SH^c Realization of Minimal Model CFT:Triality, Poset and Burge Condition

M. Fukuda, S. Nakamura, Y. Matsuo and R.-D. Zhu (based on arXiv:1509.01000)

Introduction and Summary

■ In the context of AGT proof, a new algebra appeared!

- \blacksquare Rank N representation: Some combinations of the SH^c generators give \mathcal{W}_N currents.
- Representation space $|\vec{a}, \vec{Y}\rangle$: Labeled by N-tuple Young diagrams \vec{Y} (\vec{a}) are parameters related to the momentum of Toda Field Theory)
- lacktriangle Conjecture: SH $^{
 m c}$ describes arbitrary representation of $\mathcal{W}_{
 m N}$ algebra

(+U(1)) factor) for any N.

We study the description of minimal models from SH^c.

- \blacksquare For \mathcal{W}_{N} minimal model, we found explicit correspondence.
 - N-Burge Condition (The condition for states not to have zero norm)

$$\begin{array}{c} \textbf{Y}_{i,R}-\textbf{Y}_{i+1,R+(n_i-1)} \geq -(\textbf{n}_i'-1).\\ \\ \textbf{(Y}_{i,R}\text{: the length of the R-th row in the i-th Young diagrams)}\\ \\ \textbf{n}_i,\textbf{n}_i'\text{: positive integer which satisfies } \sum_{i=1}^{N-1}\textbf{n}_i \leq \textbf{q}-1, \sum_{i=1}^{N-1}\textbf{n}_i' \leq \textbf{p}-1\\ \\ \textbf{(p,q)}\text{: the positive integer which determine the weight of \mathcal{W}_N algebra)} \end{array}$$

- Singular Vector
 - \Rightarrow The number of null states coincides with that of \mathcal{W}_{N} algebra at same level!
- Level-rank duality (well-known duality in ${\cal W}$ algebra)

$$\mathcal{W}_{N,k} = \frac{\mathfrak{su}(N)_k \oplus \mathfrak{su}(N)_1}{\mathfrak{su}(N)_{k+1}} \sim \frac{\mathfrak{su}(M)_l \oplus \mathfrak{su}(M)_1}{\mathfrak{su}(M)_{l+1}} = \mathcal{W}_{M,l}$$

with

$$k = \frac{N}{M} - N, \quad I = \frac{M}{N} - M.$$

- Duality of states
 - **N**-tuple Young diagrams $\stackrel{?}{\Leftrightarrow}$ **M**-tuple Young diagrams
- ⇒ Duality of the states is defined by shuffling of lines in Young diagrams!
- In the case of (N, M) = (2, 3), this correspondence reproduces Rogers-Ramanujan identity

SHc

SH^c: spherical degenerate double affine Hecke algebra

We focus only on its rank N representation.

The basis of representation is labeled by N-tuple Young diagrams

and some parameter a

■ The generators of $SH^c: D_{r,l}$ with $r \in \mathbb{Z}$ and $l \in \mathbb{Z}_{>0}$.

$$\begin{split} [D_{0,l},D_{1,k}] &= D_{1,l+k-1}, & l \geq 1 \\ [D_{0,l},D_{-1,k}] &= -D_{-1,l+k-1}, & l \geq 1 \\ [D_{-1,k},D_{1,l}] &= E_{k+l}, & l,k \geq 1 \\ [D_{0,l},D_{0,k}] &= 0, & k,l > 0 \end{split}$$

with

$$\mathsf{E}(\zeta) = 1 + (1-\beta) \sum_{\mathsf{I} > 0} \mathsf{E}_{\mathsf{I}} \zeta^{\mathsf{I}+1} = \mathcal{C}(\zeta) \mathcal{D}(\zeta)$$

$$\mathcal{C}(\zeta) = \exp\left(\sum_{l \geq 0} (-1)^{l+1} c_l \pi_l(\zeta)\right) \equiv \prod_{q=1}^N \mathsf{T}(\zeta, \mathsf{a}_q), \quad \mathsf{T}(\zeta, \mathsf{a}) \equiv \frac{1+\zeta \mathsf{a}}{1+\zeta(\mathsf{a}-\xi)}$$
 (c_ls are central charges) (rank **N** representation)

■ **N**-Burge Condition

$$\begin{split} D_{1,l} \Big| \Big(\cdots, \Big|_{1 \geq \frac{q-th}{q}}^{q-th}, \cdots \Big) \Big\rangle = \\ & \sum_{q=1}^{N} \sum_{t=1}^{f_q+1} (-1)^l (a_q + A_t(Y_q))^l \boxed{\bigwedge_q^{(t,+)}(\vec{Y})} \Big| \Big(\cdots, \Big|_{1 \geq \frac{q-th}{q}}^{q-th}, \cdots \Big) \Big\rangle \\ & = 0 \end{split}$$

- \Rightarrow Then this state can not be generated!
- \Rightarrow This coincides the **N**-Burge condition known for \mathcal{W}_{N} algebra!
- Singular Vector

is

■ The condition for a state to be singular, i.e.

$$\mathbf{D}_{-1,\ell}|\vec{a},\vec{\mathbf{Y}}\rangle = \mathbf{0}, \quad \ell \geq \mathbf{0}$$
 (the singular state condition) the highest states of null states tower

 $\Lambda_{\mathbf{p}}^{(\mathbf{k},-)}(\vec{\mathbf{a}},\vec{\mathbf{Y}})=\mathbf{0}$ for all \mathbf{p},\mathbf{k} $(\Lambda_{\mathbf{p}}^{(\mathbf{k},-)})$ is defined similarly as $\Lambda_{\mathbf{p}}^{(\mathbf{k},+)}$.

 \Rightarrow This reproduces the null states in \mathcal{W}_{N} algebra!

Level-Rank Duality in SH^c

- Triality
 - Two symmetries which keep the central charge unchanged.

$$c = (N-1)(1-Q^2N(N+1)), \quad Q = \sqrt{\beta} - \frac{1}{\sqrt{\beta}} \text{ (here } \beta = \frac{N+M}{N})$$

■ Trivial symmetry:

$$\sigma_1:eta\mapsto rac{1}{eta},\ \mathsf{N}\mapsto \mathsf{N}$$
 $\mathsf{D}'_{0,\mathsf{l}+1}=(-eta)^{-\mathsf{l}}\mathsf{D}_{0,\mathsf{l}+1}$

■ Level-rank duality:

$$\sigma_2:eta\mapstorac{eta}{eta-1},\;\mathsf{N}\mapsto\mathsf{M}$$
 $\mathsf{D}'_{0,\mathsf{l}+1}=(eta-1)^{-\mathsf{l}}\mathsf{D}_{0,\mathsf{l}+1}$

- ⇒ Level-rank Duality in SH^c
- Duality for central charges

$${\mathcal{C}}_{\mathsf{N}}^{\mathsf{ges}}(\zeta, \vec{\mathsf{a}}) = \mathcal{C}_{\mathsf{M}}(\zeta', \vec{\mathsf{a}}').$$

(We can also determine \mathcal{W}_{M} central charges \mathbf{c}'_{I} from the finite combination of \mathbf{c}_{I} (infinite many).)

When this duality holds,

- Duality for states
 - Duality of the states is defined by shuffling of lines in Young diagrams!
- Example in the case of (N, M) = (2, 3)

For
$$\Delta = -1/5$$
 case, $(\mathbf{X}(\mathbf{X}'))$: the set of labels of rows in $\mathbf{Y}(\mathbf{Y}')$

 $X = X' = \{-1, -2, -3, -4, -5, -6, \cdots\}(X, X')$ are determined by the eigenvalues of $D_{0,1}$.

All the states are generated by the partition,

$$\lambda(x-N), \lambda(x-M) < \lambda(x)$$
 for each $x \in X$

Poset and Partition Function

Actually, the conditions

$$\lambda(x - N), \lambda(x - M) \leq \lambda(x)$$
 for each $x \in X$ are what called the "Partition of POSET (Partially Ordered SET)". (Here POSET is the set of labels of the rows of Young diagrams.)

- ⇒ Partition Function is acquired by the mathematical technique.
- In the case (N, M) = (2, 3), we get

$$((\mathbf{a}; \mathbf{q})_{\mathbf{j}} = \prod_{k=0}^{\mathbf{j}-1} (\mathbf{1} - \mathbf{a}\mathbf{q}^{\mathbf{k}}) : \mathbf{q}$$
-Pochhammer symbol)

$$Z_X^{(\Delta=-\frac{1}{5})}(q) = \frac{1}{(q;q)_\infty} \sum_{k=0}^\infty \frac{q^{k^2}}{(q;q)_k}.$$

lacktriangle On the other hand, by the character formula for \mathcal{W}_{N} minimal model, we know

$$Z_{X}^{(\Delta=-\frac{1}{5})}(q) = \frac{(q^{2}; q^{5})_{\infty}(q^{3}; q^{5})_{\infty}(q^{5}; q^{5})_{\infty}}{(q; q)_{\infty}^{2}}$$

■ Therefore, we get the identity,

$$\frac{(q^2;q^5)_{\infty}(q^3;q^5)_{\infty}(q^5;q^5)_{\infty}}{(q;q)_{\infty}^2} = \frac{1}{(q;q)_{\infty}} \sum_{k=0}^{\infty} \frac{q^{k^2}}{(q;q)_k}.$$

- ⇒ This is the first Rogers-Ramanujan identity!
- We may be able to general this to (N, M) case
- → Get some generalization of Rogers-Ramanujan identity!

Further Discussion

- Physical Interpretation
- AGT correspondence

2-dim CFT: conformal block of
$$\mathcal{W}_{\mathsf{N}}$$
 algebra

4-dim $\mathcal{N} = 2$ gauge theory: partition function of SU(N) SYM Level-rank duality is well-known.

$$\mathcal{W}_{\mathsf{N}} \Leftrightarrow \mathcal{W}_{\mathsf{M}}$$

- Is there physical meaning of level-rank duality in 4-dim gauge theory?
- What is the meaning of the null states?