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Abstract

Electroweak baryogenesis is reviewd in light of the 126 GeV Higgs boson. In this
talk, we focus on the minimal supersymmetric standard model (MSSM) and investigate
an overlooked issue associated with a high-temperature expansion of the two-loop effec-
tive potential. As a first step toward the complete analysis of the MSSM, we consider the
U(1) gauge theory and devise a tractable calculation scheme that can greatly simplify
the sunset diagrams involving the gauge bosons without using the high-temperature
approximation.

1 Introduction

According to the cosmological data, the baryon asymmetry of the universe (BAU) is
found to be η = nb/nγ ≃ 10−10 [1]. Clarification of the origin of the BAU is one of
the greatest challenges in particle physics, cosmology and nuclear physics. If the BAU
is generated before T = O(1) MeV, the light element abundances (D,3He,4He,7Li) can
be explained by the standard Big-Bang cosmology. To get the right η (which is called
baryogenesis) from an initially baryon symmetric Universe, the so-called Sakharov’s
conditions have to be satisfied [2]: (i) baryon number (B) violation, (ii) C and CP
violation, (iii) departure from thermal equilibrium. To this end, a lot of scenarios have
been proposed so far [3]. From an experimental point of view, electroweak baryogenesis
(EWBG) [4] among others is the most testable scenario, and thus it is in urgent need
of detailed analysis in the LHC and future ILC eras.

It is known that the possibility of the EWBG in the standard model (SM) has been
ruled out due to the lack of sufficiently large CP violating effect and absence of the
strong first-order phase transition (EWPT) which is needed for satisfying the Sakharov’s
condition (iii). Such a shortcoming of the SM motivates us to look for physics beyond
the SM. Much attention has been paid to the minimal supersymmetric standard model
(MSSM) as a leading candidate for new physics.

In this talk, after reviewing the EWBG mechanism briefly, we derive the sphaleron
decoupling condition in light of the 126 GeV Higgs boson. In order to know a prescrip-
tion for the baryogenesis problems in the SM, the EWPT is also reviewed using the
one-loop effective potential. Then, we move on to the MSSM and point out the unre-
solved issues shortly. After presenting our new calculation method that can solve one
of the issues, we apply it to the U(1) gauge theory as a first step toward the complete
analysis of the MSSM EWBG.
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Figure 1: (Left) The bubble expansion. (Right) The Higgs VEV as function of z which is
the direction of the bubble expansion.

2 EWBG mechanism

Foregoing Sakharov’s conditions in the EWBG are satisfied as follows: (i) B viola-
tion is realized by an anomalous process at finite temperature (conventionally referred
as sphaleron process although the sphaleron solution does not exist in the symmetric
phase.) (ii) C is maximally violated by the chiral gauge interactions, CP violation comes
from the Cabbibo-Kobayashi-Maskawa matrix or other complex parameters once the
standard model (SM) is extended. (iii) Out of equilibrium is realized by the first-order
EWPT with bubble nucleation and expansion.

The left panel of Fig. 1 shows a schematic picture of the expanding bubble wall.
The inside of the bubble corresponds to the broken phase where the Higgs vacuum
expectation value (VEV) is nonzero, ⟨Φ⟩ ̸= 0 while the outside of it represents the
symmetric phase where ⟨Φ⟩ = 0. In the right panel of Fig. 1, ⟨Φ⟩ is depicted as a
function of z which is a direction of the bubble expansion. The outline of the EWBG
is as follows.

1. Because of CP violation induced by interactions between the bubble and the
particles in the plasma, chiral charges are asymmetrized.

2. They diffuse into the symmetric phase and accumulate.

3. B is generated via sphaleron process.

4. After decoupling of the sphaleron process in the broken phase, B is fixed.

The last step may leave a detectable footprint in low energy observables. In the follow-
ing, we will look into one of such possibilities.

3 Sphaleron decoupling condition

In order to preserve the generated BAU via the sphaleron process in the symmetric

phase, the B-changing rate in the broken phase (Γ
(b)
B ) must be sufficiently suppressed.

Namely,

Γ
(b)
B (T ) ≃ (prefactor)e−Esph(T )/T < H(T ) ≃ 1.66

√
g∗(T )T

2/mP (3.1)

is satisfied, where Esph denotes the sphaleron energy, g∗ is the degrees of freedom of
relativistic particles in the plasma (g∗ = 106.75 in the SM) and mP stands for the
Planck mass which is about 1.22 × 1019 GeV. Since Esph is proportional to the Higgs
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Figure 2: The dimensionless sphaleron energy E(0) vs. λ/g22.

VEV (denoted by v), Eq. (3.1) can be realized if the EWPT is strongly first-order.
Conventionally, the sphaleron energy is parametrized as Esph(T ) = 4πv(T )E(T )/g2,
where g2 denotes the SU(2) gauge coupling constant. Eq. (3.1) is then cast into the
form

v(T )

T
>

g2
4πE(T )

[
42.97 + log corrections

]
. (3.2)

The dominant contributions on the right-hand side is E(T ) while the log corrections
that mostly come from the zero mode factors of the fluctuations about the sphaleron
typically amount to about 10% [5].

As an illustration, we evaluate the sphaleron energy at zero temperature, E(0),
within the SM [6]. Since the U(1)Y contribution is sufficiently small [7], it is enough to
confine ourself to the SU(2)L gauge-Higgs system. To find the sphaleron solution, we
adopt a spherically symmetric configurations ansatz with a noncontractible loop [6].

In Fig. 2, E(0) is plotted as a function of λ/g22. We can see that as λ/g22 increases, E
increases. For the Higgs boson with a mass of 126 GeV, which corresponds to λ ≃ 0.13,
one finds E(0) ≃ 1.92. With this value, Eq. (3.2) becomes

v(T )

T
> 1.16, (3.3)

where only the dominant contributions are retained on the right-hand side in Eq. (3.2).
Note that the use of E(0) in the decoupling criterion leads to somewhat underestimated
results since E(T ) < E(0). In the MSSM, using the finite-temperature effective potential
at the one-loop level, v(TN )/TN > 1.38 is obtained, where the sphaleron energy as well
as the translational and rotational zero mode factors of the fluctuation around the
sphaleron are evaluated at a nucleation temperature (TN ) which is somewhat below
TC [5].

4 Electroweak phase transition

Here, we explicitly demonstrate why the SM EWBG fails, which may give a signpost
searching for new physics. Using a high-temperature expansion, the one-loop effective
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potential at finite temperature is reduced to

Veff(φ;T ) ≃ D(T 2 − T 2
0 )φ

2 − ETφ3 +
λT

4
φ4, (4.1)

where

D =
1

8v2

(
2m2

W +m2
Z + 2m2

t

)
, E =

1

4πv3

(
2m3

W +m3
Z

)
≃ 10−2, (4.2)

λT =
m2

h

2v2

[
1− 3

8π2v2m2
h

{
2m4

W log
m2

W

αBT 2
+m4

Z log
m2

Z

αBT 2
− 4m4

t log
m2

t

αFT 2

}]
, (4.3)

with logαB = 2 log 4π − 2γE ≃ 3.91 and logαF = 2 log π − 2γE ≃ 1.14. Appearance
of the cubic term with the negative coefficient dictates that the EWPT should be first-
order. Note that since the origin of the cubic term is the zero Matsubara frequency
mode, the only bosonic thermal loops contribute to E.

The critical temperature TC is defined by a temperature at which Veff(φ;T ) has two
degenerate minima. At TC , Veff takes the form

Veff(φ;TC) =
λTC

4
φ2(φ− vC)

2, vC =
2ETC

λTC

. (4.4)

As we discussed in the previous section, vC/TC >∼ 1 should hold to avoid the washout
by the sphaleron in the broken phase. Since λTC

≃ m2
h/2v

2, one obtains the upper
bound of the Higgs boson mass as

mh <∼ 2v
√
E ≃ 48 GeV. (4.5)

This mass range has been already excluded by the LEP experiments. According to
nonperturbative studies, the EWPT in the SM is a crossover for mh >∼ 73 GeV [8].

From the above argument, one of the straightforward way-outs is to enhance E by
adding the bosonic degrees of freedom.

5 Light stop scenario in the MSSM

Let us consider the MSSM case. The EWBG scenario in this model is the so-called
“light stop scenario (LSS) [9]”, which is now on the verge of being excluded. (see e.g.
[10, 11]).

In order to realize the physical Higgs boson mass, the left-handed stop SUSY break-
ing mass (mq̃) has to be much greater than the right-handed one (mt̃R

). According to
[11], mq̃ may be as large as O(106) TeV. In such a case, the effective theory approach is
more appropriate. The effective theory of the LSS is constructed in [12] and is applied
to the EWBG [13, 11]. Here, to make our analysis simple, we take mh as an input.

In the limit of mq̃ ≫ mt̃R
, the stop masses are reduced to

m̄2
t̃2
= m2

q̃ +
y2t sin

2 β

2

(
1 +

|Xt|2

m2
q̃

)
φ2 +O(g2) ≃ m2

q̃ , (5.1)

m̄2
t̃1
= m2

t̃R
+

y2t sin
2 β

2

(
1− |Xt|2

m2
q̃

)
φ2 +O(g2), (5.2)

where Xt = At − µ/ tanβ. As discussed above, the heavy stop does not play any role
as far as the first-order EWPT is concerned. Also, the small m2

t̃R
and Xt are desir-

able. More precisely, at finite temperature, the light stop receives a thermal correction
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(∆m2
t̃R
(T )) which is of the order of T 2 to leading order. So the m2

t̃R
+∆m2

t̃R
(T ) should

be vanishingly small for the strong first-order EWPT, which implies m2
t̃R

< 0 since

∆m2
t̃R
(T ) > 0. In the LSS scenario considered in [13], the color-charge-breaking vac-

uum is the global minimum. On the other hand, the electroweak vacuum is metastable
whose lifetime is longer than the age of the Universe.

For simplicity, we take m2
t̃R

= 0 in the following discussion. The coefficient of cubic
term in the one-loop effective potential at finite temperature is

Veff ∋ −(ESM + Et̃1
)Tφ3, Et̃1

=
y3t sin

3 β

4
√
2

(
1− |Xt|2

m2
q̃

)3/2

. (5.3)

Therefore, Et̃1
can strengthen vC/TC .

5.1 Overlooked issues

There are two problems which have not been properly addressed in the literature, i.e.,
(i) validity of the high-temperature expansion (HTE) of the sunset diagram,
(ii) sphaleron decoupling condition at the two-loop level.

In what follows, we will work out the former issue.

6 Two-loop analysis of thermal phase transition

As a first step toward the analysis in the MSSM, we consider the Abelian-Higgs (AH)
model for the sake of simplicity. The Lagrangian of the AH is

L = −1

4
FµνF

µν + |DµΦ|2 − V0(|Φ|2), (6.1)

where Fµν = ∂µAν − ∂νAµ, DµΦ = (∂µ − ieAµ)Φ and The scalar potential is given by

V0(|Φ|2) = −ν2|Φ|2 + λ

4
|Φ|4. (6.2)

We parametrize the scalar field in terms of the VEV (v) and fluctuation fields

Φ(x) =
1√
2

(
v + h(x) + ia(x)

)
, (6.3)

where h(x) is a physical state and a(x) is a Nambu-Goldstone boson which is eaten by
the gauge boson. The field-dependent scalar and gauge boson masses are

m2
h = −ν2 +

3λ

4
v2, m2

a = −ν2 +
λ

4
v2, m2

A = e2v2, (6.4)

where we work in the Landau gauge. In our study, the MS scheme is used for renor-
malization.

We adopt a resummation method in which temperature-dependent mass terms
[∆m2] are added and subtracted in the original Lagrangian [14, 15]. The subtracted
terms are considered as the counterterms. As is well known, thermal corrections to the
longitudinal and transverse parts of the gauge boson self-energy are different. Conse-
quently, the resummed Lagrangian is obtained as follows.

LB = LR + LCT
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→ LR −∆m2
ΦΦ

†Φ+
1

2
Aµ
[
∆m2

LLµν(i∂) + ∆m2
TTµν(i∂)

]
Aν

+ LCT +∆m2
ΦΦ

†Φ− 1

2
Aµ
[
∆m2

LLµν(i∂) + ∆m2
TTµν(i∂)

]
Aν , (6.5)

where LB(R) are denoted by the bare (renormalized) Lagrangian and LCT by the coun-
terterm. Note that Eq. (6.5) has the gauge invariant form.1 Lµν(p) and Tµν(p) are the
projection tensors which are given by

T00 = T0i = Ti0 = 0, Tij = gij −
pipj
−p2

, (6.6)

Lµν = Pµν − Tµν , Pµν = gµν −
pµpν
p2

, (6.7)

in the rest frame of the thermal bath. With the resummed Lagrangian (6.5), the scalar
and gauge boson propagators take the form

∆h(p) =
1

p2 −m2
h(T )

, ∆a(p) =
1

p2 −m2
a(T )

, (6.8)

Dµν(p) =
−1

p2 −m2
L(T )

Lµν(p) +
−1

p2 −m2
T (T )

Tµν(p), (6.9)

where m2
h,a(T ) = m2

h,a + ∆m2
Φ and m2

L,T (T ) = m2
A + ∆m2

L,T . Explicitly, the thermal
masses are, respectively, given by

∆m2
Φ =

T 2

12
(3e2 + λ), ∆m2

T = 0, ∆m2
L =

e2

3
T 2. (6.10)

Although Eq. (6.9) can be used as the resummed gauge boson propagator [15], we
can devise a more convenient form for two-loop calculations. Using Lµν(p) + Tµν(p) =

Pµν(p), Dµν(p) can be rewritten in terms of Pµν(p) and Tµν(p) or Lµν(p). Let D
(r=0)
µν (p)

be the former case, and D
(r=1)
µν (p) the latter one. The most general expression is cast

into the form

Dµν(p) = (1− r)D(r=0)
µν (p) + rD(r=1)

µν (p)

=

[
−(1− r)

p2 −m2
L

+
−r

p2 −m2
T

]
Pµν(p) +

[
−1

p2 −m2
T

− −1

p2 −m2
L

] (
Tµν(p)− rPµν(p)

)
,

(6.11)

where r denotes an arbitrary real parameter. Note that the noncovariant part yields
less ultraviolet divergent loop integrals. It turns out that loop calculations are greatly
simplified if r is chosen such that gµν(Tµν(p) − rPµν(p)

)
= 0, which leads to r =

(d− 2)/(d− 1).
After fixing r, let us denote Eq. (6.11) as

Dµν(p) = Dcov
µν (p) + δDµν(p), (6.12)

With this gauge boson propagator, together with Eq. (6.8), we will compute the effective
potential.

It turns out that noncovariant parts of the sunset diagrams involving δDµν do not
yield any effects on the thermal phase transition to leading order. For details, see [16].

1For non-Abelian gauge theories, however, this resummation method would break the gauge invariance.
We also note that the thermal masses of h and a would be different if v-dependent corrections were included,
rendering the gauge invariance spoiled. In our analysis, we keep the leading order corrections which are
O(T 2), so the ∆m2

h(T ) = ∆m2
a(T ) = ∆m2

Φ.
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Figure 3: vC/TC in the three cases are shown as a function of g3. The input parameters are
given in the text.

6.1 MSSM-like toy model

We discuss the thermal PT using the scheme proposed in the previous section. As a
first step toward the complete analysis of the two-loop driven first-order EWPT scenario
such as the MSSM, we consider an extended AH model in which additional U(1) gauge
boson and complex scalar are introduced. The added Lagrangian is

∆L = −1

4
GµνG

µν + |Dµt̃|2 − (m2
0 + y2|Φ|2)|t̃|2 + λ̃

4
|t̃|4, (6.13)

where Gµν = ∂µGν − ∂νGµ and Dµt̃ = (∂µ − ig3Gµ)t̃.
In the MSSM the stop-stop-gluon sunset diagram enhances vC/TC . We scrutinize

this effect with and without the HTE. The explicit forms of the scalar-scalar-vector and
scalar-vector-vector type sunset diagrams can be found in Ref. [17]. Those sunset dia-
grams are composed of K−−(a1, a2, a3) and the one-loop finite-temperature functions.
Such one-loop thermal functions and two-loop ones of the type of K(a), K−−(a, a, 0),
K−−(a, 0, 0) and K−−(0, 0, a) are evaluated by the numerical integrations. For other
types of K−−(a1, a2, a3) such as K−−(mh/T,ma/T,ma/T ), the mass-averaging approx-
imation is also employed.

In the following, by the HTE case we mean the following replacements

K(a) → KHTE(a) = −π2

3
(ln a2 + 3.48871), (6.14)

K−−(a, a, 0) → KHTE
−− (a, a, 0) = −π2(ln a2 + 3.01398), (6.15)

and all the rest are unchanged.
In FIG. 3, vC/TC is shown as a function of g3. We set v = 246 GeV, mh = 35

GeV, m2
0 = 0, y = 1.0, e = 0.5, λ̃ = 0.3 and µ̄ = 150 GeV. Here, we take mh as an

input instead of using λ. This trade is done at a loop level. The red curve represents
the two-loop calculation, and the blue dashed curve denotes the two-loop calculation
with the HTE. The one-loop calculation of vC/TC is also shown by the dotted black
curve. This figure shows that enhancement of vC/TC due to the t̃-t̃-Gµ diagram can
still persist beyond the HTE. In this specific example, the use of the HTE leads to the
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Figure 4: The shown is the effective potential at TC . We take g3 = 1.2. The remaining
parameters are the same as in FIG. 3.

underestimated vC/TC . Note that in the limit of g3 → 0, the results would approach
to those in the AH model. In such a limit, the difference between ‘2-loop’ and ‘2-loop
HTE’ would be decreasing since the sunset diagrams are less important for the PT
analysis. However, we emphasize that evaluation of the sunset diagrams without the
HTE is necessary in the MSSM-like model.

The height of the barrier between the two degenerate vacua in the effective po-
tential is also relevant to dynamics of the first-order PT. The effective potentials at
TC and g3 = 1.2 in the three cases are plotted in FIG. 4. The color and line coordi-
nates are the same as in FIG. 3. We find that vC/TC |1-loop = 186.55/76.75 = 2.43,
vC/TC |2-loop = 191.84/74.80 = 2.56 and vC/TC |2-loop HTE = 204.98/81.31 = 2.52. The
significant increase of TC in the HTE case may be the consequence of the artificial neg-
ative contributions to the quadratic term in the scalar potential. It is also found that
the barrier height at the two-loop level is somewhat higher than that of the one-loop
case, delaying the onset of the PT. However, we may get the overestimated result once
the HTE is used. We observe that generally the larger g3 can bring the larger errors in
vC , TC and the barrier height.

7 Summary

In this talk, the current status of electroweak baryogenesis is briefly reviewed. In
particular, we focused on validity of the high-temperature expansion of the sunset
diagrams in the MSSM. As a first step toward the complete analysis of the MSSM
EWBG, we devised a tractable calculation scheme that can be applicable in the U(1)
gauge theory. Our results suggest that vC and TC can be overestimated if the high-
temperature expansion is used. However, the error of vC/TC may be within a few
percent level. It is concluded that the scalar-scalar-vector type sunset diagram still
plays an important role in enhancing vC/TC .
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