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Abstract

We develope the holographic mean field approach in a bottom-up holographic QCD model
including baryons and scalar mesons in addition to vector mesons and pions. We study the effect
of parity doubling structure of baryons at non-zero density to the equation of state between
the chemical potential and the baryon number density. The result shows that the effective
mass decreases with increasing density, and that the rate of decreasing is more rapid for larger
percentage of the mass from the chiral symmetry breaking.

1 Introduction

The spontaneous chiral symmetry breaking (χSB) is one of the most important features in low-
energy QCD. This is considered to be the origin of several hadron masses, such as the lightest nucleon
mass. However, there is a possibility that only a part of the lightest nucleon mass is generated by
the spontaneous χSB and the remaining part is the chiral invariant mass. This structure is nicely
expressed in so called parity doublet models.

It is an interesting question to ask how much amount of the nucleon mass is generated by the
spontaneous χSB, or to investigate the origin of nucleon mass. Studying dense baryonic matter
would give some clues to understand the origin of our mass, since a partial restoration of chiral
symmetry will occur at high density region. We expect that the mass generated by the spontaneous
χSB will become small near the chiral phase transition point.

2 Parity doubling structure of the model

2.1 model

The fields relevant to the present analysis are the scalar meson field X and two baryon fields N1

and N2, as well as the 5-dimensional gauge fields RA and LA. The bulk action is given as

S = SN1 + SN2 + Sint + SX , (1)

where

SN1 =

∫
d5x
√
g

{
i

2
N̄1e

M
A ΓA∇MN1 −

i

2

(
∇†M N̄1

)
eMA ΓAN1 −M5N̄1N1

}
, (2)

SN2 =

∫
d5x
√
g

{
i

2
N̄2e

M
A ΓA∇MN2 −

i

2

(
∇†M N̄2

)
eMA ΓAN2 +M5N̄2N2

}
, (3)

Sint = −
∫

d5x
√
gG

{
N̄2XN1 + N̄1X

†N2

}
, (4)

SX =

∫
d5x
√
g Tr

{
|DX|2 −m5

2|X|2 − 1

4g2
5

(F 2
L + F 2

R)
}
, (5)

with M5 = 5/2 and m2
5 = −3 being the bulk masses for baryons and mesons, G the scalar-baryon

coupling constant, g5 the gauge coupling constant. The vielbein eAM appearing in Eqs. (2) and (3)
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satisfies gMN = eAMe
B
N ηAB = 1

z2
diag(+−−−−) , where M labels the general space-time coordinate

and A labels the local Lorentz space-time, with A,M ∈ (0, 1, 2, 3, z). By fixing the gauge for
the Lorentz transformation, we take the vielbein as eAM = 1

zη
A
M = 1

zdiag(+ − − − −) . The Dirac
matrices ΓA are defined as Γµ = γµ and Γz = −iγ5 which satisfy the anti-commutation relation{

ΓA,ΓB
}

= 2ηAB . The covariant derivatives for baryon and scalar meson are defined as

∇MN1 = (∂M +
i

4
ωABM ΓAB − i(AaL)M t

a)N1 , (6)

∇MN2 = (∂M +
i

4
ωABM ΓAB − i(AaR)M t

a)N2 , (7)

DMX = ∂MX − iALMX + iXARM , (8)

where ΓAB = [ΓA,ΓB]/(2i). ωABM is the spin connection given by ωABM = 1
z (ηAZη

B
M − ηAMηBZ)ηZZ .

2.2 parity doubling structure

The solution for scalar field X is obtained as [4;5] X0(z) = 1
2Mz + 1

2σz
3, where M is the current

quark mass and σ is the quark condensate 〈q̄q〉.
We decompose the bulk fields N1 and N2 as N1 = N1L +N1R, N2 = N2L +N2R , where N1L =

iΓzN1L , N1R = −iΓzN1R, N2L = iΓzN2L , N2R = −iΓzN2R . The mode expansions of N1L,R and
N2L,R are performed as

N1L,R(x, z) =
∑
n

∫
d4p

(2π)4
e−ipxf

(n)
1L,R(z)ψ

(n)
L,R(p) ,

N2L,R(x, z) =
∑
n

∫
d4p

(2π)4
e−ipxf

(n)
2L,R(z)ψ

(n)
L,R(p) . (9)

It is convenient to introduce f
(n)
+ as f

(n)
+1 = f

(n)
1L + f

(n)
2R , f

(n)
+2 = f

(n)
1R − f

(n)
2L , which satisfy

∂zf
(n)
+1 =

2 +M5

z
f

(n)
+1 −

1

2
Gσz2f

(n)
+2 −m

(n)
+ f

(n)
+2 ,

∂zf
(n)
+2 =

2−M5

z
f

(n)
+2 −

1

2
Gσz2f

(n)
+1 +m

(n)
+ f

(n)
+1 , (10)

with m
(n)
± corresponding to mass eigenvalues.

For solving Eq. (10) we use the boundary conditions for f
(n)
+1 and f

(n)
+2 as Tab 1:

UV IR

f
(n)
+1 0 1

f
(n)
+2 0 c1

Table 1: Boundary condition when using shooting method.

For a given value of c1, we first adjust the coupling G to ensure that the lowest eigenvalue
becomes the nucleon mass of 0.94 GeV. We show how the value of G changes depending on the
value of c1 in Fig. 1.

We next calculate the masses of higher excited nucleons using the value ofG determined above for
fixed c1. We show the c1-dependence of several masses in Fig. 2. Here, N(+) denotes the states with
positive parity while N(−) stands for negative parity. This figure shows that, for c1 > c∗1 ≈ 0.12,
the first excited state carries the negative parity and the second the positive parity, and so on. For
c1 < c∗1, on the other hand, the first excited state is the positive-parity excited nucleon, which seems
consistent with the experimental data.
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Figure 1: Value of G determined from c1 to make the lowest eigenvalue to be the nucleon mass of
0.94 GeV.
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Figure 2: c1 dependence of excited nucleon masses.

For understanding the meaning of c1, we investigate the effect of dynamical chiral symmetry
breaking on the nucleon mass. For quantifying this effect, we take σ = 0 and calculate the mass
eigenvalue by solving

∂zf
(n)
+1 =

2 +M5

z
f

(n)
+1 −m

(n)
0 f

(n)
+2 ,

∂zf
(n)
+2 =

2−M5

z
f

(n)
+2 +m

(n)
0 f

(n)
+1 , (11)

for several choices of c1. We consider the lowest eigenvalue m
(1)
0 , denoted as just m0, as the chiral

invariant mass of nucleon. In Fig. 3, we plot the c1 dependence of the value of 1−m0/mN ≡ m(q̄q)
mN

which shows the percentage of the nucleon mass coming from the spontaneous chiral symmetry
breaking. From Fig. 3 we conclude that, in the case of c1 = 0, which is chosen in Ref. [3], all the
nucleon mass comes from the spontaneous chiral symmetry breaking. On the other hand, when
c1 > 0.25, more than half of the nucleon mass is the chiral invariant mass.
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Figure 3: c1-dependence of
m(q̄q)

mN
, which shows the percentage of the nucleon mass coming from

the spontaneous chiral symmetry breaking.

3 Equation of state in the holographic mean field approach to the
model

In the holographic mean field theory, all the 5D fields are decomposed into the mean fields
which depend only on the 5th coordinate z and the fluctuation fields. In the present analysis, we
consider the symmetric nuclear matter, so that the proton and the neutron have the same mean
fields. Furthermore, we assume that the mean fields for the vector and axial-vector gauge fields
except the U(1)V gauge field and the traceless part of the scalar field are zero. The equations of
motion for the mean fields can be simplified as [8],

∂2
zX =

3

z
∂zX +

m2
5

z2
X +

G

2z2
(N †+N+ −N †−N−) ,

∂2
zV0 =

1

z
∂zV0 +

g2
5

z3
(N †+N+ +N †−N−) ,

∂zN+ =
2 +M5

z
N+ −

1

z
GXN− − V0N− ,

∂zN− =
2−M5

z
N− −

1

z
GXN+ + V0N+ . (12)

We change the IR values of N+ and N− to control the baryon number density, which is written
in terms of the baryon fields as

ρb =

∫
dz

2z4
(N †+N+ +N †−N−) =

∫
dz ρ(z) . (13)

The boundary conditions at finite density is shown in Table 2.
We first study the density dependence of the chiral condensate for checking the partial chiral

restoration. Here we define the in-medium condensate through the holographic mean field X(z)

as σ = 2X(z)
z3

∣∣∣
z=zUV

. We plot the density dependence of the σ normalized by the vacuum value σ0

in Fig. 4. This shows that the quark condensate σ decreases with the increasing number density,
which can be regarded as a sign of the partial chiral symmetry restoration. When the value of c1 is
decreased, the corresponding value of G becomes larger (see Fig. 1) to reproduce the nucleon mass.



UV IR

X 0 σ0z
3
m/2

V0 µ -
∂zV0 - 0
N1 0 c2

N2 0 c2 ∗ c1

Table 2: Boundary condition at finite density. The mark “-” indicates that the value is not fixed.
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Figure 4: Density dependence of σ/σ0 for several choices of c1.

Since the larger G implies the larger correction to the scalar from the nucleon matter, the smaller
c1 we choose, the more rapidly the condensate σ decreases. The degreasing property of the chiral
condensate is similar to the one obtained in Ref. [1].

We next show the resultant equation of state, a relation between the chemical potential and
the baryon number density in Fig. 5. This figure shows that the chemical potential increases with
the increasing baryon number density. This does not agree with the nature, in which the chemical
potential decreases against the density in the low density region below the normal nuclear matter
density. This decreasing property is achieved by the subtle cancellation between the repulsive and
attractive forces. So this increasing property indicates that, in the present model, the repulsive
force mediated by the U(1) gauge field is stronger than the attractive force mediated by the scalar
degree included in X field.

For studying the attractive force mediated by the scalar fields, we extract the density dependence
of the effective nucleon mass using the Walecka type model (see e.g. Refs. [6;7]), in which the chemical
potential µ is expressed as

µ =
∞∑
n=1

g2
ω(n)NN

m2
ω(n)

ρb +
√
k2
F +M∗2 , (14)

where ρb is the baryon number density, gω(n)NN is the coupling for nth eigenstate of the omega
mesons, mω(n) is its mass, kF is the Fermi momentum, and M∗ is the effective nucleon mass. Note

that, in the free Fermi gas, kF is related to ρb as ρb =
2k3F
3π2 , which leads to kF =

(
3π2ρb

2

)1/3
.

In the present hQCD model, the ω(n)NN coupling is calculated in vacuum as gω(n)NN = 15.5 ∼
15.8, 8.9 ∼ 10.9 . . . depending on the value of c1. Using these couplings together with the masses of
mω(n) ∼ 780, 1794 . . .MeV, we convert the density dependence of µ obtained above into the one of



0 0.2 0.4 0.6 0.8 1 1.2
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

ρ/ρ
0

µ
/m

N

 

 

c
1
 = 0.30

c
1
 = 0.10

c
1
 = 0.00

Figure 5: Equation of state. The horizontal axis shows the baryon number density normalized by
the normal nuclear matter density of ρ0 = 0.16 (fm)−3, and the vertical axis does the chemical
potential by the nucleon mass of 0.94 GeV. The dashed line shows the EoS for c1 = 0, the solid line
for c1 = 0.1 and the dotted line for c1 = 0.3.

the effective nucleon massM∗ through Eq. (14). We plot the density dependence of the effective mass
M∗ in Fig. 6. This shows that the effective mass decreases with increasing density. The decreasing
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Figure 6: Density dependence of the effective nucleon mass M∗.

rate is larger than the one obtained in Ref. [1], which is the reflection of the iterative corrections
included through the holographic mean field theory. It should be noted that the decreasing of M∗

is more rapid for smaller value of c1. In other word, the larger the percentage of the mass coming
from the chiral symmetry breaking is, more rapidly the effective mass M∗ decreases with density.

4 A summary and discussions

We develope the holographic mean field approach in a bottom-up holographic QCD model
proposed in Ref. [3] which includes five-dimensional baryon field in the model proposed in Refs. [4;5].

In the present analysis, we made an analysis only at the mean field level. So a natural extension



is to consider the fluctuations on the top of the mean field obtained here. It is also interesting
to study the relation between the isospin chemical potential and the isospin density based on the
approach developed in this paper, since the relation has a relevance to the symmetry energy. We
leave these works to the future project.
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