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1 Introduction

The system of cold neutral atomic gas has attracted attentions since Bose-Einstein condensates
were realized. The time scales of the thermal processes are sufficiently slow to observe various
nonequilibrium phenomena. We apply the nonequilibrium Thermo Field Dynamics (TFD) [1] to
the system, and derive the non-Markovian quantum transport equations [2, 3].

In our previous work [3], we considered the one dimensional system of cold neutral atomic Bose
gas confined by combined harmonic and optical lattice potentials. We investigated the thermal
process for the system after a sudden displacement of the former potential by solving the quantum
transport equation numerically, but assumed there was no condensate. In this work, we extend
the previous one to the case where the system has a condensate, and derive the coupled equations
consisting of the quantum transport equation, the time-dependent Gross-Pitaevskii (TDGP) one
and the time-dependent Bogoliubov-de Gennes (TDBdG) one.

2 Model Hamiltonian

We consider the following Bose-Hubbard Hamiltonian [4] which describes the one dimensional system
of cold neutral atomic Bose gas confined by a combined harmonic and optical lattice potentials:

H(t) =

Is∑
i=1

[
−Jψ†

i (t)(ψi+1(t) + ψi−1(t)) + {νi(t)− µ}ψ†
i (t)ψi(t) +

U

2
ψ†
i (t)ψ

†
i (t)ψi(t)ψi(t)

]
, (1)

νi(t) = (i− Ic + θ(−t)d)2V, (2)

where the field operator ψi satisfies the following canonical commutation relations:

[ψi(t), ψ
†
j(t)] = δij , [ψi(t), ψj(t)] = [ψ†

i (t), ψ
†
j(t)] = 0. (3)

The parameters J , V , µ , U , i , Is , Ic, and d represent the inter-site hopping, the strength of the
harmonic potential, the chemical potential, the on-site coupling, the site index, the total number
of sites, the center site index, and the harmonic potential displacement, respectively. The step
function θ(−t) indicates a sudden displacement of the harmonic potential at t = 0.

Considering the existence of the condensate, we divide the field operator ψi(t) into a classical
part ζi(t) and a quantum one φi(t) by the criterion ⟨0|φi(t)|0⟩ = 0. The order parameter ζi(t) =
⟨0|ψi(t)|0⟩ is an arbitrary time-dependent function at this stage because the vacuum has been not
specified yet and will be done self-consistently later. We note that due to the time-dependence of
ζi(t) the unperturbed Hamiltonians for ψi(t) and φi(t) in the interaction picture are different from
each other. We choose the unperturbed Hamiltonian for ψi(t) as follows:

H0 =
∑
ij

[
1

2
φ̄α
i

(
Tαβ
0,ij + δTαβ

ij

)
φβ
j + φ†

i (h0,ijζj + δijδCi) + φi(h0,ijζ
∗
j + δijδC

∗
i )

]
, (4)

where

φα
i (t) =

(
φi(t)

φ†
i (t)

)α

, φ̄α
i (t) =

(
φ†
i (t) −φi(t)

)α
, (5)



Tαβ
0,ij(t) =

(
L0,ij(t) M0,ij(t)

−M∗
0,ij(t) −L0,ij(t)

)αβ

, (6)

L0,ij(t) = −J(δi,j+1 + δi,j−1) + δij(νi(t)− µ+ 2U |ζi(t)|2), (7)

M0,ij(t) = Uδijζ
2
i (t), (8)

h0,ij(t) = −J(δi,j+1 + δi,j−1) + δij(νi(t)− µ+ U |ζi(t)|2). (9)

The counter terms δTαβ
ij (t) and δCi(t) are to be determined self-consistently. The criterion ⟨0|φi(t)|0⟩ =

0 at any t leads

δCi = iζ̇i −
∑
ij

h0,ijζj , (10)

and the unperturbed Hamiltonian for φi(t), denoted by Hφ
0 (t), becomes

Hφ
0 =

∑
ij

1

2
φ̄α
i

(
Tαβ
0,ij + δTαβ

ij

)
φβ
j . (11)

Because the matrix Tαβ
0,ij(t)+δT

αβ
ij (t) is time-dependent, the field operator φi(t) should be expanded

in terms of the 2 × 2-matrix time-dependent orthonormal complete set {Wiℓ(t)} [5] each of which
obeys the TDBdG equation:

φα
i (t) =

∑
ℓ

W−1,αβ
iℓ (t)aβℓ , φ̄β

i (t) =
∑
ℓ

āαℓW
αβ
iℓ (t), (12)

aαℓ =

(
aℓ
a†ℓ

)α

, āαℓ =
(
a†ℓ −aℓ

)α
, (13)∑

i

Wiℓ1(t)W
−1
iℓ2

(t) = δℓ1ℓ2 ,
∑
ℓ

W−1
i1ℓ

(t)Wi2ℓ(t) = δi1i2 , (14)

iẆ−1
iℓ (t) =

∑
ij

(T0,ij(t) + δTij(t))W
−1
jℓ (t). (15)

3 Applying nonequilibrium TFD

In this section, we apply nonequilibrium TFD to the condensed system above. The time-dependent
number distribution function nℓ(t) is introduced as an unknown parameter [1], then the parameter

nℓ(t), the counter term δTαβ
ij (t) and the order parameter ζi(t) are simultaneously determined by the

self-consistent renormalization conditions. Calculating the self-energy at one-loop level in Feynman
diagram method and according to the renormalization conditions on the time-dependent on-shell
self-energy which we have proposed recently [6], the quantum transport equation and the counter

term δTαβ
ij (t) are fixed as

ṅℓ(t) = 4U2Re
∑
ℓ1ℓ2

∫ t

0
ds [C1[ζ,W ; t]C∗

1 [ζ,W ; s]{nℓ1nℓ2(1 + nℓ)− (1 + nℓ1)(1 + nℓ2)nℓ}s
+ C2[ζ,W ; t]C∗

2 [ζ,W ; s]{nℓ1(1 + nℓ2)(1 + nℓ)− (1 + nℓ1)nℓ2nℓ}s
+ C3[ζ,W ; t]C∗

3 [ζ,W ; s]{(1 + nℓ1)nℓ2(1 + nℓ)− nℓ1(1 + nℓ2)nℓ}s
+C4[ζ,W ; t]C∗

4 [ζ,W ; s]{(1 + nℓ1)(1 + nℓ2)(1 + nℓ)− nℓ1nℓ2nℓ}s] , (16)

δTαβ
ij (t) = δijU

(
2ñi(t) m̃i(t)
−m̃∗

i (t) −2ñi(t)

)αβ

. (17)

The subscript s of the braces in Eq. (16) denotes the time argument of n, and the coefficients
Ck[ζ,W ; t] (k = 1, · · · , 4) depend on both the order parameter ζi(t) and the eigenfunctions {Wiℓ(t)},



though their explicit expressions are suppressed for simplicity here. The elements in the matrix of
Eq. (17) are

ñi = ⟨0|φ†
iφi|0⟩ =

∑
ℓ

[
nℓ

(
W 11

iℓ W
−1,11
iℓ −W 21

iℓ W
−1,12
iℓ

)
−W 21

iℓ W
−1,12
iℓ

]
, (18)

m̃i = ⟨0|φiφi|0⟩ =
∑
ℓ

[
nℓ

(
W 22

iℓ W
−1,12
iℓ −W 12

iℓ W
−1,11
iℓ

)
+W 22

iℓ W
−1,12
iℓ

]
. (19)

On the other hand, the order parameter ζi(t) is restricted by the criterion of ⟨0|φi(t)|0⟩ = 0, from
which follows the TDGP equation,

iζ̇i(t) =
∑
j

(h0,ij(t) + δij2Uñi(t)) ζj(t) + Um̃i(t)ζ
∗
i (t)− iγ(t)ζi(t), (20)

γ =
1

2
∑

i |ζi|2
∑
ℓ

ṅℓ

(
W 11

iℓ W
−1,11
iℓ −W 21

iℓ W
−1,12
iℓ

)
. (21)

Here we have included the contributions to δCi(t) up to two-loop order, and the last term in Eq. (20)
comes from the two-loop order and is necessary to conserve the total particle number.

Thus we have derived a set of the coupled equations, i.e., the quantum transport equation (16),
the TDBdG one (15), and the TDGP one (20). The interactions between the condensate and non-
condensed excitation modes are taken account of properly. The crucial point in our derivation is that
the coupled equations have been derived systematically from the single concept of the self-consistent
renormalization. It is remarked that the quantum transport equation derived in our approach has
an additional term which is absent in the other methods, namely the last term on the right side
of Eq. (16), which we call the triple production term. The term corresponds to the process where
three quasiparticles are created or annihilated. The process prevents the system from the thermal
relaxation because the collision term is always non-zero (1 + nℓ1)(1 + nℓ2)(1 + nℓ) − nℓ1nℓ2nℓ > 0.
If the negative energy mode does not exist in the system, the process is forbidden because of the
energy conservation, but once the negative energy mode appears, the triple production term induces
the decay of the condensate. This corresponds to the scenario of the Landau instability.

As a future task, we will perform numerical calculations of the set of the coupled equations.
It will be an interesting subject then to trace temporal behaviors of the system with the Landau
instability in detail.
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