量子電磁力学に基づく原子分子系における 時間発展の計算方法の研究

<u>市川和秀</u>,福田将大,立花明知 京大院エマイクロエンジニアリング

熱場の量子論とその応用,京大基研,2013年8月28日

近年のミクロスケールの実験の進展

・ナノテクノロジー・アトムテクノロジー

原子・分子レベルで構造を測定・作成・制御

- ・Cavity QED・スピントロニクス
 - 単一光子・単一電子の生成・測定 スピンの操作

フェムト秒・アト秒スケールでの物理現象の観測

時間方向・空間方向・粒子の属性というあらゆる意味でより 基本的なレベルでの実験・観測が可能となってきている。

━━━━━ より基本的なミクロ法則に基づく理論計算の必要性

従来のシミュレーション方法

- ・時間依存シュレディンガー or ディラック方程式 or 密度汎関数 (DFT)法に古典電磁場を入れる。(半古典近似)
 e.g.) laser
- ・ 量子化された電磁場と、モデル化された物質場を用いる。(相互作用などが簡単化されている。)

e.g.) cavity QED

■ 電子は量子化されたディラック場(波動関数ではなく)として 扱い、他の電子や原子核との相互作用は光子場(古典電磁場で はなく)によって、つまり量子電磁力学(Quantum ElectroDynamics, QED)によって取り扱いたい。

物質と光を記述するうえで最も基本的な理論であるQEDに基づいて系の時間発展を計算機上でシミュレートする方法を確立し、物性や化学の研究に応用したい。

電子ストレステンソルによる化学結合の理解 Tachibana, J. Chem. Phys. 115, 3497 (2001)

$$\begin{aligned} \hat{\tau}_{e}^{\Pi kl}(x) &= \frac{i\hbar c}{2} \begin{bmatrix} \hat{\psi}(x)\gamma^{l} \hat{D}_{ek}(x)\hat{\psi}(x) - \left(\hat{D}_{ek}(x)\hat{\psi}(x)\right)^{\dagger}\gamma^{0}\gamma^{l}\hat{\psi}(x) \end{bmatrix} & \psi_{i}: \text{i} \text{i} \text{s} \text{k} \text{i} \text{i} \text{i} \\ & \text{i} \text{i} \text{h} \text{d} \text{m} \text{k} \text{w} \text{c}, \quad \hat{\textbf{h}} \text{m} \text{L} \text{SUNSTOP} \text{L} \text{SUSTOP} \text{c} \text{s} \text{K} \text{k} \text{c} \text{i} \text{f} \text{d} \text{c} \text{c} \text{SO} \end{aligned}$$
$$\begin{aligned} & \psi_{i}: \text{i} \text{f} \text{s} \text{k} \text{i} \text{d} \\ & \psi_{i}: \text{i} \text{f} \text{s} \text{k} \text{d} \\ & \tau^{Skl}(\vec{r}) &= \frac{\hbar^{2}}{4m} \sum_{i} \nu_{i} \begin{bmatrix} \psi_{i}^{*}(\vec{r}) \frac{\partial^{2}\psi_{i}(\vec{r})}{\partial x^{k}\partial x^{l}} - \frac{\partial\psi_{i}^{*}(\vec{r})}{\partial x^{k}} \frac{\partial\psi_{i}(\vec{r})}{\partial x^{l}} + \frac{\partial^{2}\psi_{i}^{*}(\vec{r})}{\partial x^{k}\partial x^{l}} \psi_{i}(\vec{r}) - \frac{\partial\psi_{i}^{*}(\vec{r})}{\partial x^{l}} \frac{\partial\psi_{i}(\vec{r})}{\partial x^{k}} \end{bmatrix} \end{aligned}$$

このストレステンソルの固有値・固有ベクトルなどを 用いた化学結合の研究

KI, Nozaki, Komazawa, Tachibama, AIP advances 2, 042195 (2012)

QEDハミルトニアンを使って計算したら? 時間変化(化学反応時のふるまい)は?

電子ストレステンソルによる化学結合の理解 Tachibana, J. Chem. Phys. 115, 3497 (2001)

$$\begin{aligned} \hat{\tau}_{e}^{\Pi kl}(x) &= \frac{i\hbar c}{2} \left[\hat{\psi}(x) \gamma^{l} \hat{D}_{ek}(x) \hat{\psi}(x) - \left(\hat{D}_{ek}(x) \hat{\psi}(x) \right)^{\dagger} \gamma^{0} \gamma^{l} \hat{\psi}(x) \right] & \psi_{i} : \text{i} \text{i} \text{sm} \text{i} \text{i} \\ & \psi_{i} : \text{i} \text{i} \text{sm} \text{i} \text{i} \\ & \text{i} \text{i} \text{i} \text{m} \text{i} \text{m} \text{m} \text{c}, \quad \hat{\text{m}} \text{m} \text{N} \\ & \text{i} \text{i} \text{m} \text{N} \text{sm} \text{c}, \quad \hat{\text{m}} \text{m} \text{N} \\ & \tau^{Skl}(\vec{r}) &= \frac{\hbar^{2}}{4m} \sum_{i} \nu_{i} \left[\psi_{i}^{*}(\vec{r}) \frac{\partial^{2} \psi_{i}(\vec{r})}{\partial x^{k} \partial x^{l}} - \frac{\partial \psi_{i}^{*}(\vec{r})}{\partial x^{k}} \frac{\partial \psi_{i}(\vec{r})}{\partial x^{l}} + \frac{\partial^{2} \psi_{i}^{*}(\vec{r})}{\partial x^{k} \partial x^{l}} \psi_{i}(\vec{r}) - \frac{\partial \psi_{i}^{*}(\vec{r})}{\partial x^{k}} \frac{\partial \psi_{i}(\vec{r})}{\partial x^{k}} \right] \end{aligned}$$

このストレステンソルの固有値・固有ベクトルなどを 用いた化学結合の研究

KI, Nozaki, Komazawa, Tachibama, AIP advances 2, 042195 (2012)

QEDハミルトニアンを使って計算したら? 時間変化(化学反応時のふるまい)は?

QEDに基づく原子分子系の時間発展シミュレーションを行うためには、 計算方法が確立している従来のQEDでは現れなかった問題が生じる。

これら三つの要素をそれぞれ部分的に考慮する場の理論的手法は存 在するが、三つ同時に扱う方法はQEDでは知られていない。

(i) 原子・分子系における物質粒子は束縛状態にある。

ベーテ・サルピータ方程式(相対論的な粒子の場合は適用外)

(ii) 原子核が存在する。

有効場の理論(散乱理論)

格子場の理論(平衡状態の記述。また、QEDは難しい。)

(iii) 系の時間変化を時々刻々追跡する。

閉時間(closed time path, CTP)形式 (相互作用表示による摂動展開に
 Thermo Field Dynamics 基づく。束縛状態の取り扱い?)

われわれのアプローチ

(i) 原子・分子系における物質粒子は束縛状態にある。

場の演算子を、平面波ではなく外場存在下での量子力学の定常解な ど波束(束縛基底)で展開して生成消滅演算子を定義する。 (いわゆるファリー表示と類似) *Furry, Phys. Rev. 81, 115 (1951)*

(ii) 原子核が存在する。 Tachibana, J. Chem. Phys. 115, 3497 (2001)

原子核の自由度をシュレディンガー場として取り入れる。

"Rigged"(「追加された」という意味合い)QEDという名前はここから来ている。

核スピンは、核磁気モーメントを生成する「電流」を通常の電流と同様に 取り扱うという現象論的な扱いをする。

(iii) 系の時間変化を時々刻々追跡する。 KI, Fukuda and Tachibana, Int. J. Quan. Chem. 113, 190 (2013)

場の演算子をハイゼンベルク表示の演算子として扱い、場の運動方

程式に従って時間発展を追う。

(束縛状態を扱うため、摂動のゼロ次にとるべきハミルトニアンが不明。 有効な相互作用表示が不明。) 場の演算子の運動方程式:

$$x = (ct, \vec{r})$$

光子場 (Maxwell equations): $\hat{A}_{\mu}(x)$

$$-\nabla^2 \hat{A}_0(x) = 4\pi \hat{\rho}(x),$$

$$\frac{1}{c} \frac{\partial}{\partial t} \vec{\nabla} \hat{A}_0(x) + \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \nabla^2\right) \hat{\vec{A}}(x) = \frac{4\pi}{c} \hat{\vec{j}}(x), \qquad \vec{\nabla} \cdot \hat{\vec{A}}(x) = 0.$$
(Coulomb gauge)

電子場 (Dirac equation): $\hat{\psi}(x)$ { $\hat{\psi}_{\alpha}(x), \hat{\psi}_{\beta}^{\dagger}(x')$ } = $\delta(\vec{r} - \vec{r}')\delta_{\alpha\beta}$ $i\hbar \frac{\partial \hat{\psi}(x)}{\partial t} = \{(Z_e e) \hat{A}_0(x) + \vec{\alpha} \cdot (-i\hbar c \vec{\nabla} - (Z_e e) \hat{\vec{A}}(x)) + m_e c^2 \beta\} \hat{\psi}(x),$ 電荷密度: $\hat{\rho}(x) = Z_e e \hat{\psi}(x) \gamma^0 \hat{\psi}(x) + \sum_a^{N_n} Z_a e \hat{\chi}_a^{\dagger}(x) \hat{\chi}_a(x),$ 電流密度: $\hat{\vec{j}}(x) = Z_e e c \hat{\psi}(x) \vec{\gamma} \hat{\psi}(x)$ $+ \sum_a^{N_n} \frac{Z_a e}{2m_a} \left(i\hbar \hat{\chi}_a^{\dagger}(x) \hat{\vec{D}}_a(x) \hat{\chi}_a(x) - i\hbar \left(\hat{\vec{D}}_a(t) \hat{\chi}_a(x)\right)^{\dagger} \cdot \hat{\chi}_a(x)\right)$ 原子核場 (Schrödinger equation): $\hat{\chi}_e(x) = [\hat{\chi}_e(x), \hat{\chi}^{\dagger}(x')]_+ = \delta(\vec{r} - \vec{r}')$

$$i\hbar \frac{\partial}{\partial t} \hat{\chi}_a(x) = -\frac{\hbar^2}{2m_a} \left\{ \vec{\nabla}^2 - 2i \frac{Z_a e}{\hbar c} \hat{\vec{A}}(x) \cdot \vec{\nabla} - \left(\frac{Z_a e}{\hbar c}\right)^2 \hat{\vec{A}}(x) \cdot \hat{\vec{A}}(x) \right\} \hat{\chi}_a(x) + Z_a e \hat{A}_0(x) \hat{\chi}_a(x),$$

場の演算子の運動方程式:

$$x = (ct, \vec{r})$$
光子場 (Maxwell equations): $\hat{A}_{\mu}(x)$

$$-\nabla^{2}\hat{A}_{0}(x) = 4\pi\hat{\rho}(x),$$

$$\frac{1}{c}\frac{\partial}{\partial t}\nabla\hat{A}_{0}(x) + \left(\frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}} - \nabla^{2}\right)\hat{A}(x) = \frac{4\pi}{c}\hat{j}(x),$$

$$\nabla \cdot \hat{A}(x) = 0. \text{ (Coulomb gauge)}$$
電子場 (Dirac equation): $\hat{\psi}(x)$

$$\{\hat{\psi}_{\alpha}(x), \hat{\psi}^{\dagger}_{\beta}(x')\} = \delta(\vec{r} - \vec{r}')\delta_{\alpha\beta}$$

$$i\hbar\frac{\partial\hat{\psi}(x)}{\partial t} = \left\{(Z_{e}e)\hat{A}_{0}(x) + \vec{\alpha} \cdot \left(-i\hbar c\nabla - (Z_{e}e)\hat{A}(x)\right) + m_{e}c^{2}\beta\right\}\hat{\psi}(x),$$

$$(従来 \mathcal{O}) \text{ QED}$$
電荷密度:
$$\hat{\rho}(x) = Z_{e}e\hat{\psi}(x)\gamma^{0}\hat{\psi}(x)$$

$$+\sum_{a}^{N_{n}} Z_{a}e\hat{\chi}^{\dagger}_{a}(x)\hat{\chi}_{a}(x),$$
電流密度:
$$\hat{j}(x) = Z_{e}ec\hat{\psi}(x)\gamma^{0}\hat{\psi}(x)$$

$$+\sum_{a}^{N_{n}} \frac{Z_{a}e}{2m_{a}}\left(i\hbar\hat{\chi}^{\dagger}_{a}(x)\hat{D}_{a}(x)\hat{\chi}_{a}(x) - i\hbar\left(\hat{D}_{a}(x)\hat{\chi}_{a}(x)\right)^{\dagger} \cdot \hat{\chi}_{a}(x)\right)$$
原子核場 (Schrödinger equation): $\hat{\chi}_{a}(x)$

$$[\hat{\chi}_{a}(x) \quad [\hat{\chi}_{a}(x), \hat{\chi}^{\dagger}_{a}(x')]_{\pm} = \delta(\vec{r} - \vec{r}')$$

$$i\hbar\frac{\partial}{\partial t}\hat{\chi}_{a}(x) = -\frac{\hbar^{2}}{2m_{a}}\left\{\vec{\nabla}^{2} - 2i\frac{Z_{a}e}{\hbar c}\hat{A}(x) \cdot \nabla - \left(\frac{Z_{a}e}{\hbar c}\right)^{2}\hat{A}(x)\cdot\hat{A}(x)\right\}\hat{\chi}_{a}(x)$$
原子核部分

場の演算子を有限個の束縛基底で展 KI, Fukuda and Tachibana, Int. J. Quan. Chem. |13, 190 (2013) arXiv:1204.1724 開する。

電子の場の演算子→原子核による外場存在下でのディラック方程式の 解で展開。 N_D 4成分Hartree-Fock方程式を 解くことで得られる軌道

 $\hat{\psi}(ct,\vec{r}) = \sum_{n=1}^{r} \left[\hat{e}_n(t) \psi_n^{(+)}(\vec{r}) + \hat{f}_n^{\dagger}(t) \psi_n^{(-)}(\vec{r}) \right], \quad \text{cf) Furry, Phys. Rev. 81, 115 (1951)}$ $\boxed{\texttt{T}} = \frac{1}{3} \left[\hat{e}_n(t) \psi_n^{(+)}(\vec{r}) + \hat{f}_n^{\dagger}(t) \psi_n^{(-)}(\vec{r}) \right], \quad \text{cf) Furry, Phys. Rev. 81, 115 (1951)}$

式を簡単にするために以下の記法を導入。

 $\hat{e}_{n^{+}} \equiv \hat{e}_{n}, \quad \psi_{n^{+}} \equiv \psi_{n}^{(+)}, \\
\hat{e}_{n^{-}} \equiv \hat{f}_{n}^{\dagger}, \quad \psi_{n^{-}} \equiv \psi_{n}^{(-)}, \\
N_{D}$

$$\hat{\psi}(ct, \vec{r}) = \sum_{n=1}^{-} \sum_{a=\pm} \hat{e}_{n^a}(t) \psi_{n^a}(\vec{r})$$

$$egin{aligned} &\int d^3ec r \psi^\dagger_{n^a}(ec r)\psi_{m^b}(ec r) = \delta_{nm}\delta_{ab} \ & \left\{ \hat e_{n^a}, \hat e^\dagger_{m^b}
ight\} = \delta_{nm}\delta_{ab} \end{aligned}$$

 $\{\hat{\psi}_{\alpha}(x),\hat{\psi}_{\beta}^{\dagger}(x')\}=\delta(\vec{r}-\vec{r'})\delta_{\alpha\beta}$

⊾時間依存性はエネルギー

固有値で決めるわけでは

ない(以下を参照)

光子場は電子場・原子核場と、光子の生成消滅演算子で書ける。

どんな量を計算するか。

電子電荷密 演算子:

7

(+ 0)

励起演算子の時間発展により、物理量演算子の時間発展が記述される。 物理量演算子の期待値の時間発展が記述するには、励起演算子の期待値 (密度行列と呼ぶ)の時間発展がわかればよい。

生成消滅演算子の時間発展の式

電子場

$$i\hbar \frac{\partial \hat{\psi}(x)}{\partial t} = \left\{ (Z_{ee}) \hat{A}_{0}(x) + \vec{\alpha} \cdot \left(-i\hbar c \vec{\nabla} - (Z_{ee}) \hat{\vec{A}}(x) \right) + m_{e}c^{2}\beta \right\} \hat{\psi}(x),$$

 $\int d^{3}\vec{r} \psi_{p^{e}}^{\dagger}(\vec{r}) \left(\begin{array}{c} & & \\ &$

以下ではBorn-Oppenheimber近似(原子核を固定)の話に限る。

$$\hat{\rho}(x) = Z_e e \hat{\psi}(x) \gamma^0 \hat{\psi}(x) + \sum_a^{N_n} Z_a e \hat{\chi}_a^{\dagger}(x) \hat{\chi}_a(x)$$

$$\hat{j}(x) = Z_e e c \hat{\psi}(x) \vec{\gamma} \hat{\psi}(x) + \sum_a^{N_n} Z_a e \frac{1}{2m_a} \left(i\hbar \hat{\chi}_a^{\dagger}(x) \hat{D}_a(x) \hat{\chi}_a(x) - i\hbar \left(\hat{D}_a(x) \hat{\chi}_a(x) \right)^{\dagger} \cdot \hat{\chi}_a(x) \right)$$

$$N_D$$

い国フはの長

$$\begin{split} i\hbar \frac{\partial \hat{e}_{n^{a}}}{\partial t} &= \sum_{m=1}^{N_{D}} \sum_{b=\pm} h_{n^{a}m^{b}} \hat{e}_{m^{b}} + \sum_{m,p,q=1}^{N_{D}} \sum_{b,c,d=\pm} (n^{a}m^{b}|p^{c}q^{d}) \hat{\mathcal{E}}_{p^{c}q^{d}} \hat{e}_{m^{b}} \\ &- \frac{1}{c^{2}} \sum_{m=1}^{N_{D}} \sum_{b=\pm} \sum_{k=1}^{3} \int d^{3}\vec{r} \, d^{3}\vec{s} \, j_{n^{a}m^{b}}^{k}(\vec{r}) \frac{\hat{j}_{T}^{k}(cu,\vec{s})}{|\vec{r}-\vec{s}|} \hat{e}_{m^{b}} \qquad u = t - \frac{|\vec{r}-\vec{s}|}{c}, \\ &- \frac{\sqrt{4\pi\hbar^{2}}}{\sqrt{c(2\pi\hbar)^{3}}} \sum_{m=1}^{N_{D}} \sum_{b=\pm} \sum_{k=1}^{3} \sum_{\sigma=\pm 1} \int \frac{d^{3}\vec{p}}{\sqrt{2p^{0}}} \times \qquad j_{p^{c}q^{d}}^{k}(\vec{r}) \equiv Z_{e} \, e \, c \left[\psi_{p^{c}}^{\dagger}(\vec{r}) \gamma^{0} \gamma^{k} \psi_{q^{d}}(\vec{r}) \right]. \\ &\left[F_{n^{a}m^{b}}^{k}(\vec{p}) e^{k}(\vec{p},\sigma) e^{-icp^{0}t/\hbar} \hat{a}(\vec{p},\sigma) \hat{e}_{m^{b}} + F_{n^{a}m^{b}}^{k}(-\vec{p}) e^{*k}(\vec{p},\sigma) e^{icp^{0}t/\hbar} \hat{a}^{\dagger}(\vec{p},\sigma) \hat{e}_{m^{b}} \right] \end{split}$$

 $\frac{3}{2} - \hat{L} + \hat$

励起演算子の時間微分を模式的に書くと、

$$\frac{d}{dt}\hat{e} \sim \hat{e} + \hat{e}^{\dagger}\hat{e}\hat{e} + \hat{j}_{T}[\hat{e},\hat{a}]\hat{e} + \hat{a}\hat{e} + \hat{a}^{\dagger}\hat{e}$$
$$\frac{d}{dt}\hat{e}^{\dagger} \sim \hat{e}^{\dagger} + \hat{e}^{\dagger}\hat{e}^{\dagger}\hat{e} + \hat{e}^{\dagger}\hat{j}_{T}[\hat{e},\hat{a}] + \hat{e}^{\dagger}\hat{a}^{\dagger} + \hat{e}^{\dagger}\hat{a}$$

+
$$\hat{e}^{\dagger}\hat{j}_{T}[\hat{e},\hat{a}]\hat{e}$$
 + $\hat{e}^{\dagger}\hat{a}^{\dagger}\hat{e}$ + $\hat{e}^{\dagger}\hat{a}\,\hat{e}$

両辺の期待値をとっても

 $\left<\hat{e}^{\dagger}\hat{e}\right>$ についての閉じた時間発展方程式は得られない。 (さらに高次の演算子の組み合わせが増えてしまうだけ。)

・4次の項を近似的にfactorizeする。

 $\langle \hat{e}_P^{\dagger} \hat{e}_Q^{\dagger} \hat{e}_R \hat{e}_S \rangle \sim \langle \hat{e}_P^{\dagger} \hat{e}_S \rangle \langle \hat{e}_Q^{\dagger} \hat{e}_R \rangle - \langle \hat{e}_P^{\dagger} \hat{e}_R \rangle \langle \hat{e}_Q^{\dagger} \hat{e}_S \rangle$

・電流密度演算子 $\hat{j}_T[\hat{e},\hat{c},\hat{a}]$ は期待値で置き換える。

・ $\hat{e}^{\dagger}\hat{a}\hat{e}$ のような項は、 方法① $\langle \hat{e}^{\dagger}\hat{e} \rangle \langle \hat{a} \rangle$ とfactorizeする近似。 方法② $\hat{e}^{\dagger}\hat{a}\hat{e}$ の微分方程式と連立させて計算。

励起演算子の期待値の時間微分方程式は、

$$\hat{R} = \hat{a}(\vec{p},\sigma) \pm t \pm \hat{a}^{\dagger}(\vec{p},\sigma)$$

$$\hat{\mathcal{E}}_{p^{c}q^{d}} \equiv \hat{e}_{p^{c}}^{\dagger}\hat{e}_{q^{d}}$$

$$\hat{\mathcal{E}}_{p^{c}q^{d}}^{\phi} \equiv \langle \Phi | \hat{\mathcal{E}}_{p^{c}q^{d}} | \Phi \rangle$$

$$\mathcal{E}^{\Phi}[\hat{R}]_{p^{c}q^{d}} \equiv \langle \Phi | \hat{\mathcal{E}}[\hat{R}]_{p^{c}q^{d}} | \Phi \rangle$$

$$\mathcal{O} \pm 5 \Delta \Xi \Xi \delta z \pm \delta z$$

を用いる。

水素原子の電子電荷密度の時間発展の計算

$$\begin{split} \left\langle \hat{\rho}_{e}(t,\vec{r}) \right\rangle &= \left\langle \Phi | : \hat{\rho}_{e}(t) : |\Phi \right\rangle \\ &= \left\langle \Phi | \hat{\rho}_{e}(t) |\Phi \rangle - \left\langle 0 | \hat{\rho}_{e}(t=0) | 0 \right\rangle \\ &= \sum_{p,q=1}^{N_{D}} \sum_{a,b=\pm} \rho_{p^{a}q^{b}}(\vec{r}) \left\{ \left\langle \Phi | \hat{\mathcal{E}}_{p^{a}q^{b}}(t) |\Phi \right\rangle - \left\langle 0 | \hat{\mathcal{E}}_{p^{a}q^{b}}(t=0) | 0 \right\rangle \right\} \\ &\rho_{p^{c}q^{d}}(\vec{r}) \\ &= \left(Z_{e}e \right) \psi_{p^{c}}^{\dagger}(\vec{r}) \psi_{q^{d}}(\vec{r}), \end{split}$$

電子の軌道はDIRACI0コードにより Dirac Hartree Fock法で、基底関数STO-3G を用いて計算した。

初期条件:基底状態
$$|\Phi\rangle = \hat{e}_{1+}^{\dagger}|0\rangle$$
 $\mathbb{T} \to \mathbb{T} \to \mathbb{T}$ $1^+ \to \mathbb{T} \to \mathbb{T}^+$
 $\langle \Phi | \hat{e}_{n^a}^{\dagger} \hat{e}_{m^b} | \Phi \rangle = \begin{cases} \delta_{nm} & (a = \oplus, b = \oplus) \\ \delta_{nm} & (a = -, b = -) \\ 0 & (otherwise) \end{cases}$ 電子 $1^- \to \mathbb{T}^-$

光子の状態は、光子が無い場合と、コヒーレント状態 (古典的な外部振動電場が存在することに対応)で計算。

水素原子において、核から *I a.u.*離れたところでの電荷 密度の時間変化(初期値か らのずれをプロット)。

2π/(2m_ec²) = 1.67 × 10⁻⁴. という電子質量の二倍に対 応する周期の振動が電荷密 度に見られる。

(仮想)電子陽電子の対消 滅・対生成に起因する電荷 密度の揺らぎと考えられ る。

 $1 \text{ a.u.} = 24.19 \text{ as} = 2.419 \times 10^{-17} \text{ s}$

外部電場による変調

光子の初期状態をモードp^o(振動電場の振動数に対応)のコヒーレント状態にとる。

励起演算子の期待値の時間微分方程式は、

$$\hat{R} = \hat{a}(\vec{p}, \sigma) \pm tk \hat{a}^{\dagger}(\vec{p}, \sigma)$$

$$\hat{\mathcal{E}}_{p^{c}q^{d}} \equiv \hat{e}_{p^{c}}^{\dagger} \hat{e}_{q^{d}}$$

$$\hat{\mathcal{E}}_{p^{c}q^{d}} \equiv \langle \Phi | \hat{\mathcal{E}}_{p^{c}q^{d}} | \Phi \rangle$$

$$\mathcal{E}^{\Phi}[\hat{R}]_{p^{c}q^{d}} \equiv \langle \Phi | \hat{\mathcal{E}}[\hat{R}]_{p^{c}q^{d}} | \Phi \rangle$$

$$\mathcal{O}_{k} \exists t \bar{k} = \mathcal{O}_{n^{a}m^{b}}^{\Phi} + \mathcal{O}_{n^{a}m^{b}}^{\Phi^{\dagger}}$$

$$\frac{d\mathcal{E}_{n^{a}m^{b}}^{\Phi}}{dt} = \mathcal{O}_{n^{a}m^{b}}^{\Phi} + \mathcal{O}_{n^{a}m^{b}}^{\Phi^{\dagger}}$$

$$\frac{d\mathcal{E}_{n^{a}m^{b}}^{\Phi}}{dt} = \mathcal{O}_{n^{a}m^{b}}^{\Phi} + \mathcal{O}_{n^{a}m^{b}}^{\Phi^{\dagger}}$$

$$\frac{\pi e^{2}H_{k}^{\Phi}}{2} \left(\frac{m^{b}r^{e}}{p^{c}q^{d}} \right) \left(\frac{\mathcal{E}_{n^{a}m^{b}}^{\Phi} + \mathcal{M}_{n^{a}m^{b}}^{N^{a}} + \sum_{i=1}^{N_{c}} (Z_{a}e)V_{n^{a}m^{b}}(\vec{R}_{a}), \\ \underline{\mathcal{B}}_{a}^{\Phi} + \mathcal{D}_{n^{a}m^{b}}^{\Phi} + \mathcal{O}_{n^{a}m^{b}}^{\Phi^{\dagger}}$$

$$\frac{d\mathcal{E}_{n^{a}m^{b}}^{\Phi}}{2} = \sum_{r=1}^{N_{c}} \sum_{e=\pm} h_{m^{b}r^{e}} \mathcal{E}_{n^{a}r^{e}}^{\Phi} + \sum_{r,p,q=1}^{N_{c}} \sum_{e,c,d=\pm} (m^{b}r^{e})p^{c}q^{d} \right) \left(\mathcal{E}_{n^{a}r^{e}}^{\Phi} \mathcal{E}_{p^{c}q^{d}}^{\Phi} - \mathcal{E}_{n^{a}q^{d}}^{\Phi} \mathcal{E}_{p^{c}r^{c}}^{\Phi} \right)$$

$$\frac{d\mathcal{E}_{n^{a}m^{b}}^{\Phi}}{2} = \sum_{r=1}^{N_{c}} \sum_{e=\pm} I_{j_{T}}(t) \left[\mathcal{E}, \frac{d\mathcal{E}}{dt} \right]_{m^{b}r^{e}} \mathcal{E}_{n^{a}r^{e}}^{\Phi} - \mathcal{E}_{n^{a}q^{d}}^{\Phi} \mathcal{E}_{p^{c}q^{d}}^{\Phi} - \mathcal{E}_{n^{a}q^{d}}^{\Phi} \mathcal{E}_{p^{c}r^{c}}^{\Phi} \right)$$

$$\frac{1}{\sqrt{2\pi^{2}hc}} \sum_{r=1}^{N_{c}} \sum_{e=\pm} \sum_{k=1}^{3} \sum_{\sigma=\pm \pm} \int \frac{d^{3}\vec{p}}{\sqrt{2p^{0}}} \times \left\{ F_{m^{b}r^{e}}^{K}(\vec{p},\sigma) e^{-icp^{0}t/\hbar}\mathcal{E}_{T}^{\Phi}[\hat{a}(\vec{p},\sigma)]_{n^{a}r^{e}} + F_{m^{b}r^{e}}^{K}(-\vec{p})e^{*k}(\vec{p},\sigma)e^{icp^{0}t/\hbar}\mathcal{E}_{T}^{\Phi}[\hat{a}^{\dagger}(\vec{p},\sigma)]_{n^{a}r^{e}} \right\}$$

$$\frac{e^{\dagger}\hat{a}\hat{a}\hat{e}}{2} \qquad \hat{D}^{\dagger}\hat{a}\hat{a}\hat{e} \qquad \hat{D}^{\dagger}\hat{a}^{\dagger}\hat{e}$$

$$I_{jrr}(t) \left[\mathcal{E}, \frac{d\mathcal{E}}{dt} \right]_{m^{b}r^{e}} \equiv \left\{ D_{j,m^{b}r^{e}p^{c}q^{d}\mathcal{E}_{p^{c}q^{d}}(u) + I_{jE,m^{b}r^{e}p^{c}q^{d}}\mathcal{E}_{p^{c}q^{d}}(u) \right\}$$

 $\langle \hat{e}^{\dagger} \hat{a} \hat{e}
angle$ の時間発展の式

$$\begin{split} \frac{d}{dt} \left\{ \hat{e}_{n^{a}}^{\dagger} \hat{a}(\vec{p},\sigma) \hat{e}_{m^{b}} \right\} &= \frac{\partial \hat{e}_{n^{a}}^{\dagger}}{\partial t} \hat{a}(\vec{p},\sigma) \hat{e}_{m^{b}} + \hat{e}_{n^{a}}^{\dagger} \hat{a}(\vec{p},\sigma) \frac{\partial \hat{e}_{m^{b}}}{\partial t} \equiv \hat{Q}_{m^{b}n^{a}}^{\dagger} + \hat{P}_{n^{a}m^{b}} \\ & \Rightarrow \hat{P}_{n^{a}m^{b}} = i\hbar \hat{e}_{n^{a}}^{\dagger} \hat{a}(\vec{p},\sigma) \frac{\partial \hat{e}_{m^{b}}}{\partial t} & \Rightarrow \hat{P}_{n^{a}m^{b}} \hat{e}_{n^{a}} \hat{a}(\vec{p},\sigma) \hat{e}_{n^{c}} + \sum_{r,p,q=1}^{N_{D}} \sum_{e,e,d=\pm} (m^{b}r^{e}|p^{c}q^{d}) \hat{e}_{n^{e}}^{\dagger} \hat{a}(\vec{p},\sigma) \hat{e}_{p^{c}q^{d}} \hat{e}_{r^{e}} \\ & = \sum_{r=1}^{N_{D}} \sum_{e=\pm} h_{m^{b}r^{e}} \hat{e}_{n^{a}}^{\dagger} \hat{a}(\vec{p},\sigma) \hat{e}_{r^{e}} + \sum_{r,p,q=1}^{N_{D}} \sum_{e,e,d=\pm} (m^{b}r^{e}|p^{c}q^{d}) \hat{e}_{n^{e}}^{\dagger} \hat{a}(\vec{p},\sigma) \hat{e}_{p^{c}q^{d}} \hat{e}_{r^{e}} \\ & = \frac{1}{c^{2}} \sum_{r=1}^{N_{D}} \sum_{e=\pm} \sum_{k=1}^{3} \int d^{3}\vec{r} \, d^{3}\vec{s} \, j_{m^{b}r^{e}}^{k}(\vec{r}) \hat{e}_{n^{e}}^{\dagger} \hat{a}(\vec{p},\sigma) \frac{\hat{j}_{1}^{k}(cu,\vec{s})}{|\vec{r}-\vec{s}|} \hat{e}_{r^{e}} \\ & = \frac{1}{\sqrt{2\pi^{2}hc}} \sum_{r=1}^{N_{D}} \sum_{e=\pm} \sum_{k=1}^{3} \sum_{\tau=\pm 1} \int \frac{d^{3}\vec{q}}{\sqrt{2q^{0}}} \times \\ \left[F_{m^{b}r^{e}}^{k}(\vec{q},r) e^{-icq^{0}t/\hbar} \hat{e}_{n^{a}}^{\dagger} \hat{a}(\vec{p},\sigma) \hat{a}(\vec{q},\tau) \hat{e}_{r^{e}}} + F_{m^{b}r^{e}}^{k}(-\vec{q}) e^{*k}(\vec{q},\tau) e^{icq^{0}t/\hbar} \hat{e}_{n^{a}}^{\dagger} \hat{a}(\vec{p},\sigma) \hat{a}^{\dagger}(\vec{q},\tau) \hat{e}_{r^{e}} \right] \\ \hat{e}_{n^{a}} \hat{a}(\vec{p},\sigma) \hat{a}(\vec{q},\tau) \hat{e}_{r^{e}} \rangle & \approx \langle \hat{e}_{n^{a}}^{\dagger} \hat{e}_{r^{e}} \rangle \langle \hat{a}(\vec{p},\sigma) \hat{a}^{\dagger}(\vec{q},\tau) \rangle \\ \hat{e}_{n^{a}} \hat{a}(\vec{p},\sigma) \hat{a}^{\dagger}(\vec{q},\tau) \hat{e}_{r^{e}} \rangle & \approx \langle \hat{e}_{n^{a}}^{\dagger} \hat{e}_{r^{e}} \rangle \langle \hat{a}(\vec{p},\sigma) \hat{a}^{\dagger}(\vec{q},\tau) \rangle \\ \hat{e}_{n^{a}} \hat{a}(\vec{p},\sigma) \hat{a}^{\dagger}(\vec{q},\tau) \hat{e}_{r^{e}} \rangle & \approx \langle \hat{e}_{n^{a}}^{\dagger} \hat{e}_{r^{e}} \rangle \langle \hat{a}(\vec{p},\sigma) \hat{a}^{\dagger}(\vec{q},\tau) \rangle \\ \hat{e}_{n^{a}} \hat{a}(\vec{p},\sigma) \hat{a}^{\dagger}(\vec{q},\tau) \hat{e}_{r^{e}} \rangle & \approx \langle \hat{e}_{n^{a}}^{\dagger} \hat{e}_{r^{e}} \rangle \langle \hat{a}(\vec{p},\sigma) \hat{a}^{\dagger}(\vec{q},\tau) \rangle \\ \hat{e}_{n^{a}} \hat{a}(\vec{p},\sigma) \hat{a}^{\dagger}(\vec{q},\tau) \hat{e}_{r^{e}} \rangle & \approx \langle \hat{e}_{n^{a}}^{\dagger} \hat{e}_{r^{e}} \rangle \langle \hat{a}(\vec{p},\sigma) \hat{a}^{\dagger}(\vec{q},\tau) \rangle \\ \hat{e}_{n^{a}} \hat{e}_{n^{a}} \hat{e}_{n^{a}} \rangle \hat{e}_{n^{a}} \hat{e}_{n^{a}} \hat{e}_{n^{a}} \rangle \langle \hat{a}(\vec{p},\sigma) \hat{a}^{\dagger}(\vec{q},\tau) \rangle \\ \hat{e}_{n^{a}} \hat{e}_{n^{a}} \hat{e}_{n^{a}} \hat{e}_{n^{a}} \hat{e}_{n^{a}} \rangle \hat{e}_{n$$

励起演算子の期待値の時間微分方程式は、

 $\hat{\mathcal{E}}_{p^{c}q^{d}} \equiv \hat{e}_{p^{c}}^{\dagger}\hat{e}_{q^{d}}$ $\hat{\mathcal{E}}[\hat{R}]_{p^{c}q^{d}} \equiv \hat{e}_{p^{c}}^{\dagger}\hat{R}\hat{e}_{q^{d}}$ $\hat{R} = \hat{a}(\vec{p},\sigma)$ または $\hat{a}^{\dagger}(\vec{p},\sigma)$ $\mathcal{E}_{p^{c}q^{d}}^{\Phi} \equiv \langle \Phi | \hat{\mathcal{E}}_{p^{c}q^{d}} | \Phi \rangle$ $\mathcal{E}^{\Phi}[\hat{R}]_{p^{c}q^{d}} \equiv \langle \Phi | \hat{\mathcal{E}}[\hat{R}]_{p^{c}q^{d}} | \Phi \rangle$ $\mathcal{E}^{\Phi}[\hat{a}^{\dagger}]_{p^{c}q^{d}} = \mathcal{E}^{\Phi*}[\hat{a}]_{q^{d}p^{c}}$ のような記号を定義すると、

$$\frac{d\mathcal{E}^{\Phi}_{n^am^b}}{dt} = \mathcal{O}^{\Phi}_{n^am^b} + \mathcal{O}^{\Phi\dagger}_{n^am^b} \qquad \frac{d}{dt} \mathcal{E}^{\Phi}[\hat{a}(\vec{p},\sigma)]_{n^am^b} = \mathcal{Q}^{\Phi\dagger}_{n^am^b}(\vec{p},\sigma) + \mathcal{P}^{\Phi}_{n^am^b}(\vec{p},\sigma)$$

$$\begin{split} i\hbar\mathcal{O}_{n^{a}m^{b}}^{\Phi} &= \sum_{r=1}^{N_{D}} \sum_{e=\pm} h_{m^{b}r^{e}} \mathcal{E}_{n^{a}r^{e}}^{\Phi} + \sum_{r,p,q=1}^{N_{D}} \sum_{e,c,d=\pm} (m^{b}r^{e}|p^{c}q^{d}) \left(\mathcal{E}_{n^{a}r^{e}}^{\Phi} \mathcal{E}_{p^{c}q^{d}}^{\Phi} - \mathcal{E}_{n^{a}q^{d}}^{\Phi} \mathcal{E}_{p^{c}r^{c}}^{\Phi} \right) \\ &- \frac{1}{\sqrt{2\pi^{2}\hbar c}} \sum_{r=1}^{N_{D}} \sum_{e=\pm} \sum_{k=1}^{3} \sum_{\sigma=\pm 1} \int \frac{d^{3}\vec{p}}{\sqrt{2p^{0}}} \times \\ \left\{ F_{m^{b}r^{e}}^{k}(\vec{p},\sigma) e^{-icp^{0}t/\hbar} \mathcal{E}^{\Phi}[\hat{a}(\vec{p},\sigma)]_{n^{a}r^{e}} + F_{m^{b}r^{e}}^{k}(-\vec{p})e^{*k}(\vec{p},\sigma)e^{icp^{0}t/\hbar} \mathcal{E}^{\Phi}[\hat{a}^{\dagger}(\vec{p},\sigma)]_{n^{a}r^{e}} \right\} \\ i\hbar\mathcal{P}_{n^{a}m^{b}}^{\Phi}(\vec{p},\sigma) &= \sum_{r=1}^{N_{D}} \sum_{e=\pm} h_{m^{b}r^{e}} \mathcal{E}^{\Phi}[\hat{a}(\vec{p},\sigma)]_{n^{a}r^{e}} \\ &- \frac{1}{\sqrt{2\pi^{2}\hbar c}} \sum_{r=1}^{N_{D}} \sum_{e=\pm} \sum_{k=1}^{3} \frac{1}{\sqrt{2p^{0}}} F_{m^{b}r^{e}}^{k}(-\vec{p})e^{*k}(\vec{p},\sigma)e^{icp^{0}t/\hbar}(n_{\vec{p}\sigma}+1)\mathcal{E}_{n^{a}r^{e}}^{\Phi} \\ &i\hbar\mathcal{Q}_{n^{a}m^{b}}^{\Phi}(\vec{p},\sigma) &= \sum_{r=1}^{N_{D}} \sum_{e=\pm} h_{m^{b}r^{e}} \mathcal{E}^{\Phi}[\hat{a}^{\dagger}(\vec{p},\sigma)]_{n^{a}r^{e}} \\ &- \frac{1}{\sqrt{2\pi^{2}\hbar c}} \sum_{r=1}^{N_{D}} \sum_{e=\pm} h_{m^{b}r^{e}} \mathcal{E}^{\Phi}[\hat{a}^{\dagger}(\vec{p},\sigma)]_{n^{a}r^{e}} \\ &= \sum_{r=1}^{N_{D}} \sum_{e=\pm} h_{m^{b}r^{e}} \mathcal{E}^{\Phi}[\hat{a}^{\dagger}(\vec{p},\sigma)]_{n^{a}r^{e}} \\ &= 0) \quad \nabla \cdot \delta \pi B \mathcal{Q} \mathcal{B} \mathcal{B} \mathcal{E} \mathcal{B} \mathcal{A} \mathcal{A}_{n^{a}r^{e}} \\ &- \frac{1}{\sqrt{2\pi^{2}\hbar c}} \sum_{r=1}^{N_{D}} \sum_{e=\pm} \sum_{k=1}^{3} \frac{1}{\sqrt{2p^{0}}}} F_{m^{b}r^{e}}^{k}(\vec{p}) e^{k}(\vec{p},\sigma) e^{-icp^{0}t/\hbar} n_{\vec{p}\sigma} \mathcal{E}_{n^{a}r^{e}}^{\Phi} \end{split}$$

水素原子の電子電荷密度の時間発展の計算(自己エネルギー入り)

$$\begin{split} \left\langle \hat{\rho}_{e}(t,\vec{r}) \right\rangle &= \left\langle \Phi | : \hat{\rho}_{e}(t) : |\Phi \right\rangle \\ &= \left\langle \Phi | \hat{\rho}_{e}(t) |\Phi \rangle - \left\langle 0 | \hat{\rho}_{e}(t=0) | 0 \right\rangle \\ &= \sum_{p,q=1}^{N_{D}} \sum_{a,b=\pm} \rho_{p^{a}q^{b}}(\vec{r}) \left\{ \left\langle \Phi | \hat{\mathcal{E}}_{p^{a}q^{b}}(t) |\Phi \right\rangle - \left\langle 0 | \hat{\mathcal{E}}_{p^{a}q^{b}}(t=0) | 0 \right\rangle \right\} \\ &\rho_{p^{c}q^{d}}(\vec{r}) \\ &= \left(Z_{e}e \right) \psi_{p^{c}}^{\dagger}(\vec{r}) \psi_{q^{d}}(\vec{r}), \end{split}$$

電子の軌道はDIRACI0コードにより Dirac Hartree Fock法で、基底関数STO-3G を用いて計算した。

初期条件:基底状態 $|\Phi\rangle = \hat{e}_{1+}^{\dagger}|0\rangle$ 電子 $1^{+} \longrightarrow - \overline{1}^{+}$ $\langle \Phi | \hat{e}_{n^{a}}^{\dagger} \hat{e}_{m^{b}} | \Phi \rangle = \begin{cases} \delta_{nm} & (a = \oplus, b = \oplus) \\ \delta_{nm} & (a = -, b = -) \\ 0 & (otherwise) \end{cases}$ 電子 $1^{-} \longrightarrow \overline{1}^{-}$

初期状態にphotonは無し。

光子のモードは、
$$0 < p^0 \le 10$$
 に 10 コ を各偏光ごとにとっている。
 $0 \le heta \le \pi$ に 5 コ
 $0 \le \phi < 2\pi$ に 4 コ

<別の系での例>水素分子の2つの原子核の中点で、電子電

no self-energy

荷密度の初期値からの変化をプロット。

まとめ

- QEDに基づいて原子分子系、すなわち原子核が存在して束縛状態にあ るような系の時間発展を時々刻々シミュレートするために、
 - (i) 場の演算子を束縛基底で展開する。
 - (ii) 原子核場をシュレディンガー場として追加する。
 - (iii) ハイゼンベルク表示で場の時間発展を追う。

という方法を用いて、いくつかの近似の下で数値計算を行った。

- ・ 生成消滅演算子・励起演算子の時間発展の方程式を導出し、励起演算子の期待値(密度行列)の微分方程式を導出した。光子場において遅延ポテンシャルを無視する近似およびBorn-Oppenheimer近似のもとで、自己エネルギーの寄与が無い場合は、電子電荷密度に 2π/(2m_ec²)
 ~ 1.67×10⁻⁴ a.u.の周期の振動が見られた。
- 自己エネルギーの寄与を入れると、電子陽電子振動の振動数が増加した。この振動は物理的には電子質量で決まるものであると考えられるため、電子質量が自己エネルギーの効果によって増加したようにみえる。