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Abstract

We propose quite a new method of analyzing the dynamical chiral symmetry breaking.
Starting with the non-perturbative renormalization group equation for the Wilsonian fermion
potential, we define the weak solution of it in order to mathematically authorize solutions
with singularity. The weak solution successfully predicts the physically correct vacuum, chiral
condensates, dynamical mass, through its auto-convexizing power for the effective potential.
Thus it works perfectly even for the first order phase transition in the finite density Nambu-
Jona-Lasinio model.

1 Introduction

We analyze the dynamical chiral symmetry breaking by solving non-perturbative renormalization
group equations (NPRGESs) of the Wilsonian effective potential Viy(x,t) and the mass function
M(x,t) = 8\/%70(55,75)7 where z and t are the bilinear fermion operator 11 and the renormalization
scale log(Ag/A) respectively. These NPRGEs are nonlinear partial differential equations (PDEs).
In case that the dynamical chiral symmetry breaking occurs, these PDEs encounter some singu-
larities at t = t. even though the initial functions at ¢ = 0 are continuous and smooth. Therefore,
we can not go beyond t., and there is no way to calculate infrared physical quantities such as the
chiral condensates or the dynamical mass.

Various methods have been used to bypass these singularities, e.g., the bare mass[10], auxiliary
fields[3, 4, 9], etc. Here we propose a new direct method to solve the NPRGEs as PDEs [14, 15].
Such singular evolutions are unacceptable as classical solutions of the PDEs, but it is known that
we can treat such solutions as the weak solutions of the PDEs. Taking the finite density Nambu-
Jona-Lasinio model, we construct the weak solutions by using the method of characteristics.

2 Partial differential equations and the method of characteristics

The NPRGESs of Viy(z,t) and M(x,t) in the local potential approximation are
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where y is the chemical potential. The initial conditions are Viy(z,0) = 2w2g2? and M(z,0) =
472 gx, where g is the coupling constant of the NJL 4-fermi interaction. The equation (1) can
be viewed as the Hamilton-Jacobi type equation well-known in the analytical mechanics, where
t, z, Viwl(x,t), M(z,t) and f(M,t) correspond to the time, the coordinate, the the action, the



momentum and the time-dependent Hamiltonian respectively. The equation (2) is derived from
the equation (1) and it should be noted that it takes the form of the conservation law, where
M (z,t) and f(M,t) correspond to the charge density and the current flux.

We obtain the ordinary differential equations (ODEs) equivalent to (1) and (2) by the method
of characteristics,
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The ODEs of z(t) and M (z,t) correspond to the canonical equations of Hamilton in the analogy
of analytical mechanics. Their solution z(t) are called characteristics which are also contours of
M (z,t) in this simple case (Fig. 1 (a)). There are regions where three or five contours simulta-
neously passes at a point, which represent a multi-leaf structure that M (z,t) seems to have the
“multivalued” solution after t. (Fig. 1(b)).
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Figure 1: g = 1.7g., 1 =0.7. (a) Characteristics. (b) Evolution of mass function.

3 Weak solution of conservation law

The mass function M (z,t) must be a single-valued function because it is the physical quantity
defining the effective action at scale t. Instead of throwing away the NPRGE description after ¢,
we introduce the weak solution of the PDE (2) [11, 14, 15]. We will make a patchwork of the leaves
to define a single-valued function M (x,t), but with discontinuities, so that it might be the weak
solution.

The integral form of the PDE (2) is

/ooo dt/: o [ s af(ajf’t)] ple;t) =0, (5)

where p(z,t) is an arbitrary test function that is continuously differentiable and vanishes at x =
400 and t = 400. We integrate it by parts and obtain
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In contrast to the equation (5), the equation (6) makes sense even for the discontinuous M (z,1).
The weak solution of the PDE (2) is defined as to satisfy the equation (6) for any smooth and
bounded test function ¢(x,t). The weak solution satisfies the original PDE (2) except for the
points of discontinuities. The position of discontinuity x = D(t), which is called the shock, is
controlled by the Rankine-Hugoniot (RH) condition,

DO (01, — 2) = F0L4. 1)~ FO1), @
where M4 and M_ are right and left limits at the position of discontinuity respectively. The
graphical interpretation of the RH condition for M (z,t) is that the discontinuity must cut off
lobes of equal area as shown in Fig. 2(a), where the solid lines show the weak solution[12]. In this
way we uniquely determine the shock D(t) which is showed in Fig. 2(b), where two shocks appears
pairwisely and they move towards the origin to be merged finally.
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Figure 2: (a) Equal area rule. (b) Characteristics and shock of mass function.

4 Weak solution results for physical quantities

We show the results in the finite density NJL model where the first order phase transition occurs.
Snapshots in the course of renormalization are shown in Fig. 3, where the mass function M (¢, ),
the Wilsonian effective potential Viy(z,t) and the Legendre effective potential Vi, (x,t) for <1/;¢>
are plotted. The five-fold structure of M (x,t) appears at the second row of Fig. 3, which means
a pair of shocks are generated. At the third row, the mass function is five-fold even at the origin,
which corresponds to the three-fold local minima in the Legendre effective potential. The time
when the two shocks are merged with each other at the origin is exactly the first order phase
transition point where the free energy of three local minima coincide. Finally at the fourth row,
the chiral symmetry is dynamically broken with the unphysical metastable symmetric phase at the
origin.

It is astonishing that our method of weak solution uniquely determines their singularity struc-
tures and the resultant Legendre effective potential is always convexized. This means the dynamical
mass and the chiral condensates are uniquely calculated, and perfectly correct in the sense that
even in case there are multi local minima, the lowest free energy minimum is always chosen au-
tomatically. This feature is quite a new finding and shows powerfulness of the purely fermionic
non-perturbative renormalization group and its weak solution[15]. This analysis has been applied
to QCD, even with finite density or non-ladder, and proved to work perfectly to give physical
quantities without any ambiguity[13].
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Figure 3: Evolution of physical quantities by weak solution (NJL g = 1.7¢g., p = 0.7, t = 0.01, 0.5,
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