  system	  is	  not	  in	  the	  SF	  phase.	 ,	  which	  is	  wrong.	

momentum modulation amplitude. The critical momen-
tum, where the onset of dissipation begins, was identified
from a log-log plot as in the 3D case. Since the transitions
became very broad, we characterized them by an error
function fit, with the center of the fitted error function
taken as the center of the transition (Fig. 4).

In the 1D system, at a very shallow lattice depth of 0.25
ER (corresponding to u=uc ! 0:08) a sharp transition was
observed, and the measured critical momentum agreed
very well with the prediction [9,28] of a critical momentum
of 0.39 pr. However, a slight increase of the interaction
strength (to u=uc ! 0:09 at a lattice depth of 0.5 ER) led to
a significant decrease of the critical momentum as well as a
dramatic broadening of the transition as shown in Fig. 4.
For lattice depths larger than 2 ER, the transition became
very broad and showed complex behavior, and we could
not obtain quantitative fits. Our results show a significant
deviation from the mean-field theory predictions and are in
agreement with previous works [25,29,30].

The observed broadening of the transition confirms
theoretical studies which emphasize the importance of
quantum fluctuations in the 1D system. Quantum tunneling
out of metastable states which are ignored in the mean-field
description can lead to a decay of the superfluid current at
very low momenta [28]. In addition to quantum fluctua-
tions, thermal fluctuations provide a mechanism for current
decay [28]. In our experiment, we used a ‘‘pure’’ BEC
without a discernible thermal component. The close agree-
ment with T ! 0 predictions indicates that thermal fluctu-
ations were not dominant.

In conclusion, we have used transport studies to connect
a well-known dynamical instability for weakly interacting
bosons with the equilibrium superfluid to Mott insulator
transition. A comparison of 3D and 1D systems confirms

the applicability of a mean-field description in three di-
mensions and the crucial importance of fluctuations in one
dimension. The disappearance of superfluid currents at the
SF-MI phase transition precisely located the phase transi-
tion. Our results illustrate the control and precision of
condensed matter physics experiments done with ultracold
atoms and their suitability to test many-body theories.
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FIG. 4 (color online). Critical momentum for a 1D gas in an
optical lattice. (a) The gray line indicates the mean-field theory
prediction. The interaction strengths are normalized by the
mean-field prediction for uc ! 5:8" 2 [1,4]. Squares (crosses)
represent the measured critical momentum (the center of the
transition). Measurements were taken at lattice depths of 0.25,
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indicate the width of the transition region. (b) Condensate frac-
tion measured at 0.25 ER and 0.75 ER. The data were fitted with
an error function. Squares (the critical momentum) and crosses
(the center of the transition) are indicated on the plots.
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tum, where the onset of dissipation begins, was identified
from a log-log plot as in the 3D case. Since the transitions
became very broad, we characterized them by an error
function fit, with the center of the fitted error function
taken as the center of the transition (Fig. 4).

In the 1D system, at a very shallow lattice depth of 0.25
ER (corresponding to u=uc ! 0:08) a sharp transition was
observed, and the measured critical momentum agreed
very well with the prediction [9,28] of a critical momentum
of 0.39 pr. However, a slight increase of the interaction
strength (to u=uc ! 0:09 at a lattice depth of 0.5 ER) led to
a significant decrease of the critical momentum as well as a
dramatic broadening of the transition as shown in Fig. 4.
For lattice depths larger than 2 ER, the transition became
very broad and showed complex behavior, and we could
not obtain quantitative fits. Our results show a significant
deviation from the mean-field theory predictions and are in
agreement with previous works [25,29,30].

The observed broadening of the transition confirms
theoretical studies which emphasize the importance of
quantum fluctuations in the 1D system. Quantum tunneling
out of metastable states which are ignored in the mean-field
description can lead to a decay of the superfluid current at
very low momenta [28]. In addition to quantum fluctua-
tions, thermal fluctuations provide a mechanism for current
decay [28]. In our experiment, we used a ‘‘pure’’ BEC
without a discernible thermal component. The close agree-
ment with T ! 0 predictions indicates that thermal fluctu-
ations were not dominant.

In conclusion, we have used transport studies to connect
a well-known dynamical instability for weakly interacting
bosons with the equilibrium superfluid to Mott insulator
transition. A comparison of 3D and 1D systems confirms

the applicability of a mean-field description in three di-
mensions and the crucial importance of fluctuations in one
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optical lattice. (a) The gray line indicates the mean-field theory
prediction. The interaction strengths are normalized by the
mean-field prediction for uc ! 5:8" 2 [1,4]. Squares (crosses)
represent the measured critical momentum (the center of the
transition). Measurements were taken at lattice depths of 0.25,
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tion measured at 0.25 ER and 0.75 ER. The data were fitted with
an error function. Squares (the critical momentum) and crosses
(the center of the transition) are indicated on the plots.
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momentum modulation amplitude. The critical momen-
tum, where the onset of dissipation begins, was identified
from a log-log plot as in the 3D case. Since the transitions
became very broad, we characterized them by an error
function fit, with the center of the fitted error function
taken as the center of the transition (Fig. 4).

In the 1D system, at a very shallow lattice depth of 0.25
ER (corresponding to u=uc ! 0:08) a sharp transition was
observed, and the measured critical momentum agreed
very well with the prediction [9,28] of a critical momentum
of 0.39 pr. However, a slight increase of the interaction
strength (to u=uc ! 0:09 at a lattice depth of 0.5 ER) led to
a significant decrease of the critical momentum as well as a
dramatic broadening of the transition as shown in Fig. 4.
For lattice depths larger than 2 ER, the transition became
very broad and showed complex behavior, and we could
not obtain quantitative fits. Our results show a significant
deviation from the mean-field theory predictions and are in
agreement with previous works [25,29,30].

The observed broadening of the transition confirms
theoretical studies which emphasize the importance of
quantum fluctuations in the 1D system. Quantum tunneling
out of metastable states which are ignored in the mean-field
description can lead to a decay of the superfluid current at
very low momenta [28]. In addition to quantum fluctua-
tions, thermal fluctuations provide a mechanism for current
decay [28]. In our experiment, we used a ‘‘pure’’ BEC
without a discernible thermal component. The close agree-
ment with T ! 0 predictions indicates that thermal fluctu-
ations were not dominant.

In conclusion, we have used transport studies to connect
a well-known dynamical instability for weakly interacting
bosons with the equilibrium superfluid to Mott insulator
transition. A comparison of 3D and 1D systems confirms

the applicability of a mean-field description in three di-
mensions and the crucial importance of fluctuations in one
dimension. The disappearance of superfluid currents at the
SF-MI phase transition precisely located the phase transi-
tion. Our results illustrate the control and precision of
condensed matter physics experiments done with ultracold
atoms and their suitability to test many-body theories.
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[8] S. Fölling et al., Phys. Rev. Lett. 97, 060403 (2006).
[9] E. Altman et al., Phys. Rev. Lett. 95, 020402 (2005).

[10] M. P. A. Fisher et al., Phys. Rev. B 40, 546 (1989).
[11] W. Krauth, M. Caffarel, and J.-P. Bouchaud, Phys. Rev. B

45, 3137 (1992).
[12] J. K. Freericks and H. Monien, Europhys. Lett. 26, 545

(1994).
[13] B. Wu and Q. Niu, Phys. Rev. A 64, 061603(R) (2001).
[14] G. K. Campbell et al., Phys. Rev. Lett. 96, 020406 (2006).
[15] K. M. Hilligsøe and K. Mølmer, Phys. Rev. A 71,

041602(R) (2005).
[16] M. Modugno, C. Tozzo, and F. Dalfovo, Phys. Rev. A 70,

043625 (2004).
[17] L. Fallani et al., Phys. Rev. Lett. 93, 140406 (2004).
[18] M. Cristiani et al., Opt. Express 12, 4 (2004).
[19] L. De Sarlo et al., Phys. Rev. A 72, 013603 (2005).
[20] B. Wu and J. Shi, arXiv:cond-mat/0607098.
[21] S. Wessel et al., Phys. Rev. A 70, 053615 (2004).
[22] V. A. Kashurnikov, N. V. Prokof’ev, and B. V. Svistunov,

Phys. Rev. A 66, 031601(R) (2002).
[23] M. Ben Dahan et al., Phys. Rev. Lett. 76, 4508 (1996).
[24] F. S. Cataliotti et al., Science 293, 843 (2001).
[25] C. D. Fertig et al., Phys. Rev. Lett. 94, 120403 (2005).
[26] J. K. Freericks and H. Monien, Phys. Rev. B 53, 2691

(1996).
[27] B. Capogrosso-Sansone, N. V. Prokof’ev, and B. V.

Svistunov, Phys. Rev. B 75, 134302 (2007).
[28] A. Polkovnikov et al., Phys. Rev. A 71, 063613 (2005).
[29] A. Polkovnikov and D.-W. Wang, Phys. Rev. Lett. 93,

070401 (2004).
[30] J. Ruostekoski and L. Isella, Phys. Rev. Lett. 95, 110403

(2005).

(a)

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

Interaction Strength u/uc

superfluid
flow

dissipative
flow

p c
[p

r
]

C
rit

ic
al

 M
om

en
tu

m
(b)

0 0.2 0.4 0.6
0.25

0.50

0.75

C
. F

.

p [pr ]

0.25 ER

0 0.1 0.2 0.3

0.25

0.50

0.75

p [pr ]

C
. F

.

0.75 ER

FIG. 4 (color online). Critical momentum for a 1D gas in an
optical lattice. (a) The gray line indicates the mean-field theory
prediction. The interaction strengths are normalized by the
mean-field prediction for uc ! 5:8" 2 [1,4]. Squares (crosses)
represent the measured critical momentum (the center of the
transition). Measurements were taken at lattice depths of 0.25,
0.50, 0.75, 1.0, 2.0 ER. The lines between crosses and squares
indicate the width of the transition region. (b) Condensate frac-
tion measured at 0.25 ER and 0.75 ER. The data were fitted with
an error function. Squares (the critical momentum) and crosses
(the center of the transition) are indicated on the plots.
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The	  system	  
is	  in	  the	  SF	  state.	

1D	  Bose	  gases	  at	  finite	  temperatures	  exhibit	  superfluidity	  as	  long	  as	  	  
the	  “lifeAme”	  of	  superflow	  is	  longer	  than	  the	  Ame	  scale	  in	  experiment.	
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Also	  in	  the	  context	  of	  liquid	  4He:	  T.	  Eggel	  et	  al.,	  PRL	  (2011)	

3.2.	  Isn’t	  it	  due	  to	  trivial	  finite	  temperature	  effects	  ??	


