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(2,0) theories
Nahm's classification: superconformal algebras exist for d < 6.
Ind =6, (NV,0) algebras. Existence of T}, multiplet requires N < 2.

(2,0): maximal susy in maximal d. No marginal couplings allowed.

Interacting models inferred from string/M-theory: ADE catalogue.

Central to many recent developments in QFT.
“Mothers” of many interesting QFTs in d < 6.

Key properties:
@ Moduli space of vacua
MQ = (RS)TQ/WQI g= {AnaDnyEGaE'?)ES}-

@ On R’ x S', IR description as 5d MSYM with gauge algebra g.

At large n, A, and D,, theories described through AdS/CFT:
M-theory on AdS7 x S* and AdS7 x RP*.
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The (2,0) theories as abstract CFTs

No intrinsic field-theoretic formulation yet.
No conventional Lagrangian (hard to imagine one from RG lore).

Working hypothesis: (at least) for correlators of local operators in RS,
the (2,0) theory is just another CFT, defined by a local operator algebra

OPE:  O;(2)05(0) = ) c1ox(x)O1(0)
k

Can symmetry and basic consistency requirements completely determine
the spectrum and OPE coefficients?
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Abstract CFT Framework

A general Conformal Field Theory hasn't much to do with “fields”
(of the kind we write in Lagrangians).

We'll think more abstractly. A CFT is defined by its local operators,
A ={Ok(2)},

and their correlation functions (O;(x1) ... Opn(zn)) .
Ais an algebra. Operator Product Expansion (OPE),
01($)02(0) = chgk (Ok(O) + .. ) R
k

where the ... are fixed by conformal invariance. The sum converges.

Caveat I: This definition does not capture non-local observables, such as
conformal defects. (E.g., Wilson lines in a conformal gauge theory.).
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Reduce npt to (n — 1)pt,

(O1(x1)Oa(w2) ... On(@n)y = D 1ok (w2) (Op(x2) . .. On(@n)) -
k

1pt functions are trivial, (O;(x)) = 0 except for (1) = 1.

Oa e, ¢(x) labeled by conformal dimension A, Lorentz representation ¢ and
possibly flavor quantum number f.

The CFT data {(A;, 4, fi), cijx} completely specify the theory.

But not anything goes! Consistency conditions:

@ Associativity:
(0102) O3 = 01 (0203) .

e Unitarity (reflection positivity):
Lower bounds on A for given /;
Cijk € R

Caveat II: In non-trivial geometries, (O) # 0 — additional constraints.

In d = 2, modularity. In d > 2, harder to analyze, have been ignored so far.
Leonardo Rastelli (YITP) (2, 0) Bootstrap Nov'15 4/1



The bootstrap program

Old aspiration (1970s) Ferrara Gatto Grillo, Polyakov.
Associativity = crossing symmetry of 4pt functions

1 3
1 3
- o
I S
2 4
2 4

Vastly over-constrained system of equations for {A;, ¢;j}.
Classification and construction of CFTs reduced to an algebraic problem.

e Famous success story in d = 2, starting from BPZZ (1984).

2d conformal symmetry is infinite dimensional, z — f(z2).

In some cases, finite-dimensional bootstrap problem (rational CFTs).
Many exact solutions, partial classification.
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Bootstrapping in two steps
For d = 6, N = (2,0) SCFTs (as well as d = 4, N' = 2 SCFTs)

the crossing equations split into

(1) Equations that depend only on
intermediate BPS operators. Captured by the 2d chiral algebra.
“Minibootstrap”

(2) Equations that also include
intermediate non-BPS operators.
“Maxibootstrap”

(1) are tractable and determine an infinite amount of CFT data.

This is essential input to the full-fledged bootstrap (2),
which can be studied numerically.

Beem Lemos Liendo Peelaers LR van Rees, Beem LR van Rees
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Meromorphy in (2,0) SCFTs

Fix a plane R? = RS, parametrized by (z, ).

Claim : 3 subsector A, = {O;(z;, Z)} with meromorphic
(O1(21,21) O2(22, 22) - . . On(2n, 2n)) = f(2i) -
Rationale: A, = cohomology of a nilpotent @,
Q=9+S,

Q Poincaré, S conformal supercharges.
Z dependence is Q-exact: cohomology classes [O(z,2)]g ~ O(z).

Analogous to the d = 4, N' = 1 chiral ring:
cohomology classes [O(z)] s, are z-independent.
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Cohomology

At the origin of R?, Q-cohomology A, easy to describe.
0(0,0) € A, < O obeys the chirality condition

At

5 R

A conformal dimension, £ angular momentum on RZ,
R Cartan generator of SU(2)g =~ SO(3)r < SO(5) R-symmetry.
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[@.50(2)] =0 but [@,s((2)]#0

To define @-closed operators O(z, z) away from origin, we twist the
right-moving generators by SU(2)p,

~

L_1=I_/_1+R_, f/():I_/()—R, E1=E1—R+

P

sl(2) = {,...}

Q-closed operators are “twisted-translated”

O(Z 2) _ eZL_1+Zf/_1 (1)11(0) e—ZL_l—Efz_l
3

= ug,(2)... ug (2)0FTr (2, 2) uz = (1, 2)

SU(2) g orientation correlated with position on R2.
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Example: free (2,0) tensor multiplet

D7, Aaa, W;_b
I = SO(5)R vector index.

Scalar in SO(3)r < SO(5)r h.w. is only field obeying A — ¢ = 2R

B D + 1Py
\/§ )

Cohomology class of twisted-translated field

(I)h.w. A=2R=2, £=0.

P(2) = [q)h.w.(Z, Z) + z®3(z, 2) + 52{)7;_”(2, 5)]Q
i _ z2 1
D(2) @(0) ~ 2205 (2,2) Py (0) ~ Sm=
®(z) is an u(1) affine current, ®(2) ~ Jy1y(2) -
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X¢ : 6d (2,0) SCFT —> 2d Chiral Algebra.

@ Global sl(2) — Virasoro, indeed T'(2) := [®(;5)(2, 2)]a,
with @7 ;) the stress-tensor multiplet superprimary.

Cad = Ced

in normalizations where cgq (free tensor) = 1.

o All 1-BPS operators (A = 2R) are in @ cohomology.

Generators of the %—BPS ring — generators of the chiral algebra.

@ Some semi-short multiplets with non-zero spin also play a role.

Leonardo Rastelli (YITP) (2, 0) Bootstrap Nov'15

1 /1



Chiral algebra for (2,0) theory of type Ay_4

One %—BPS generator each of dimension A = 4,6,...2N
y

One chiral algebra generator each of dimension h = 2,3,... N.

Most economical scenario: these are all the generators.
Check: the superconformal index computed by Kim? is reproduced:

I(g, s) := Tr(=1)F "~ Fshaths
n o6} 2 n
1 P+ +g
Z(g.sim) =[] [] T PE[M] :

Plausibly a unique solution to crossing for this set of generators.
@ The chiral algebra of the Ay_1 theory is Wy, with
coq = 4N —3N — 1.

Generalization to all ADE cases: Wy with coq = 4dghy + 7.
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Half-BPS 3pt functions of (2,0) SCFT
OPE of W generators = half-BPS 3pt functions of SCFT.

Let us check the result at large N.

W o With ¢ag ~ 4N3 — a classical Poisson algebra.

We can use results on universal Poisson algebra W, [p], with pn = N.

(Gaberdiel Hartman, Campoleoni Fredenhagen Pfenninger)

We find
20—2 T ki2s+1 T kosz1+1 r k3io+1
C(khkg,kg) _ 2 3]-—‘(%) ( 2 ) ( 2 ) ( 2 )
(rN)z N2/ \ \/T(2k; — 1)T'(2k2 — 1)T'(2k3 — 1)

kijkEki-i-kj—kk, a=ky+ ko + ks,
in precise agreement with calculation in 11d sugra on AdS; x S
(Corrado Florea McNees, Bastianelli Zucchini)

1/N corrections in Wy OPE = quantum M-theory corrections.
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(2, 0) maxibootstrap Beem Lemos LR van Rees

Universal 4pt function of @z 7), superprimary of 7, multiplet.

Unique structure in superspace.

Only input: 6d Weyl anomaly coefficient c.

For ADE theories,
c=4dghg + g,

but we keep it general.
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Double OPE expansion

(2D0D) = > fia0 G
Oedxd

We impose the absence of higher-spin currents.
The Os € & x ® are:

o Infinite set {O,} of @-chiral BPS multiplets, fixed from x-algebra.
@ Infinite tower of BPS multiplet {D, By, Bs, ...}, not in x-algebra.

o Infinite set of non-BPS multiplets La ¢, 50(5)r singlets.
Bose symmetry — { is even. Unitarity bound A > ¢ + 6.

Unfixed BPS multiplets correspond to long multiplets at threshold,

: (3] _ n® —
AE%G GﬁA,e =Gp, (P=B-1),
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Bootstrap sum rule

1 3
1 3
= o
) e
2 4
2

When the dust settles, a single sum rule

Z fig Fau(z,2) + FX(z,2;¢) =0

long superprimaries

4

z, z: conformal cross ratios;

Fae=Ga0 — gge: superconformal block minus its crossing;

FX(z, z;¢): an explicitly known function (from minibootstrap).

The unknown CFT data to be constrained are:
@ Set of (dimension, spin) {(A;,¢;)} of the intermediate multiplets.
@ The (squared) OPE coefficients fii,&' Non-negative by unitarity.
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The numerical oracle (Rattazzi Rychkov Tonni Vichi)

Z fiyﬂ fsz(Z7 2) + ‘Fknown(zﬂ 27 C) = 0
Al

Use the sum rule to constrain the space of CFT data.

For example, consider a trial spectrum with A > A, for operators of spin Z.

If there exists a linear functional x such that
X Fau(z,2) =0 when A > Ay

X - FRoown (5 zic) = 1

that trial spectrum is ruled out — oracle says NO.
If one cannot find such a , oracle says MAYBE.

Implemented by linear programming or semi-definite programming.
Surprisingly powerful!
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Scalar bound in general d = 3 CFT

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin and Vichi, PRD 86, 025022]

A
1.8 No
16 3d Ising?
1.4
Maybe
1.2
1.0 A,

050 054 058  0.62
Exclusion plot in the subspace of d = 3 CFT data (A,, A¢) with
oxo=1+¢€+..., from the bootstrap of a single 4pt function {(cooo).

Two real surprises:

@ 3d Ising appears to lie on the exclusion curve
(i.e. it saturates the bound)

@ 3d Ising appears to sit at a special kink on the exclusion curve.
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MU'tip'G Correlators [Kos, Poland, Simmons-Duffin, ‘14]

CFTg3 with Zs symmetry. o odd, eeven, c x o =1+¢e+...
System of correlators (ocooo), {ooee), {ceee).
Allowed region assuming that only one odd scalar is relevant (A, = 3):

1L.7F

3d Ising gets cornered! A, = 0.518151(5), A, = 1.41263(5),
most accurate to date [Simmons-Duffin '15]
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A lower bound on ¢

There is a minimum anomaly ¢;,,;, compatible with crossing and unitarity.
The bound ¢,,;, increases as we increase the search space for the
functional, parametrized by a cutoff A.

30

25

20-

Cmin

0.00

Extrapolating, ¢pin — 25, the value of the A; theory (=

Leonardo Rastelli (YITP)
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1/A
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two M5s)!
(We are disallowing the free theory (¢ = 1) by forbidding HS currents.)
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For ¢ < ¢min, the oracle says NO. Why?

1.5
1.0
A?D[U,ﬂ-]

0.5

0.0

-0 R
65.00 0.02 0.04 0.06 0.08
1/c

For ¢ < ¢min, solutions to crossing have )\QD < 0, violating unitarity.
A2, = 0 precisely at ¢ = ¢pin.

Agrees with conjecture of Batthacharyya and Minwalla about %BPS partition
function of Ay theory: D multiplet absent!
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Bootstrapping the A; theory

For ¢ = ¢min — 25, 3 unique unitary solution to crossing.

Claim: The A; theory can be completely bootstrapped!

9.0-

[ z
85 L =25 without D[0,4] &

o =25 with D[0,4]

8.0-
8075
70

000 002 004 006 008
1A
Upper bounds on the dimension of the leading-twist unprotected scalar,

under different assumptions. Perfectly consistent.
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6.6

6.55

6.4

Ap 6.3

6.2

6.1

6.0 s s e " .
8.0 8.5 9.0 9.5 10.0

Ay

Exclusion region in (Ag, Ag) plane for ¢ = 25 (A; value).

The corner values are conjectured to be the true leading-twist dimensions
of the physical A; theory.
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General ¢

© 22 derivatives « 22 derivatives

5 N
© 21 derivatives | e2lderivatives

© 20 derivatives

« 20 derivatives

© 19 derivatives o 19 derivatives

© 18 derivatives o 18 derivatives

© 17 derivatives o 17 derivatives

o 16 derivatives o 16 derivatives

o 15 derivatives 15 derivatives

o 14 derivatives © 14 derivatives

A, theory —— A theory

20

Bounds for the leading-twist unprotected operators of spin £ = 0, 2.

For ¢ — 0, they appear to be saturated by AdS; x S* sugra,
including 1/c corrections.

For large ¢, leading-twist unprotected operators are double-traces of the
form Og = 0140°O14, with Ay =8 + 5 — 0(1/6)

Summary: Both at small and large ¢ the bootstrap bounds appear to be
saturated by physical (2,0) theories.
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Outlook

The (2,0) theories can be successfully studied by bootstrap methods.

@ Exact results from the chiral algebra, e.g. % BPS 3pt functions.
Systematic 1/N expansion and its M-theory interpretation?

A derivation of the AGT correspondence?
Codimension-two defects = Toda vertex operators?

@ Numerical results for the non-protected spectrum.

Aj theory completely cornered by bootstrap equations.
Beginning of a systematic algorithm to solve it.

Ap~1 theories need input on BPS spectrum and multiple correlators.

Precision numerics? Multiple correlators?

Further analytic insights?
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