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Matrix models generate random surfaces as the Feynman diagrams.  

Introduction 

Lattice approach to Quantum Gravity 

• solvable  
• a formulation of 2D quantum gravity 

and “(noncritical) string theory” 

This approach has achieved a success in 2D gravity. 
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We expect that there are solvable models generating 
3-dimensional random volumes.  

Natural generalizations of matrix models are tensor models. 
[Ambjørn-Durhuus-Jonsson (1991), Sasakura (1991), Gross (1992)] 

This may lead to a formulation of membrane theory. 

Tensor models generate random tetrahedral decomposition 
as the Feynman diagrams. 

However, the models have not been solved.  
(Recently, a special class of models, colored tensor models, 
have made a progress. [Gurau(2009-)]) 
We do not know how to take a continuum limit. 
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A new class of models generating 3D random volumes 
as the Feynman diagrams 
 
We call them triangle-hinge models.  

interpret tetrahedral decmp as collection of 
triangles and multiple hinges 

Triangle-hinge models 

Main idea: 

2-hinge 

triangle 

[Fukuma, SS, Umeda, JHEP1507 (2015) 088] 
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 Triangle-hinge models 

Outline 

• Algebra 
 

• Free energy 
 

• Restriction to 3D manifolds with tetrahedral decomposition 

 Introducing matter fields 
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• dynamical variables are real symmetric matrices,  

triangle k-hinge 

• 𝐶𝑖𝑖𝑖𝑖𝑖𝑖 & 𝑦𝑖1… 𝑖𝑘 are real constant tensors assigned to 
triangle & k-hinge, which are characterized by algebra.  

Action:  

We expect that our models can be solvable since variables are 
matrices not tensors, although they have not been solved yet.  

“metric”  

structure const 
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has inverse 

Algebra 

 Our models are characterized by semisimple associative algebra A : 

vector space A with multiplication ×  
satisfying associativity: 𝑎 × 𝑏 × 𝑐 = 𝑎 × 𝑏 × 𝑐, 𝑎, 𝑏, 𝑐 ∈A 

 If we take a basis 𝑒𝑖  of A (𝑖 = 1,⋯ ,𝑁) , 
     multiplication is expressed as  𝑒𝑖 × 𝑒𝑗 =            𝑒𝑘  . 

 Definition of “metric”        :           

alg. A is semisimple  

 The size of matrices is given by the linear dim. of alg. A  (dimA = 𝑁).  

structure const. 
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• propagator 
     (Wick contraction) 

 Each Feynman diagram can be interpreted as a diagram consisting 
of triangles which are glued together along multiple hinges. 

𝑚 
𝑖 

𝑗 

𝑘 𝑙 

𝑛 
𝑖1 𝑖2 

𝑗1 𝑗2 

The Feynman diagrams 

triangle k-hinge 

• interaction terms 
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 Index function           is factorized into  
    the contributions from vertices in diagram 𝛾: 

The free energy is sum of contribution of connected diagrams 𝛾 

Free energy 

: symmetry factor, 

: #(triangles),  : #(k-hinges),  

: index function, which is given by contraction of indices 
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The index lines on two different hinges are connected  
through an intermediate triangle  
if and only if the hinges share the same vertex 𝑣. 
The connected components of the index network  
have a 1 to 1 correspondence to the vertices in 𝛾. 

Index function and index network 

 Factorization of index function: 

index network 

Each index network can be regarded as  
a polygonal decomposition of a closed 2D surface Σ𝑣  
enclosing a vertex 𝑣. (Not necessarily 2D-sphere) 

[Fukuma-Hosono-Kawai (1992)] 

Due to the properties of associative algebra A , 
        is topological invariant of 2D surface. 
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Matrix ring 

Here, we consider matrix ring. 

a basis: 

(𝑎, 𝑏) componet 

Note that index of algebra is expressed as double indices 𝑖 = (𝑎, 𝑏).  

• multiplication: 

 index line becomes double lines: 
11/20 



In the case of matrix ring, index network gives  
a polygonal decomp with double lines. 
Each contribution is given by 

: genus of 

 index lines of triangles and hinges 

triangle k-hinge 

polygon 

junction 
�𝜹𝒂𝒂

𝒏

𝒂=𝟏

= 𝒏 

segment 
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Similarly, in the case of                                              , 

                               . 

General diagrams does not represent  
3D manifolds because triangles and hinges are glued randomly.   

In 3D manifolds, each neighborhood around vertex is 3D ball.  
Thus, all 𝑔(𝑣) should be zero.  

In this case, the free energy is given by 

𝐾 

Diagrams whose all 𝑔 𝑣 = 0 dominate in the large 𝑛 limit.  
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There are objects which are not tetrahedral decompositions. 
It is not suitable to assign 3D volume. 

Restriction to tetrahedral decomposition can be done  
by slightly modifying the triangle tensor 𝐶𝑖𝑖𝑖𝑖𝑖𝑖  
such that all index polygons are triangles.  
 

All index networks of the objects which represent tetrahedral 
decompositions are always triangular decompositions.  

Restriction to tetrahedral decomposition 1  
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Each index polygon with ℓ segments  
gets a factor tr 𝜔ℓ. 

• Set the size of matrix ring as 𝑛 = 3𝑚. 

• Change the form of tensor              . 

where 𝜔 is a permutation matrix: 

 This means that each index line in a triangle has 𝜔. 
𝜔 

Restriction to tetrahedral decomposition 2  

Only 3𝑘-gons can appear in index networks. 
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In the limit 𝜆 → ∞, the leading contri. 
are diagrams s.t.               . 

where                                      and          = #(ℓ-gons in index network).  

Restriction to tetrahedral decomposition 3  

Each weight can be rewritten as 

all index networks represent triangular decompositions. 

Furthermore, we can take a limit where only triangles remain.  

diagram represents a tetrahedral decomposition  
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= #(vertices in 𝛾′), 

∞ 0 

= #(tetrahedra in 𝛾′)  

Restriction to manifolds with tetrahedral decomposition  

manifoldness tetra decomp 

The leading contributions represent 3D manifolds 
with tetrahedral decomposition 

The models correspond to pure gravity with CC. 
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Introducing matter to triangle-hinge models 
[Fukuma, SS, Umeda (arXiv:1504.03532)] 

We can introduce matter degrees of freedom. 

General prescriptions 

• Take algebra as  

• Assume a factorized form 

The “gravity” part restricts diagrams to 3D manifolds as explained above. 

The “matter” part gives various matter d.o.f. 

Then, index functions factorize as 
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We can assign 𝑞 colors to tetrahedra.  

Matter fields in triangle-hinge models 

In the case of 𝑞 = 2,  

the model realizes the Ising model on random volumes.  

We do not know whether the models actually  

describe membrane.  

We need to take continuum limits. (future work)   

We can formally take the set of colors to be ℝ𝐷: 

This gives 3dim gravity coupled to 𝐷 scalars. 

membrane in ℝ𝐷 
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Summary 

 We proposed a new class of models (triangle-hinge models) 
which generate 3D random volumes. 

 The fundamental building blocks are triangles and multiple hinges. 
 

 The dynamical variables are symmetric matrices. 
     Thus, there is a possibility that we can solve models  
     analytically by using the techniques of matrix models. 

 We can introduce matter dof. to models. 

 We expect that models can describe membrane theory. 
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