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n Fermion’s energy in the external magnetic field:

n Magnetic moment  Lande g-factor tree level value 2
n 1928 P.A.M. Dirac  “Quantum Theory of Electron”

Dirac equation (relativity, minimal gauge interaction)

n Non-relativistic and weak constant magnetic field
limits of the Dirac equation :

EQUATIONS

N. YAMADA

V (x) = −!µl · !B(1)

!µl = gl
e!sl

2ml
(2)

al =
gl − 2

2
(3)

aµ = (11 659 182.8 ± 4.9) × 10−10(4)

(5)

Date: July 4, 2012.
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(for Dirac Fermion l = e, μ, τ, …. )
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The Muon g-2 experiments
BNL E821 (-2004)

n measure precession of muon spin very accurately

The role of σhadronic ...

Decay spectrum: electrons of energy > E yields very precise ωa

N(t) = N0(E) exp

(
−t

γτµ

)

[1 + A(E) sin(ωat + φ(E))] ,
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versus time

for the 3.6 billion decays

in the 2001

negative muon

data-taking period

F. Jegerlehner ETC* Trento, Italy, April 10-12, 2013, Italy – April 10-12, 2013 –
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The role of σhadronic ...

BNL muon storage ring: r= 7.112 meters, aperture of the beam pipe 90 mm, field 1.45 Tesla, momentum of the muon
pµ = 3.094 GeV/c (see http://www.g-2.bnl.gov/)

F. Jegerlehner ETC* Trento, Italy, April 10-12, 2013, Italy – April 10-12, 2013 –
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muon storage ring and the measured positron energy provides the direction of the
muon spin.

The number of decay positrons with energy greater than E emitted at time t after
muons are injected into the storage ring is

N(t) = N0(E) exp
⇤
�t/�⇥µ

⌅ �
1 + A(E) sin(⌅a t + ⇤(E))

⇥
,

� N0(E) is a normalization factor, � ⇥µ the muon life time, � A(E) is the asymmetry
factor for positrons of energy greater than E.

� exponential decay modulated by the g � 2 angular frequency

� angular frequency ⌅a neatly determined from the time distribution of the decay
positrons observed with the electromagnetic calorimeters

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 43

[ BNL web page,   g-2  collaboration ] 

[ Aoyama, LAT15] [ A.Keshavarzi, LAT23] 5

The magnetic field map aµ / !a

h!0
p ⇥Mµi
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Trolley

Top Probes

Bottom Probes
8

Trolley measures the field in the ring 
every ~3 days

Fixed probes monitor the field in 
between trolley runs

Calibrated using the plunging probe 
and a spherical water and helium-3 

probe

The magnetic field map aµ / !a

h!0
p ⇥Mµi
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Recipe of a g-2 measurement

1. Prepare a polarized muon
beam from P-violating 
pion decay

1. Store in a magnetic field 
(let muon spin precessed)

2. Measure positron from P-
violating muon decay
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[ Slide from T. Mibe, L. Roberts ] 

Magic momentum, γ=30 (p= 3 GeV/c),  



Various corrections, error budget
[A. Keshavarzi, LAT23]
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Real world complications Grey regions = 
muon storage 

times

e.g. corrections due to fast transient fields from 
the pulsed systems

Muons experience a field change which the fixed 
probes don’t see due to shielding

Effects measured in dedicated measurement 
campaigns

kickers

quads

12

RUN-1

The Run-1 Result

4

The 2021 Run1 g-2 result: 
• Confirmed the BNL result.
• Led to net increase in discrepancy with theory at 4.2σ.
• Statistical uncertainty: 434 ppb;  Systematics: 159 ppb).
• World average uncertainty: 350 ppb.

The g-2 Theory Initiative recommended SM value:
• 2020 compilation from published work only.
• HLbL includes data-driven theory and lattice.
• HVP entirely based on data-driven evaluation.
• Net uncertainty, driven by HVP is ~ 369 ppb.

What we actually measure

6

The experiment 
actually measures 
two frequencies:

What we measure

aµ / !a

h!0
p ⇥Mµi
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Magnetic Field Map, ωʹ
p

Muon Distribution, Mμ

Anomalous Precession 
Frequency, ⍵a

The full data-set

3

Run 1 (2020) result: ~5% of full stats, 434 ppb stat ⊕ 157 ppb syst errors 

Run 2/3 analysis complete, aiming to reduce 
experimental error by 2.  Systematics on track for < 100 
ppb.

Run 4/5/6, aiming for 
another factor of ~2 
reduction in error: 70 ppb 
stat ⊕ 70 ppb syst errors 

TDR target was 20 x BNL

Run-2/3 result 
announcement on August 

10th.



SM Theory

n QED, hadronic, EW contributions

+ ...+=

✕ ✕ ✕

+ + + ...
✕ ✕

+ + + ...

✕ ✕

QED   (5-loop)
Aoyama Hayakawa,
Kinoshita, Nio
PRL109,111808 (2012) 

Hadronic vacuum 
polarization (HVP)

Hadronic light-by-light 
(Hlbl)

Electroweak (EW)
Knecht et al 02
Czarnecki et al. 02
……

+ + …

+ + + …

muon’s anomalous magnetic moment

• One of the most precisely determined numbers, starting from the construction of QED.

�

�

µ µ

�

� �

µ µhad

�

W W

⇤

µ µ

Hadronic light-by-light scattering contribution to the muon g� 2 from lattice QCD Masashi Hayakawa

could be estimated by purely theoretical calculation. So far, it has been calculated only based on
the hadronic picture [7, 8]. Thus the first principle calculation based on lattice QCD is particularly
desirable.

!

l1l2

Figure 1: hadronic light-by-light scattering contribution to the muon g� 2

The diagram in Fig. 1 evokes the following naive approach; we calculate repeatedly the cor-
relation function of four hadronic electromagnetic currents by lattice QCD with respect to two
independent four-momenta l1, l2 of off-shell photons, and integrate it over l1, l2. Such a task is too
difficult to accomplish with use of supercomputers available in the foreseeable future.

Here we propose a practical method to calculate the h-lbl contribution by using the lattice
(QCD + QED) simulation; we compute

⇤ quark ⌅

QCD+quenched QEDA

�
⇤

quark

⌅

QCD+quenched QEDB⇤ ⌅

quenched QEDA

, (2)

amputate the external muon lines, and project the magnetic form factor, and divide by the factor
3. In Eq. (2) the red line denotes the free photon propagator D!�(x, y) in the non-compact lat-
tice QED solved in an appropriate gauge fixing condition. The black line denotes the full quark
propagator Sf (x, y;U, u) for a given set of SU(3)C gauge configuration

�
Ux,!

⇥
and U(1)em gauge

configuration
�
ux,!

⇥
, where the sum over relevant flavors f is implicitly assumed. The blue line

represents the full muon propagator s(x, y; u). The average ⇥, ⇤ above means the one over the
unquenched SU(3)C gauge configurations and/or the quenched U(1)em gauge configurations 1 as
specified by the subscript attached to it. Since two statistically independent averages overU(1)em
gauge configurations appear in the second term, they are distinguished by the labels A, B.

1For the unquenched QCD plus quenched QED to respect the gauge invariance of QED, the electromagnetic charges
of sea quarks are assumed to be zero.

PoS(LAT2005)353

353 / 3

aµ =
g � 2

2
= (116 592 089 ± 54 ± 33) ⇥ 10�11 BNL-E821

[Andreas Hoecker, Tau 2010, arXiv:1012.0055 [hep-ph]]

Contribution Result (⇥10�11).
QED (leptons) 116 584 718.09 ± 0.15
HVP (lo) 6 923.± 42
HVP (ho) -97.9 ± 0.9
HLBL 105.± 26
EW 154.± 2

Total SM 116 591 802 ± 42HVP(lo) ± 26HLBL ± 02 (49tot).

• 287 ± 80 or 3.6⇥ difference between experiment and SM prediction.

E989 at FNAL is to reduce the total experimental error by,
at least, a factor of four over E821, or 0.14 ppm !

Taku Izubuchi, USQCD All Hands Meeting, JLab, May 6, 2011 20

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

qp1 p2

+
qp1 p2

k

+ . . .

�µ
! �µ(q) =

✓
�µ F1(q

2) +
i �µ⌫ q⌫
2m

F2(q
2)

◆

which results from Lorentz and gauge invariance when the muon is
on-mass-shell.

F2(0) =
g � 2

2
⌘ aµ (F1(0) = 1)

(the anomalous magnetic moment, or anomaly)

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by
expanding �µ(q2) in QED coupling constant

↵ =
e2

4⇡
=

1

137
+ . . .

Corrections begin at O(↵); Schwinger term = ↵

2⇡
= 0.0011614 . . .

hadronic contributions ⇠ 6 ⇥ 10�5 times smaller (leading error).

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD
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Diagrams: 389 independent integrals for 10th-order Set V

32/55

Standard Model Theory: QED+EW+QCD

hµ(~p0)|J⌫(0)|µ(~p)i = �eū(~p0)

✓
F1(q

2)�⌫ + i
F2(q2)

4m
[�⌫ , �⇢]q⇢

◆
u(~p)

aµ ⌘ (g � 2)/2 = F2(0) (q = p
0 � p)

Hadronic corrections to the muon g�2 from lattice QCD T. Blum

Table 1: Standard Model contributions to the muon anomaly. The QED contribution is through �5, EW
�2, and QCD �3. The two QED values correspond to different values of � , and QCD to lowest order (LO)
contributions from the hadronic vacuum polarization (HVP) using e+e� ! hadrons and � ! hadrons, higher
order (HO) from HVP and an additional photon, and hadronic light-by-light (HLbL) scattering.

QED 11658471.8845(9)(19)(7)(30)⇥10�10 [2]
11658471.8951(9)(19)(7)(77)⇥10�10 [2]

EW 15.4(2)⇥10�10 [5]
QCD LO (e+e�) 692.3(4.2)⇥10�10, 694.91(3.72)(2.10)⇥10�10 [3, 4]

LO (�) 701.5(4.7)⇥10�10 [3]
HO HVP �9.79(9)⇥10�10 [6]
HLbL 10.5(2.6)⇥10�10 [9]

The HVP contribution to the muon anomaly has been computed using the experimentally
measured cross-section for the reaction e+e� ! hadrons and a dispersion relation to relate the real
and imaginary parts of �(Q2). The current quoted precision on such calculations is a bit more than
one-half of one percent [3, 4]. The HVP contributions can also be calculated from first principles
in lattice QCD [8]. While the current precision is significantly higher for the dispersive method,
lattice calculations are poised to reduce errors significantly in next one or two years. These will
provide important checks of the dispersive method before the new Fermilab experiment. Unlike
the case for aµ(HVP), aµ(HLbL) can not be computed from experimental data and a dispersion
relation (there are many off-shell form factors that enter which can not be measured). While model
calculations exist (see [9] for a summary), they are not systematically improvable. A determination
using lattice QCD where all errors are controlled is therefore desirable.

In Sec. 2 we review the status of lattice calculations of aµ(HVP). Section 3 is a presentation
of our results for aµ(HLbL) computed in the framework of lattice QCD+QED. Section 4 gives our
conclusions and outlook for future calculations.

Z

W

Z
...

Figure 1: Representative diagrams, up to order �3, in the Standard Model that contribute to the muon
anomaly. The rows, from to top to bottom, correspond to QED, EW, and QCD. Horizontal solid lines
represent the muon, wiggly lines denote photons unless otherwise labeled, other solid lines are leptons,
filled loops denote quarks (hadrons), and the dashed line represents the higgs boson.
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Experimental History 

Lee Roberts - INT Workshop on HLBL 28 February 2011 - p. 15/24 

Experiments history
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Lee. Roberts
Experimental History 

Lee Roberts - INT Workshop on HLBL 28 February 2011 - p. 15/24 
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Figure 1: Representative diagrams, up to order �3, in the Standard Model that contribute to the muon
anomaly. The rows, from to top to bottom, correspond to QED, EW, and QCD. Horizontal solid lines
represent the muon, wiggly lines denote photons unless otherwise labeled, other solid lines are leptons,
filled loops denote quarks (hadrons), and the dashed line represents the higgs boson.
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Standard Model Theory: QED+EW+QCD

hµ(~p0)|J⌫(0)|µ(~p)i = �eū(~p0)

✓
F1(q

2)�⌫ + i
F2(q2)

4m
[�⌫ , �⇢]q⇢

◆
u(~p)

aµ ⌘ (g � 2)/2 = F2(0) (q = p
0 � p)

Hadronic corrections to the muon g�2 from lattice QCD T. Blum

Table 1: Standard Model contributions to the muon anomaly. The QED contribution is through �5, EW
�2, and QCD �3. The two QED values correspond to different values of � , and QCD to lowest order (LO)
contributions from the hadronic vacuum polarization (HVP) using e+e� ! hadrons and � ! hadrons, higher
order (HO) from HVP and an additional photon, and hadronic light-by-light (HLbL) scattering.

QED 11658471.8845(9)(19)(7)(30)⇥10�10 [2]
11658471.8951(9)(19)(7)(77)⇥10�10 [2]

EW 15.4(2)⇥10�10 [5]
QCD LO (e+e�) 692.3(4.2)⇥10�10, 694.91(3.72)(2.10)⇥10�10 [3, 4]

LO (�) 701.5(4.7)⇥10�10 [3]
HO HVP �9.79(9)⇥10�10 [6]
HLbL 10.5(2.6)⇥10�10 [9]

The HVP contribution to the muon anomaly has been computed using the experimentally
measured cross-section for the reaction e+e� ! hadrons and a dispersion relation to relate the real
and imaginary parts of �(Q2). The current quoted precision on such calculations is a bit more than
one-half of one percent [3, 4]. The HVP contributions can also be calculated from first principles
in lattice QCD [8]. While the current precision is significantly higher for the dispersive method,
lattice calculations are poised to reduce errors significantly in next one or two years. These will
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the case for aµ(HVP), aµ(HLbL) can not be computed from experimental data and a dispersion
relation (there are many off-shell form factors that enter which can not be measured). While model
calculations exist (see [9] for a summary), they are not systematically improvable. A determination
using lattice QCD where all errors are controlled is therefore desirable.

In Sec. 2 we review the status of lattice calculations of aµ(HVP). Section 3 is a presentation
of our results for aµ(HLbL) computed in the framework of lattice QCD+QED. Section 4 gives our
conclusions and outlook for future calculations.
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Experimental History 

Lee Roberts - INT Workshop on HLBL 28 February 2011 - p. 15/24 

QED contribution: 6th order term

! 6th order term receives contributions from 72 Feynman diagrams,
represented by these five types:

Their contributions are analytically known, after almost 30 years of works
that completed in late 1990’s. The numerical values are:

A
(6)
1 = 1.181 241 456 . . .

A
(6)
2 (me/mµ) = −0.000 007 373 941 62 (27)

A
(6)
2 (me/mτ ) = −0.000 000 065 830 (11)

A
(6)
3 (me/mµ,me/mτ ) = 0.000 000 000 000 190 9 (1)

Magnaco and Remiddi, Nuovo Cim.A60, 519 (1969)

Barbieri, Remiddi, PLB49, 468 (1974); Barbieri, Caffo, and Remiddi, PLB57, 460 (1975)

Levine, Remiddi, and Roskies, PRD20, 2068 (1979); Laporta and Remiddi, PLB265, 182 (1991); 390, 390 (1995)

Laporta, PRD47, 4793 (1993); PLB343, 421 (1995)

Laporta and Remiddi, PLB379, 283 (1996)

Laporta, Nuovo Cim.A106, 675 (1993); Laporta and Remiddi, PLB301, 440 (1993)
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E821 achieved ± 0.54 ppm. The e+e� based theory is at the 
~0.4 ppm level. Difference is ~3.6 σ

Theory: arXiv:1010.4180v1 [hep-ph] Davier, Hoecker, Malaescu, and Zhang, Tau2010 

e+
e-

 th
eo

ry
 

Lee Roberts - INT Workshop on HLBL 28 February 2011 - p. 17/24 



muon anomalous magnetic moment

J-PARC g—2 schematic 

Precision for New Discoveries, June 2016 G. Marshall 23 

resonant laser ionization of 
muonium for low emittance µ+  

(~106 µ+/s) 

3 GeV proton beam 
 ( 333 uA)�

surface muon beam  
(28 MeV/c, »108/s)�

muonium production  
(300 K, 25 meV
2.3 keV/c)�

muon storage ring 
(3T, r = 33 cm, 1 ppm local)�

muon reacceleration 
(Soa, RFQ, IH, DAW, DLS) 

(thermal to 300 MeV/c)� 10

Theory status for aµ – summary

Contribution Value ⇥1010 Uncertainty ⇥1010

QED (5 loops) 11 658 471.895 0.008
EW 15.4 0.1
HVP LO 692.3 4.2
HVP NLO -9.84 0.06
HVP NNLO 1.24 0.01
Hadronic light-by-light 10.5 2.6
Total SM prediction 11 659 181.5 4.9
BNL E821 result 11 659 209.1 6.3
FNAL E989/J-PARC E34 goal ⇡ 1.6

We currently observe a ⇠ 3� tension.
2 / 30

BNL g-2  till 2004 :  ~ 3.7 σ larger than SM prediction

q = p′ − p, ν

p p′

Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD

FNAL  E989  (2017-)
2021-04:  announces ~BNL level error, 4.6x10-10

2023-08-10:  Run-2, Run-3 results
All 6 Run completed, x22 more stalslcs than 

BNL aiming for error  1.6 10-10 0.14ppm

J-PARC E34 (IMPORTANT different systemalcs !)
ultra-cold muon beam
0.37 ppm  then 0.1 ppm, also EDM

There is a tension of 3.7� for the muon aµ = (gµ � 2)/2:

aEXP
µ � aSM

µ = 27.4 (2.7)|{z}
HVP

(2.6)|{z}
HLbL

(0.1)|{z}
other

(6.3)|{z}
EXP

⇥10�10

HVP
this talk

HLbL
Harvey’s talk

2019: �aEXP
µ ! 4.5 ⇥ 10�10 (avg. of BNL/estimate of 2019 Fermilab result)

Targeted final uncertainty of Fermilab E989: �aEXP
µ ! 1.6 ⇥ 10�10

) by 2019 consolidate HVP/HLbL, over the next years uncertainties to O(1 ⇥ 10�10)

1 / 22



April 2020 status muon g-2 HVPStatus for the muon
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tyHVP from:

not used in WP20

BMW20

WP20(lattice)

FNAL

BNL4.2 σ

Experiment talk by Anna Driutti

BNL confirmed by Fermilab Run 1

Run 2+3 in late summer

Theory talks by Thomas Teubner, Letizia Parato, Fedor Ignatov

4.2� if HVP from e+e� ! hadrons data

e+e� data in 2.1� tension with BMWc

CMD-3 result for e+e� ! ⇡+⇡�

This talk: overview of (g � 2)µ theory

M. Hoferichter (Institute for Theoretical Physics) Overview g � 2 Jun 07, 2023 8

11[M. Hoferichter]



G-2  from BSM sources

12

n Typical new particle contribute g-2   
g-2  ~ C  (mµ / mNP)2

n To explain current discrepancy

n SUSY (scalar-lepton )
n 2 Higgs doublet models

Type-X, ….
n Dark photons 

from kinematical mixings
ε Fµν F‘µν

New Physics contributions to the muon g � 2

Define:

�aµ = aexp
µ � aSM

µ = (290± 90)⇥ 10�11 (Jegerlehner, AN ’09)

Absolute size of discrepancy is actually unexpectedly large, compared to weak
contribution (although there is some cancellation there):

aweak
µ = aweak, (1)

µ (W ) + aweak, (1)
µ (Z) + aweak, (2)

µ

= (389� 194� 41)⇥ 10�11

= 154⇥ 10�11

Assume that New Physics contribution with MNP � mµ decouples:

aNP
µ = C

m2
µ

M2
NP

where naturally C = ↵
⇡ , like from a one-loop QED diagram, but with new

particles. Typical New Physics scales required to satisfy aNP
µ = �aµ:

C 1 ↵
⇡ (↵⇡ )

2

MNP 2.0+0.4
�0.3 TeV 100+21

�13 GeV 5+1
�1 GeV

Therefore, for New Physics model with particles in 250� 300 GeV mass range
and electroweak-size couplings O(↵), we need some additional enhancement
factor, like large tan� in the MSSM, to explain the discrepancy �aµ.

aµ: Supersymmetry
Supersymmetry for large tan�, µ > 0:

a
SUSY
µ ⇡ 123⇥ 10�11

✓
100 GeV

MSUSY

◆2

tan�

(Czarnecki, Marciano, 2001) ⌫̃

�̃ �̃

a)

�̃
0

µ̃ µ̃

b)

Explains �aµ = 290⇥ 10�11 if MSUSY ⇡ (93� 414) GeV (2 < tan� < 40).

In some regions of parameter space, large 2-loop contributions (2HDM):

h,Aµ

�

h,A �

⌧, b

µ µ

�

W
H

µ
⌫µ

�

W

H
µ

Z

�a) b) c) d)

Barr-Zee diagram (b) yields enhanced contribution, which can exceed 1-loop result.
Enhancement factor m2

b
/m2

µ compensates suppression by ↵/⇡

((↵/⇡)⇥ (m2
b
/m2

µ) ⇠ 4 > 1).

aµ and Supersymmetry after first LHC run

• LHC so far only sensitive to strongly interacting supersymmetric particles, like
squarks and gluinos (ruled out below about 1 TeV).

• Muon g � 2 and SUSY searches at LHC only lead to tension in constrained
MSSM (CMSSM) or NUHM1 / NUHM2 (non-universal contributions to Higgs
masses).

• In general supersymmetric models (e.g. pMSSM10 = phenomenological MSSM
with 10 soft SUSY-breaking parameters) with light neutralinos, charginos and
sleptons, one can still explain muon g � 2 discrepancy and evade bounds from
LHC.

Two-Higgs Doublet Model

Second Higgs doublet well motivated in theory

Promising case: H1 couples to leptons, H2 ≈ HSM to quarks (type X)
recent analyses: [Broggio, Chun, Passera, Patel, Vempati ’14, Ilisie ’15]

µR µLµL

H1

µR µLµL

H1 γ

τ

×〈H1〉

∼
y2µ

16π2

m2
µ

M2
H

∼
y2τ

16π2

α

4π

m2
µ

M2
H

Leading!

2HDM type X could be the origin of the observed (30 ± 8)× 10−10

deviation if, e.g., MA ∼ 50 GeV, tanβ ∼ 100!

Dominik Stöckinger Muon (g − 2) Precise and reliable predictions in the 2HDM 4/17

[A. Nyfler ]



Hadronic Vacuum Polarization (HVP) 
contribution to g-2

14

q = p′ − p, ν

p p′

Quark & anti-quark contribution

Diagrams
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Diagrams – Isospin limit 2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the �� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C(1)
QED(t) +

X

f

�mfC(1)
�mf

(t)

+ O(↵2, ↵�m, �m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e�ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e�ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the �� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e�ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  10  20  30  40  50  60  70
r

Resulting two-point p(d) from p(r)=(1.5 + r)-5

Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.

8

FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-

x

x

x

(a) M
x

x

x

(b) R

x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e�ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.

Diagrams – QED corrections

and fit d�.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d� and E� and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E� and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.

(a) V (b) S (c) T (d) Td (e) D1 (f) D1d

(g) D2 (h) D2d (i) F (j) D3

Figure 1: QED corrections
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Figure 2: SIB corrections

4

Diagrams – Strong isospin breaking
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Leading order of hadronic contribution 
(HVP)

n Hadronic vacuum polarization (HVP)

quark’s EM current : 
n Unitarity, Optical Theorem 

n Analycity

15

Vμ Vν

Vµ =
X

f

Qf f̄�µf

= (q2gµ� � qµq�)�V (q
2)

Im�V (s) =
s

4⇥�
⇤tot(e

+e� ! X)

�V (s)��V (0) =
k2

⇥

Z 1

4m2
⇡

ds
Im�V (s)

s(s� k2 � i�)

Dispersion relations and VP insertions in g � 2

Starting point:
� Optical Theorem (unitarity) for the photon propagator

Im�⇤⇥(s) =
s

4⇤�
⌅tot(e+e� ⇥ anything)

� Analyticity (causality), may be expressed in form of a so–called (subtracted)
dispersion relation

�⇤⇥(k
2) � �⇤⇥(0) =

k2

⇤

⌅�

0

ds
Im�⇤⇥(s)

s (s � k2 � i⇧)
.

� �
had ⇥

�
� had
� (q2)

�

had

2

� ⇥had
tot (q2)

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 68

F. Jegerlehner’s lecture



Leading order of hadronic contribution 
(HVP)

n Hadronic vacuum polarization (HVP) 

*

Hagiwara, et al. J.Phys. G38,085003 (2011)

r w
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Dispersive HVP: the real challenge

22

Ø Target: ∼ 0.2% total error.
Ø Current dispersive uncertainty: 

∼ 0.5%.
Ø Below ∼ 2 GeV:

Ø Radiative corrections.
Ø Combine data for > 50 exclusive 

channels.
Ø Use isospin / ChPT relations for 

missing channels (tiny, < 0.05%).
Ø Sum all channels for total cross 

section. 
Ø Above ∼ 2 GeV:

Ø Combine inclusive data OR pQCD 
(away from flavour thresholds).

Ø Add narrow resonances.
Ø Challenges:

Ø How to combine 
data/errors/correlations from 
different experiments and 
measurements.

Ø Accounting for tensions & sources 
of systematic error.
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Phys.Rev.D 97 (2018) 114025, Phys.Rev.D 101 (2020) 014029.



g-2 from R-ratio experiments
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[ A. Keshavarzi, LAT23 ]

Comparisons and the 2021 WP result

25

Ø Precision better than 
0.4%

(uncertainties include all 
available correlations 

and ?& inflation)
Ø Clear %!%" dominance 

@'had,	LOVP = 693.84 ± 1.19()*) ± 1.96(+( ± 0.22,- ± 0.71.(/
	 = 692.78 ± 2.42)0)

Conservative merging to obtain a realistic assessment of the 
underlying uncertainties: 
• Account for differences in results from the same 

experimental inputs.
• Include correlations between systematic errors 

KNT19, Phys.Rev.D 97 (2018) 114025, Phys.Rev.D 101 (2020) 014029. Phys.Rept. 887 (2020) 1-166.
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Zhiqing Zhang (LAL, Orsay) /14+3EPS 2019, Ghent, July 10-17, 2019

The Dominant π+π- Channel (2)
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Zhang et al. EPS2019

BABAR & KLOE dominates 0.6-0.9 GeV ππ data, 
Has a large discrepancy between BABAR & KLOE -> inflate error (dominant)
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h"ps://indico.psi.ch/event/13708/contribu8ons/43296/a"achments/25270/
46331/pipiFinal_7June2023_ZurichRadcorMC.pdf



[ A. Keshavarzi, LAT23 ]

CMD-3 compared to KNT19

27

To be able to compare CMD-3 with KNT19 data combination:
• Data published as pion form factor, ?' %.
• Must subtract vacuum polarisation effects using Fedor 

Ignatov's VP correction update.
• Must include final-state-radiation effects.
• Put data on fine, common binning.

In the full 2+ data combination range, the KNT19 analysis 
found:

0&'!'" 0.305	 → 1.937	GeV = 503.46	 ± 1.91 	×	10()$.

Replacing KNT19 2pi data in the region 0.33	 → 1.20	GeV	with 
CMD-3 data:

0&'!'" 0.305	 → 1.937	GeV = 525.17	 ± 4.18 	×	10()$.

Neglecting possible correlations between e.g. CMD-3 and 
CMD-2, this results in a difference of:

∆0&'!'"= 21.71	 ± 4.96 	×	10()$ → 4.4&	,

This removes the experiment vs. SM Muon g-2 discrepancy.

In collaboration with Genessa Benton, Diogo Boito, Maarten Golterman, Kim Maltman & Santi Peris. CMD-3 [F. Ignatov et al, arXiv:2302.08834]
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https://indico.psi.ch/event/13708/contributions/43296/attachments/25270/
46331/pipiFinal_7June2023_ZurichRadcorMC.pdf



g-2 HVP from Lattice
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Euclidean Time Momentum Representation
[Bernecker Meyer 2011, Feng et al. 2013]

In Euclidean space-time, project verctor 2 pt to zero spacial momentum,
~p = 0 :

C(t) =
1

3

X

x,i

hji(x)ji(0)i

g-2 HVP contribution is

a
HV P
µ =

P
t w(t)C(t)

w(t) = 2
R 1
0

d!
! fQED(!2)

h
cos !t�1

!2 + t2

2

i

• Subtraction ⇧(0) is performed.
Noise/Signal ⇠ e

(E⇡⇡�m⇡)t, is improved [Lehner et al. 2015] .

• Corresponding ⇧̂(Q2) has exponentially small volume er-
ror [Portelli et al. 2016] . w(t) includes the continuum QED
part of the diagram

Taku Izubuchi, First Workshop of the Muon g-2 Theory Initiative, June 4, 2017 5

w(t) ~ t4
fQED(ω2)

q = p′ − p, ν

p p′[ T. Blum, 2003] ]



Comparison of R-ratio and Lattice
[ F. Jegerlehner alphaQED 2016 ]

n Covariance matrix among energy bin in R-ratio is not available, assumes 100% 
correlated 

25

Comparison to R-ratio
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a_mu = Area 
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⇧̂(Q2) = Q
2
R 1
0 ds

R(s)
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pQCD OPE R(s)

poles 1/s(s + Q2)

1

(1/a = 1.78 GeV, Relative statistical error)

(plan	B)	Interplays	between	la1ce	and	
dispersive	approach		g-2�

•  R-Ra<o	error		~	0.6%,	HPQCD	error	~	2%	
•  Goal	would	be	~0.25	%	
•  Dispersive	approach	from	R-ra<o		R(s)	
�

0 2 4 6 8 10

Q
2
 [GeV

2
]

0

1

2

3

4

Lattice (u,d,s connected, 48cube), X= 2 sin(p/2)

alphaQED (Jergerlehner)

Lattice ( u,d,s connected, 48cube) X=p, Tcut=24

Pihat(Q
2
)

0 2 4 6 8 10

Q
2
 [GeV

2
]

0

0.005

0.01

0.015

0.02

Lattice (u,d,s, connected, 48cube), Tcut=24

alphaQED (Jergerlehner)

Relative Err of Pihat(Q
2
)

also	[	ETMC,	Mainz,	...	]	�

(plan	B)	Interplays	between	la1ce	and	
dispersive	approach		g-2�

•  R-Ra<o	error		~	0.6%,	HPQCD	error	~	2%	
•  Goal	would	be	~0.25	%	
•  Dispersive	approach	from	R-ra<o		R(s)	
�

0 2 4 6 8 10

Q
2
 [GeV

2
]

0

1

2

3

4

Lattice (u,d,s connected, 48cube), X= 2 sin(p/2)

alphaQED (Jergerlehner)

Lattice ( u,d,s connected, 48cube) X=p, Tcut=24

Pihat(Q
2
)

0 2 4 6 8 10

Q
2
 [GeV

2
]

0

0.005

0.01

0.015

0.02

Lattice (u,d,s, connected, 48cube), Tcut=24

alphaQED (Jergerlehner)

Relative Err of Pihat(Q
2
)

also	[	ETMC,	Mainz,	...	]	�

Taku Izubuchi, First Workshop of the Muon g-2 Theory Initiative, June 4, 2017 7

⇧̂(Q2) = Q
2
R 1
0 ds

R(s)
s(s+Q2)

Re(s)

Im(s)
pQCD OPE R(s)

poles 1/s(s + Q2)

1

(1/a = 1.78 GeV, Relative statistical error)

(plan	B)	Interplays	between	la1ce	and	
dispersive	approach		g-2�

•  R-Ra<o	error		~	0.6%,	HPQCD	error	~	2%	
•  Goal	would	be	~0.25	%	
•  Dispersive	approach	from	R-ra<o		R(s)	
�

0 2 4 6 8 10

Q
2
 [GeV

2
]

0

1

2

3

4

Lattice (u,d,s connected, 48cube), X= 2 sin(p/2)

alphaQED (Jergerlehner)

Lattice ( u,d,s connected, 48cube) X=p, Tcut=24

Pihat(Q
2
)

0 2 4 6 8 10

Q
2
 [GeV

2
]

0

0.005

0.01

0.015

0.02

Lattice (u,d,s, connected, 48cube), Tcut=24

alphaQED (Jergerlehner)

Relative Err of Pihat(Q
2
)

also	[	ETMC,	Mainz,	...	]	�

(plan	B)	Interplays	between	la1ce	and	
dispersive	approach		g-2�

•  R-Ra<o	error		~	0.6%,	HPQCD	error	~	2%	
•  Goal	would	be	~0.25	%	
•  Dispersive	approach	from	R-ra<o		R(s)	
�

0 2 4 6 8 10

Q
2
 [GeV

2
]

0

1

2

3

4

Lattice (u,d,s connected, 48cube), X= 2 sin(p/2)

alphaQED (Jergerlehner)

Lattice ( u,d,s connected, 48cube) X=p, Tcut=24

Pihat(Q
2
)

0 2 4 6 8 10

Q
2
 [GeV

2
]

0

0.005

0.01

0.015

0.02

Lattice (u,d,s, connected, 48cube), Tcut=24

alphaQED (Jergerlehner)

Relative Err of Pihat(Q
2
)

also	[	ETMC,	Mainz,	...	]	�

Taku Izubuchi, First Workshop of the Muon g-2 Theory Initiative, June 4, 2017 7

Dispersion relations and VP insertions in g � 2

Starting point:
� Optical Theorem (unitarity) for the photon propagator

Im�⇤⇥(s) =
s

4⇤�
⌅tot(e+e� ⇥ anything)

� Analyticity (causality), may be expressed in form of a so–called (subtracted)
dispersion relation

�⇤⇥(k
2) � �⇤⇥(0) =

k2

⇤

⌅�

0

ds
Im�⇤⇥(s)

s (s � k2 � i⇧)
.

� �
had ⇥

�
� had
� (q2)

�

had

2

� ⇥had
tot (q2)

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 68



up/down quark HVP  
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Significant error reduction using full-volume low-mode average
(DeGrand & Schäfer 2004) in addition to a multi-level all-mode average.

New method: Multi-Grid Lanczos utilizing local coherence of eigenvectors
yields 10⇥ reduction in memory cost (Poster by C.L. at Lattice 2017)

9 / 30

120 conf (a=0.11fm), 80 conf (a=0.086fm)   physical point Nf=2+1 Mobius DWF  
4D full volume LMA with 2,000  eigen vector  (of e/o preconditioned zMobius D+D)
EV compression (1/10 memory) using local coherence [ C. Lehner Lat2017 Poster ]
In addition,  50 sloppy / conf via multi-level AMA 
more than x 1,000  speed up compared to  simple CG
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Diagrams – Isospin limit 2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the �� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C(1)
QED(t) +

X

f

�mfC(1)
�mf

(t)

+ O(↵2, ↵�m, �m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e�ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e�ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the �� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e�ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.

8

FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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x

x

(a) M
x

x

x

(b) R

x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e�ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.

Diagrams – QED corrections
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red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d� and E� and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E� and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.
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Diagrams – Strong isospin breaking
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disconnected quark loop contribution �

n  [ C. Lehner et al. (RBC/UKQCD 2015,  arXiv:1512.09054,  PRL) ] 

n  Very challenging calculation due to statistical noise  

n  Small contribution,  vanishes in SU(3) limit,  

    Qu+Qd+Qs = 0 

n  Use low mode of quark propagator, treat it exactly  

     ( all-to-all propagator with sparse random source ) 

n  First non-zero signal  Leading isospin breaking correction to the HVP

•    Main obstacle in implementing this method (in general): , 
➡many diagrams have to be computed 
➡including the 3-pt, 4-pt functions and the disconnected ones (beyond el-quenched) 

• Computation with Nf=2 O(a) improved Wilson configurations, …
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Figure 1: Contributions to the leading isospin breaking e↵ects to the connected part of the HVP.
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Figure 2: Some examples of the disconnected contributions which are part of the leading isospin breaking
e↵ects to the connected part of the HVP, beyond electro-quenched approximation.
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In this case, only diagrams in Figure 1 contribute.
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O(mu �md)

•    In the phenomenological determination of              , correctly applied IB correction 
resolved the discrepancy between           and     data   [Jegerlehner,Szafron ‘11] 

•    R123 method [arXiv:1303.4896] for computing leading isospin breaking corrections(LIBE) 
➡Applied to the connected pat of the HVP   

•    Main advantage w. respect to simulating QED+QCD: 
➡Diagrams obtained individually (before multiplying with               ,                         coeff.) 
➡No extrapolation in 

• Leading isospin breaking correction (electro-quenched approximation):

O(↵em)

ahad,LO
µ

↵em

e+e� ⌧

The Leading Order Hadronic Vacuum Polarization

Quark-connected piece with > 90% of the con-
tribution with by far dominant part from up and
down quark loops (Below focus on light contri-
bution only)

Quark-disconnected piece with ⇡ 1.5% of the
contribution (1/5 suppression already through
charge factors); arXiv:1512.09054, accepted for
PRL

QED and isospin-breaking corrections, esti-
mated at the few-per-cent level
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Disconnected Contribution to HVP (C. Lehner) [Blum et al., 2015a]

Low mode separation crucial since light- strange don’t cancel

contributions above ms suppressed

(sparse) random sources e↵ective for high modes

⇧(q2) � ⇧(0) =
X

t

✓
cos(qt) � 1

q2
+

1

2
t2

◆
C (t)
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FIG. 5. The sum of LT and FT defined in Eqs. (13) and (14)

has a plateau from which we read o� aHVP (LO) DISC
µ . The

lower panel compares the partial sums LT for all values of
T with our final result for aHVP (LO) DISC

µ with its statistical
error band.

we report our final result

aHVP (LO) DISC
µ

= �9.6(3.3)(2.3) ⇥ 10�10 , (15)

where the first error is statistical and the second system-
atic.

Before concluding, we note that our result appears to
be dominated by very low energy scales. This is not sur-
prising since the signal is expressed explicitly as di↵er-
ence of light-quark and strange-quark Dirac propagators.
We therefore expect energy scales significantly above the
strange mass to be suppressed. We already observed this
above in the dominance of low modes of the Dirac opera-
tor for our signal. Furthermore, our result is statistically
consistent with the one-loop ChPT two-pion contribution
of Fig. 6.

CONCLUSION

We have presented the first ab-initio calculation of the
hadronic vacuum polarization disconnected contribution
to the muon anomalous magnetic moment at physical
pion mass. We were able to obtain our result with modest

-8
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 0

 0  5  10  15  20  25  30  35  40  45

aD
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 (C
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T)

T

LT for 323 x 64 lattice
LT for 483 x 96 lattice

LT for 643 x 128 lattice
LT for 963 x 192 lattice

FIG. 6. The leading-order pion-loop contribution in finite-
volume ChPT as function of volume.

computational e↵ort utilizing a refined noise-reduction
technique explained above. This computation addresses
one of the major challenges for a first-principles lattice
QCD computation of aHVP

µ
at percent or sub-percent pre-

cision, necessary to match the anticipated reduction in
experimental uncertainty. The uncertainty of the result
presented here is already slightly below the current ex-
perimental precision and can be reduced further by a
straightforward numerical e↵ort.
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�(9.6 ± 3.3) ⇥ 10�10 or about 1.5% of total at 3 � level
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HVP quark-disconnected contribution

First results at physical pion mass with a statistical signal
RBC/UKQCD arXiv:1512.09054, accepted by PRL

Statistics is clearly the bottleneck

New stochastic estimator allowed us to get result

a
HVP (LO) DISC
µ = �9.6(3.3)stat(2.3)sys ⇥ 10�10 (13)

from 20 configurations at physical pion mass and 45
propagators/configuration.

26 / 35

13	
28

Sensitive to mπ
crucial to compute at physical mass



HVP QED+ strong IB corrections

n HVP is computed so far at Iso-symmetric quark mass, needs to compute 
isospin breaking corrections : Qu, Qd, mu-md ≠0

n u,d,s quark mass and lattice spacing are re-tuned using
{charge,neutral} x{pion,kaon} and ( Omega baryon masses )

n For now, V, S, F, M  are computed :  assumes EM and IB of sea quark and 
also shift to lattice spacing is small (correction to disconnected diagram)

n Point-source method :  stochastically sample pair of 2 EM vertices a la 
important sampling with exact photon

29

HVP QED contribution
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 0.04

 0.05
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r

Resulting two-point p(d) from p(r)=(1.5 + r)-5

Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.

8

New method: use importance sampling in position space and local
vector currents

11 / 30

HVP strong IB contribution

x

x

x

(a) M
x

x

x

(b) R

x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e�ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

Calculate strong IB e↵ects via insertions of mass corrections in an
expansion around isospin symmetric point
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There is a tension of 3.7� for the muon aµ = (gµ � 2)/2:

aEXP
µ � aSM

µ = 27.4 (2.7)|{z}
HVP

(2.6)|{z}
HLbL

(0.1)|{z}
other

(6.3)|{z}
EXP

⇥10�10

HVP
this talk

HLbL
Harvey’s talk

2019: �aEXP
µ ! 4.5 ⇥ 10�10 (avg. of BNL/estimate of 2019 Fermilab result)

Targeted final uncertainty of Fermilab E989: �aEXP
µ ! 1.6 ⇥ 10�10

) by 2019 consolidate HVP/HLbL, over the next years uncertainties to O(1 ⇥ 10�10)

1 / 22

Dispersive method - Overview

e+

e�

� e+e�
! hadrons(�)

Jµ = V I=1,I3=0
µ + V I=0,I3=0

µ

⌧ ! ⌫hadrons(�)

Jµ = V I=1,I3=±1
µ � AI=1,I3=±1

µ

⌫

⌧ W

Knowledge of isospin-breaking corrections and separation of vector and axial-vector
components needed to use ⌧ decay data. (Poster by M. Bruno)

Can have both energy-scan and ISR setup.
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Window values 
Combine R-ratio and Lattice

[ Christoph Lehner et al PRL18]
n Divide total aµ into { short, mid, long } distance contribtions
n Useful to crosscheck among different lattice group and R-ratios

We can also select a window in t by defining a smeared ⇥ function:
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⇥(t, µ, �) ⌘ [1 + tanh [(t � µ)/�]] /2
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This allows us to devise a “Window method”:

aµ =
X

t

wtC (t) ⌘ a
SD
µ + a

W
µ + a

LD
µ

with

a
SD
µ =

X

t

C (t)wt [1 � ⇥(t, t0, �)] ,

a
W
µ =

X

t

C (t)wt [⇥(t, t0, �) � ⇥(t, t1, �)] ,

a
LD
µ =

X

t

C (t)wt⇥(t, t1, �)

and each contribution accessible from both lattice and R-ratio
data.
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We can also select a window in t by defining a smeared ⇥ function:
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Example contribution to a
W
µ with t0 = 0.4 fm, t1 = 1.5 fm,

� = 0.15 fm:
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Lattice

+
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Euclidean time correlation from e
+
e

�
R(s) data

From e
+
e

�
R(s) ratio, using disparsive relation, zero-spacial momentum

projected Euclidean correlation function C(t) is obtained

⇧̂(Q2) = Q
2

Z 1

0
ds

R(s)

s(s + Q2)

C
R-ratio(t) =

1

12⇡2

Z 1

0

d!

2⇡
⇧̂(!2) =

1

12⇡2

Z 1

0
ds

p
sR(s)e�

p
st

• C(t) or w(t)C(t) are directly comparable to Lattice re-
sults with the proper limits (mq ! m

phys
q , a ! 0, V ! 1,

QED ...)

• Lattice: long distance has large statistical noise, (short
distance: discretization error, removed by a ! 0 and/or
pQCD )

• R-ratio : short distance has larger error

Taku Izubuchi, First Workshop of the Muon g-2 Theory Initiative, June 4, 2017 6
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From e
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R(s) ratio, using disparsive relation, zero-spacial momentum projected
Euclidean correlation function C(t) is obtained
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• C(t) or w(t)C(t) are directly comparable to Lattice results
with the proper limits (mq ! m

phys
q , a ! 0, V ! 1, QED

...)

• Lattice: long distance has large statistical noise, (short dis-
tance: discretization error, removed by a ! 0 and/or pQCD
)

• R-ratio : short distance has larger error

Taku Izubuchi, First Workshop of the Muon g-2 Theory Initiative, June 4, 2017 6

Lattice can compute  Integral of 
Inclusive cross sections accurately
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How does this translate to the time-like region?

Supplementary Information – S1

SUPPLEMENTARY MATERIAL

In this section we expand on a selection of technical de-
tails and add results to facilitate cross-checks of di�erent
calculations of aHVP LO

µ .

Continuum limit: The continuum limit of a selec-
tion of light-quark window contributions aW

µ is shown in
Fig. 8. We note that the results on the coarse lattice di�er
from the continuum limit only at the level of a few per-
cent. We attribute this mild continuum limit to the fa-
vorable properties of the domain-wall discretization used
in this work. This is in contrast to a rather steep contin-
uum extrapolation that occurs using staggered quarks as
seen, e.g., in Ref. [42].

The mild continuum limit for light quark contribu-
tions is consistent with a naive power-counting estimate
of (a�)2 = 0.05 with � = 400 MeV and suggests that
remaining discretization errors may be small. Since we
find such a mild behavior not just for a single quantity
but for all studied values of aW

µ with t0 ranging from 0.3
fm to 0.5 fm and t1 ranging from 0.3 fm to 2.6 fm, we
suggest that it is rather unlikely that the mild behav-
ior is result of an accidental cancellation of higher-order
terms in an expansion in a2. This lends support to our
quoted discretization error based on an O(a4) estimate.
In future work, this will be subject to further scrutiny by
adding a data-point at an additional lattice spacing.

Energy re-weighting: The top panel of Fig. 9 shows
the weighted correlator wtC(t) for the full aµ as well as
short-distance and long-distance projections aSD

µ and aLD
µ

for t0 = 0.4 fm and t1 = 1.5 fm. The bottom panel of
Fig. 9 shows the corresponding contributions to aµ sep-
arated by energy scale

p
s. We notice that, as expected,

aSD
µ has reduced contributions from low-energy scales and

aLD
µ has reduced contributions from high-energy scales.

In the limit of projection to su�ciently long distances, we
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FIG. 8. Continuum limit of light-quark aW

µ with t0 = 0.4 fm
and � = 0.15 fm.
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(top) and the e�ect of the window in terms of re-weighting
energy regions (bottom).

may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di�erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di�erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.
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may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di�erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di�erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.

Most of ⇡⇡ peak is captured by window from t0 = 0.4 fm to t1 = 1.5 fm,
so replacing this region with lattice data reduces the dependence on
BaBar versus KLOE data sets.
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Comparison with R(s) of certain range

Near ⇢ peak, KLOE and Babar disagree
Hagiwara et al. 2011:
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biases, due to varying the underlying model for the cross section are negligible.7 However,

there is a remaining dependence on the way the data are binned. For the current analysis,

7As we have checked and discussed in [2], our simple assumption of a piecewise constant cross section in the
energy bin and simple trapezoidal integration are well justified.
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BESIII 2015 update:
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Figure 7: Our calculation of the leading-order (LO) hadronic vacuum polarization 2⇡ contributions to
(g � 2)µ in the energy range 600 - 900 MeV from BESIII and based on the data from KLOE 08 [6], 10 [7],
12 [8], and BaBar [10], with the statistical and systematic errors. The statistical and systematic errors are
added quadratically. The band shows the 1� range of the BESIII result.

[18] S. Jadach, B. F. L. Ward and Z. Was, Comput. Phys.
Commun. 130, 260 (2000).

[19] G. Balossini, C. M. C. Calame, G. Montagna, O.
Nicrosini and F. Piccinini, Nucl. Phys. B 758, 227
(2006).

[20] J. Allison et al. [GEANT4 Collaboration], IEEE Trans-
actions on Nuclear Science 53, 270 (2006).

[21] S. Agostinelli et al. [GEANT4 Collaboration], Nucl. In-
strum. Meth. A 506, 250 (2003).

[22] D. M. Asner et al., Int. J. Mod. Phys. A 24, 1 (2009).
[23] A. Hoecker. P. Speckmayer, J. Stelzer, J. Therhaag, E.

Von Toerne and H. Voss, PoS ACAT 040 (2007).
[24] M. Ablikim et al. [BESIII Collaboration], Chin. Phys.

C 37, 123001 (2013).
[25] G. Balossini, C. Bignamini, C.M. Carloni Calame, G.

Montagna, F. Piccinini and O. Nicrosini, Phys. Lett.
B 663, 209 (2008).

[26] M. E. Peskin and D. V. Schroeder, An Introduction to

Quantum Field Theory, Vol. 2, USA, Addison-Wesley,
135 (1995).

[27] A. Hoecker, V. Kartvelishvili, Nucl. Instrum. Meth.
A 372, 469 (1996).

[28] J. S. Schwinger, Particles, Sources and Fields, Vol. 3,
Redwood City, USA Addison-Wesley, 99 (1989).

[29] Private communication with H. Czyz.
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e�ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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Calculate strong IB e↵ects via insertions of mass corrections in an
expansion around isospin symmetric point
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HVP QED contribution
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Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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New method: use importance sampling in position space and local
vector currents
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Re-combine a
W
µ from lattice with a

LD
µ from R-ratio:
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t0 = 0.4 fm

t1 dependence is flat =>  a consistency between R-ratio and Lattice
t1 = 1.2 fm,  R-ratio :  Lattice = 50:50
t1=1.2 fm current error (note 100% correlation in R-ratio) is minimum



2022/2023 HVP update

n New fine ensemble 96I to check discretization error
n 6 accompanying smaller / heavy pion QCD samples to correct and 

check various small mistuning and systematic errors, and Nf=2+1+1 
ensembles to check sea charm quark effects

n Blind analysis by 5 groups (HVP) and 2 groups (lattice scale and 
quark mass)

n Among many other continuum extrapolation and Finite Volume 
correction were significant and scrutinized

34

Blinding

I 2 analysis groups for ensemble parameters (not blinded)

I 5 analysis groups for vector-vector correlators (blinded, to
avoid bias towards other lattice/R-ratio results)

I Blinded vector correlator Cb(t) relates to true correlator C0(t)
by

Cb(t) = (b0 + b1a
2 + b2a

4)C0(t) (1)

with appropriate random b0, b1, b2, di↵erent for each analysis
group. This prevents complete unblinding based on previously
shared data on coarser ensembles.
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Lattice EM currents: 
Two Operators and 

Three normalization schemess
n 𝐶 𝑡 = ∑!,#⟨𝑉# 𝑥, 𝑡 𝑉𝑖 0 ⟩

n Two variants of lattice EM vector current 𝑉# !,$ are used to check discretization 
error

𝑉# (𝑥) = 3𝑞 (𝑥)𝛾#𝑞(x)    (local current)
𝑉# 𝑥 = 𝜓 𝑥 1 + 𝛾# 𝑈# 𝑥 𝜓 𝑥 + :𝜇 + 𝑐. 𝑐. (conserved current)

n EM vector current 𝑉#(𝑥, 𝑡) on lattice is matched to continuum current 
multiplicatively

𝑉# 𝑥; 𝑐𝑜𝑛𝑡 = 𝑍%𝑉_𝑖(𝑥; 𝑙𝑎𝑡𝑡𝑖𝑐𝑒)
by matching matrix element of operator to a state

Three variants of states : 

Z_V : 0 momentum single pion state, 
Z_K : 0 momentum single Kaon state
Z_r : a  0 momentum state state specified by the Euclidean distance from 

another vector operator 

36



Finite Volume correction estimates

n FV correction by long-distance two pion contributions 
• scalar QED  
• Using pion form factor (Gounaris-Sakurai 

parametrization)  & Lellouche Luscher’s FV formula 
• Hansen-Patella FV correction

n Revised FV estimation : 

37

Finite Volume Shift Summary

Can compare FV shift predictions from various techniques

a
HVP

µ (L = 6.22 fm) ≠ a
HVP

µ (L = 4.66 fm) =

I
12.2 ◊ 10≠10 sQED

21.6(6.3) ◊ 10≠10 LQCD
20(3) ◊ 10≠10 GSL

Using GSL, can compare to data in [Blum et al., (2018)]
=∆ computed FV correction:

a
HVP
µ (L = Œ) ≠ a

HVP
µ (L = 5.47 fm) = 22(1) ◊ 10≠10

=∆ agreement with FV spectrum & overlaps

Good agreement with GSL in range of energies probed by LQCD
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Continuum limit extrapolation
window value  [0.4 fm, 1.0 fm] 

38

5 % 1/a = 1.7 GeV

1/a = 2.3 GeV

1/a = 2.75 GeV

conserved-local
local-local

ZV,ZK, ZR



n Fit forms, a^2, a^2 + a^4, a^2 + a^2 log(a)
n Two currents x  Three ZV

39

central value 207.8380
tot stat 0.5835 [0.3] %
tot sys 0.7833 [0.4] %
tot_err 0.9767 [0.5]%



Blind analysis

n Blinding procedure : 
lattice spacing dependent blind factor 

n 5 groups

40

5

ID a�1/GeV Nf L3 ⇥ T ⇥ Ls/a4 b + c amres ⇥ 104 m⇡/MeV mK/MeV mDs/GeV m⇡L
48I 1.7312(28) 2+1 483 ⇥ 96 ⇥ 24 2 6.1 139.32(30) 499.44(88) – 3.9
64I 2.3549(49) 2+1 643 ⇥ 128 ⇥ 12 2 3.1 138.98(43) 507.5(1.5) – 3.8
96I 2.6920(67) 2+1 963 ⇥ 192 ⇥ 12 2 2.3 131.29(66) 484.5(2.3) – 4.7
1 1.7310(35) 2+1 323 ⇥ 64 ⇥ 24 2 6.3 208.1(1.1) 514.0(1.8) – 3.8
2 1.7257(74) 2+1 243 ⇥ 48 ⇥ 32 2 4.6 285.4(2.9) 537.8(4.6) – 4.0
3 1.7306(46) 2+1 323 ⇥ 64 ⇥ 24 2 6.5 211.3(2.3) 603.8(6.1) – 3.9
4 1.7400(73) 2+1 243 ⇥ 48 ⇥ 24 2 6.2 274.8(2.5) 530.1(3.1) – 3.8
5 1.7498(73) 2+1+1 243 ⇥ 48 ⇥ 24 2 6.7 279.8(3.5) 539.1(5.3) 1.9902(69) 3.8
7 1.7566(81) 2+1+1 243 ⇥ 48 ⇥ 24 2 7.9 272.5(5.9) 523(10) 1.3882(57) 3.7
A 1.7556(83) 2+1 243 ⇥ 48 ⇥ 8 2 42 307.4(3.5) 557.3(5.7) – 4.2
24ID 1.0230(20) 2+1 243 ⇥ 64 ⇥ 24 4 23 142.96(30) 515.7(1.0) – 3.4
32ID 1.0230(20) 2+1 323 ⇥ 64 ⇥ 24 4 23 142.96(30) 515.7(1.0) – 4.5

TABLE I. List of ensembles with parameters determined in the RBC/UKQCD18 isospin symmetric world. Unless specified
otherwise, the ensembles have Iwasaki gauge action and Möbius [42] domain-wall [43, 44] fermion sea quarks with b � c = 1.
The parameters b and c are defined in Ref. [41]. For the Nf = 2 + 1 + 1 ensembles, the charm quarks couple to three-times
⇢ = 0.1 stout smeared gauge fields as in Refs. [45, 46]. The scripts generating the new ensembles are publicly available [47]. The
24ID and 32ID ensembles have an additional DSDR term [41] in the gauge action. The 24ID and 32ID ensemble parameters
are taken from Ref. [48].

We define these parameters to the exact values given above without additional uncertainty. This avoids an unnec-
essary inflation of uncertainties when comparing isospin-symmetric lattice results. The experimental uncertainties of
the physical hadron spectrum are then taken into account when applying the isospin-breaking corrections.

To support the careful tuning of the isospin-symmetric world, we generated additional near-physical-pion-mass
ensembles allowing for the explicit calculation of light and strange quark-mass derivatives. Our choice of discretisation
and simulation parameters is summarised in Tab. I. We also generated ensembles with dynamical charm quarks and
ensembles with varying extent of the fifth dimension of our domain-wall fermions, Ls, to control for residual chiral-
symmetry-breaking e↵ects. Finally, we include results at physical pion mass and a finer lattice spacing of a

�1 ⇡ 2.7
GeV.

We determined the ensemble parameters in two ways. First, we used the new ensembles to obtain the quark-mass
dependence of the quantities defined in Eqs. (13) and (15). We then tune the dimensionless m⇡/m⌦ and mK/m⌦

for the RBC/UKQCD18 world and w0m⇡ and w0mss⇤ for the BMW20 world to the values provided in Eqs. (13) and
(15). Any of the three dimensionful values can then equivalently be used to determine the lattice spacing a for a
given ensemble. For the Nf = 2 + 1 + 1 ensembles, we also tune mDs/m⌦ for the RBC/UKQCD18 world and w0mDs

for the BMW20 world to the value provided in Eq. (14). We provide the results for the RBC/UKQCD18 world in
Tab. I. In addition, we also performed an update of our global fit [41] for which we found consistent results. A detailed
discussion of the updated global fit will be published separately. The two determinations of ensemble parameters were
performed by disjoint sub-groups of authors.

D. Blinding procedure

Since we provide an update of a previous result [31] compared to which a lower value would mean agreement with
the dispersive method and a higher value would mean agreement with the lattice result of Ref. [30], two values that
are in 3.7� tension with each other, we believe it is crucial to perform this update in a blinded manner.

We implement the blinding by creating modified correlators Cb(t) from the unaltered correlators C0(t). For each
lattice ensemble, we use

Cb(t) = (b0 + b1a
2 + b2a

4)C0(t) (16)

with respective lattice spacing a and random coe�cients b0, b1, and b2 that are common for each ensemble but di↵erent
for each analysis group. The parameter b0 is drawn from a Gaussian distribution with mean µ = 1.0 and standard
deviation � = 0.2. The dimensionful parameters b1 and b2 are drawn from a flat distribution with maximum values
of |b1a

2| = 0.05 and |b2a
4| = 0.0025 for our coarsest lattice cuto↵ a

�1 = 1.73 GeV. This procedure based on three
random numbers per analysis group prevents the possibility of complete unblinding based on previously shared data
on the coarser two ensembles [31]. The blinding factors were generated and directly applied to C0 by author CL. This
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FIG. 7. The dimensionless correlation function combinations t3C lc(t) (left) and t3C ll(t) (right) as well as the perturbative
result obtained from Ref. [72].

blinded data sets of group X with group Y and vice versa. One of the groups then re-ran their analysis without
modifications on the other data set. This allowed for a direct comparison of groups X to Y while still keeping the
absolute blinding intact.

In Fig. 6, we show the final result of the relative unblinding procedure for a
W
µ , for which all five groups participated.

The inner error bars give the statistical uncertainty, the outer error bars give statistical and systematic uncertainties
added in quadrature. We first note that the statistical uncertainties quoted by the separate analysis groups are consis-
tent. In addition, the di↵erent systematic approaches described in Sec. IV A yield di↵erent systematic uncertainties,
however, all results are consistent within total uncertainties.

The blinding procedure described in Sec. II D allows the a
4 term to a↵ect the comparison at the level of ±0.0025 if

the a
4 terms are not included in the fits. This e↵ect is small compared to the quoted uncertainties and is completely

eliminated in Sec. V, where we show the results of all groups after they repeated their unmodified analysis with the
fully unblinded data sets.

C. Important findings

After the relative unblinding process, the analysis groups exchanged their most important findings for our data
sets. We discuss these findings in this sub-section. They form the basis, determined entirely on blinded data, of
formulating the preferred prescription to produce the combined collaboration result described in Sec. IVD.



Mid-Window value of g-2 
Intermediate energy regionA puzzle in the intermediate window: e+e� vs. lattice QCD

230 235 240 245

BMW 2020

RBC/UKQCD 2018

Mainz 2022

R-ratio data

RBC/UKQCD 2022

ETMC 2022

ETMC 2021

FNAL/HPQCD/MILC 2022

a
HVP, win

µ ⇥ 1010

RBC/UKQCD 2022 supersedes RBC/UKQCD 2018

ETMC 2022 supersedes ETMC 2021

FNAL/HPQCD/MILC 2022 agrees for ud connected contribution, same for Aubin et al. 2022, �QCD 2022
R-ratio result from Colangelo et al. 2022

M. Hoferichter (Institute for Theoretical Physics) Overview g � 2 Jun 07, 2023 21

41

total amu ~ 700,  exp vs theory tension ~ 25 
mid-window value  [0.4 fm, 1.0 fm] ~ rho meson peak



Short distance window 
discovered a large discretization error

n t3 C(t)   local-conserved  vs  local-local 
n pQCD, 3 lattice spacings 
n Large discretization error at short distance

42
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FIG. 7. The dimensionless correlation function combinations t3C lc(t) (left) and t3C ll(t) (right) as well as the perturbative
result obtained from Ref. [72].

blinded data sets of group X with group Y and vice versa. One of the groups then re-ran their analysis without
modifications on the other data set. This allowed for a direct comparison of groups X to Y while still keeping the
absolute blinding intact.

In Fig. 6, we show the final result of the relative unblinding procedure for a
W
µ , for which all five groups participated.

The inner error bars give the statistical uncertainty, the outer error bars give statistical and systematic uncertainties
added in quadrature. We first note that the statistical uncertainties quoted by the separate analysis groups are consis-
tent. In addition, the di↵erent systematic approaches described in Sec. IV A yield di↵erent systematic uncertainties,
however, all results are consistent within total uncertainties.

The blinding procedure described in Sec. II D allows the a
4 term to a↵ect the comparison at the level of ±0.0025 if

the a
4 terms are not included in the fits. This e↵ect is small compared to the quoted uncertainties and is completely

eliminated in Sec. V, where we show the results of all groups after they repeated their unmodified analysis with the
fully unblinded data sets.

C. Important findings

After the relative unblinding process, the analysis groups exchanged their most important findings for our data
sets. We discuss these findings in this sub-section. They form the basis, determined entirely on blinded data, of
formulating the preferred prescription to produce the combined collaboration result described in Sec. IVD.



Short distance Window
(after MF improved tree-level 

correction)
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Strange quark contribution

44

Add a�1 = 2.77 GeV lattice spacing

I Third lattice spacing for strange data (a�1 = 2.77 GeV with
m⇡ = 234 MeV with sea light-quark mass corrected from global fit):
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In this figure, we have attempted a linear fit in a2. The p value of all shown
fits is good and does not resolve the a4 or a2 log(a2) coe�cients from zero. We
can, however, allow them to be included in the fit (for now just a4), which
significantly increases the uncertainty of the extrapolation
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A better way to study the quality of agreement of di�erent discretizations
is to look at correlated di�erences between the di�erent methods on the same
ensemble. In these di�erences virtually all statistical noise cancels

4

I For light quark need new ensemble at physical pion mass. Started
run on Summit Machine at Oak Ridge this year (a�1 = 2.77 GeV
with m⇡ = 139 MeV).



Reconstruction of HVP for LD 
from multi-channel Greens function

n Correlation function among N operators O_n, n=0,1,…, N-1

n Point (or smeared) vector
n 2 π operator    
n (4 π operator) 

n NxN correlation function   < O_i(t) O_j(0) >      (using distillation)

n Solve NxN spectrum E_n of eigenstates |E_n> and Overwrap factors 
<E_n|O_0|0> (GEVP)

n Reconstruct  V-V correlator, and bound contribution from the (N+1)-th
states and above 

45

Operator Construction
Operators in I = 1 P-wave channel with p̨COM = 0, to impact on a

HVP
µ

Designed to have strong overlap with specific target state,
but all operators unavoidably couple to all states in HVP spectrum

Local vector current operator:
I O0 =

q
x

Â̄(x)“µÂ(x), µ œ {1, 2, 3}

Three 2fi operators with O1,2,3 given by p̨fi œ
2fi
L

◊ {(1, 0, 0), (1, 1, 0), (1, 1, 1)}:

I On =
---
q

xyz
Â̄(x)f (x ≠ z)e≠i p̨fi ·̨z “5f (z ≠ y)Â(y)

---
2

Correlators arranged in a 4 ◊ 4 symmetric matrix:

¢ O0 O1 O2 O3
O0 C

(2)
fl C

(3)
flæfifi C

(3)
flæfifi C

(3)
flæfifi

O1 C
(4)
fifiæfifi C

(4)
fifiæfifi C

(4)
fifiæfifi

O2 C
(4)
fifiæfifi C

(4)
fifiæfifi

O3 C
(4)
fifiæfifi

Inclusion of extra operator with p̨fi = 2fi
L

◊ (2, 0, 0)
to estimate systematics from excited state contamination
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Operators
Distillation used to build large operator basis =∆ smearing kernel f
Operators constructed in I = 1, P-wave channel to impact upon HVPµ

Vector current operators:
I Local OJµ =

q
x Â̄(x)“µÂ(x), µ œ {1, 2, 3}

I Smeared Ojµ =
q

xyz Â̄(x)f (x ≠ z)“µf (z ≠ y)Â(y)

2fi operators with On given by p̨fi œ
2fi
L ◊ {(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0)}

On =
---
q

xyz Â̄(x)f (x ≠ z)e≠i p̨fi ·̨z “5f (z ≠ y)Â(y)
---
2

Also test a 4fi operator with p̨fi = 2fi
L ◊ (1, 0, 0):

O4fi =
---
q

xyz Â̄(x)f (x ≠ z)e≠i p̨fi ·̨z “5f (z ≠ y)Â(y)
---
2 ---

q
xy Â̄(x)f (x ≠ y)“5Â(y)

---
2

Spectrum & overlap estimates from Generalized EigenValue Problem (GEVP):

C(t0) V = C(t0 + ”t) V �(”t) ; �nn(”t) ≥ e+En”t , Vim Ã È�| Oi |mÍ

Exponential dependence of local vector correlation function reconstructed as

C latt.
ij (t) =

Nÿ

n

È�| Oi |nÍ Èn| Oj |�Í e≠Ent

Aaron S. Meyer Section: Correlation Function Spectrum & Overlap 9/ 25

two pion
rho-resonance

Precision in LQCD HVP

Long distance

⇡

� �

C(t) = 1
3

P
i

⌦ ⇥
 ̄�i 

⇤
t

⇥
 ̄�i 

⇤
0

↵

⇡
P

n

�� h⌦| ̄�i |ni
��2e�Ent

aµ =
P

t wtC(t)

LQCD aHVP
µ precision dominated by stat.uncertainty from long distance

C(t) small at large t, ⇡ sum of few exponential

Long distance mostly ⇡⇡, ⇢

Calculate exclusive ⇡⇡ in LQCD, replace data ! fit (stat ! syst)

Aaron S. Meyer Section: Light Connected HVP 13/ 39

hO0(t)O
†
0(0)i =

N�1X

n=0

|h0|O0|ni|2e�Ent

+ (contributions from n � N states
<latexit sha1_base64="QQtDXHd+mbqPl5vnynSeGJmdzUQ=">AAADD3ichVFLa9RQFD6Jrzo+mupGcHNxqEyRDjdjURGKgyK4qn04baHphCS9E0OTm3jvzWDNZH6AO1cuXCmIqD/AnQhu9Ae46E8QlxXcuPDkAVKLekJyzv3O95189143CQOpKN3V9EOHjxw9NnG8ceLkqdOTxtSZVRmnwmM9Lw5jse46koUBZz0VqJCtJ4I5kRuyNXf7VtFfGzIhg5jfUzsJ24wcnweDwHMUQrbxxgod7oeM3LVpS82QIvetLcf3mWjRGUtU3XliyTSyMz5P8362MGvmhIxIraWjQjXiNXnU7xDWz2Zv21zlxLIa4/1xiViKPVRZy4u5EoGbFk4kGYg4yrFNCLd89oAskPG4IkrlKCZz22jSNi2DHCzMumhCHYux8Qos2IIYPEghAgYcFNYhOCDx2QATKCSIbUKGmMAqKPsMcmigNkUWQ4aD6DZ+fVxt1CjHdTFTlmoP/xLiK1BJYJp+oa/pHv1E39Kv9OdfZ2XljMLLDma30rLEnnx8buXHf1URZgX3f6v+6VnBAK6VXgP0npRIsQuv0g8fPd1bub48nV2kL+g39P+c7tKPuAM+/O69XGLLz6CBF2D+edwHi9VO27zc7izNNbs366uYgPNwAVp43lehC3dgEXrgaYZ2RbuhdfUn+jv9vf6houparTkL+0L//AtRC8m9</latexit>

)
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Correlation Function Reconstruction - 48I

aµ =
P

t w(t)C(t)

Left: aµ integrand, Right: ratio reconstruction/local vector

I More states =) better reconstruction

I 6 state =) 1� consistent at t � 16a ⇠ 1.7 fm

Aaron S. Meyer Section: Light Connected HVP 24/ 39

GEVP & Reconstruction of  I=1 VV

[ Aaron Meyer ]



Bounds for aμ

n Upper & lower bounds from unitarity

n Also bounds  for the  n in [N+1, ∞ ]  states contribution 

48

(Improved) Bounding Method

Use known results in spectrum to make a precise estimate of
upper & lower bound on a

HVP
µ

ÂC(t; tmax, E) =
;

C(t) t < tmax

C(tmax)e≠E(t≠tmax)
t Ø tmax

Upper bound: E = E0, lowest state in spectrum

Lower bound: E = log[ C(tmax)
C(tmax+1) ]

Good control over lower states in spectrum with exclusive reconstruction:

Replace C(t) æ C(t) ≠
q

N

n
|cn|

2
e

≠Ent

=∆ Long distance convergence now Ã e
≠EN+1t

=∆ Smaller overall contribution from neglected states

Add back contribution from reconstruction after bounding correlator
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GEVP + Bounding Method [A. Meyer]

49

Bounding Method Results - 48I

No bounding method: aHVPµ = 638(21)
Bounding method tmax = 3.0 fm, no reconstruction: aHVPµ = 624.2(8.2)
Bounding method tmax = 3.0 fm, 1 state reconstruction: aHVPµ = 626.6(7.2)
Bounding method tmax = 2.5 fm, 2 state reconstruction: aHVPµ = 628.2(5.7)
Bounding method tmax = 2.1 fm, 5 state reconstruction: aHVPµ = 626.3(4.4)
Bounding method tmax = 1.7 fm, 6 state reconstruction:

aHVP,conn, iso, 48I
µ = 626.6(2.7)stat(0.4)ZV .48I(2.6)a�1.48I(0.5)bound(0.5)exc

Bounding method gives factor of 2.5 improvement over no bounding method

Improving the bounding method increases gain to factor of 5, including systematics

Aaron S. Meyer Section: Light Connected HVP 30/ 39

a factor of 2.5 smaller stalslcal error by bounding method
a factor of 5 smaller stalslcal error by bounding method + 5 state reconstruclon

conlnuum limit and other systemalc studies are on-going (again blinding)



Use of  tau decay data
[ M. Bruno ]

n Belle II : tau factory
n Isospin corrections from Lattice QCD
n Different systematic errors to cross-check

50

Motivations for ·

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5
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πKK– (MC)

⌧�

⌫⌧

⇡�3⇡0
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W�

V ≠ A current
Final states I = 1 charged

e�

⇡�⇡+⇡0

. . .

⇡+⇡�
e+

�

EM current
Final states I = 0, 1 neutral

· data can improve aµ[fifi]
æ 72% of total Hadronic LO
æ competitive precision on a

W
µ
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Neutral vs Charged

i
2
!
ū“µu ≠ d̄“µd

"
,

5
I = 1
I3 = 0

6
æ j

(1,≠)
µ = iÔ

2
!
ū“µd) ,

5
I = 1
I3 = ≠1

6

Isospin 1 charged correlator G
W
11 = 1

3

ÿ

k

⁄
dx Èj(1,+)

k (x)j(1,≠)
k (0)Í

”G11 © G
“
11 ≠ G

W
11 [MB et al.’ Latt18]

= Z
4
V (4fi–) (Qu ≠ Qd)4

4
Ë

+
È

G
“
01 = Z

4
V

(Q2
u ≠ Q

2
d)2

2 (4fi–)
Ë

+ 2◊ + + . . .

È

+Z
2
V

Q
2
u ≠ Q

2
d

2 (mu ≠ md)
Ë

2◊ + . . .

È

. . . = subleading diagrams
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Figure 2. The pion form factor |Fπ(s)|2 = 4Rππ/β3π (βπ =√
(1 − 4m2π/s)) dominated by the ρ resonance peak. Data in-
clude measurements from Novosibirsk (NSK) [27–29], Frascati
(KLOE) [30–32], SLAC (BaBar) [33] and Beijing (BESIII) [34].

Table 1. Results for ahad(1)µ (in units ×10−10).

final state range (GeV) ahad(1)µ (stat) (syst) [tot] rel[abs]%
ρ ( 0.28, 1.05) 505.96 ( 0.77) ( 2.47)[ 2.59] 0.5 [37.8]
ω ( 0.42, 0.81) 35.23 ( 0.42) ( 0.95)[ 1.04] 3.0 [ 6.1]
φ ( 1.00, 1.04) 34.31 ( 0.48) ( 0.79)[ 0.92] 2.7 [ 4.8]
J/ψ 8.94 ( 0.42) ( 0.41)[ 0.59] 6.6 [ 1.9]
Υ 0.11 ( 0.00) ( 0.01)[ 0.01] 6.8 [ 0.0]
had ( 1.05, 2.00) 60.45 ( 0.21) ( 2.80)[ 2.80] 4.6 [44.4]
had ( 2.00, 3.10) 21.63 ( 0.12) ( 0.92)[ 0.93] 4.3 [ 4.8]
had ( 3.10, 3.60) 3.77 ( 0.03) ( 0.10)[ 0.10] 2.8 [ 0.1]
had ( 3.60, 5.20) 7.50 ( 0.04) ( 0.01)[ 0.04] 0.3 [ 0.0]
pQCD ( 5.20, 9.46) 6.27 ( 0.00) ( 0.01)[ 0.01] 0.0 [ 0.0]
had ( 9.46,13.00) 1.28 ( 0.01) ( 0.07)[ 0.07] 5.4 [ 0.0]
pQCD (13.0,∞) 1.53 ( 0.00) ( 0.00)[ 0.00] 0.0 [ 0.0]
data ( 0.28,13.00) 679.19 ( 1.12) ( 4.06)[ 4.21] 0.6 [100.]
total 686.99 ( 1.12) ( 4.06)[ 4.21] 0.6 [100.]

The kernel K̂(s) is an analytically known monotonically
increasing function, raising from about 0.64 at the two
pion threshold 4m2π to 1 as s→ ∞. This integral is well de-
fined due to the asymptotic freedom of QCD, which allows
for a perturbative QCD (pQCD) evaluation of the high en-
ergy contributions. Because of the 1/s2 weight, the dom-
inant contribution comes from the lowest lying hadronic
resonance, the ρ meson (see figure 2). As low energy
contributions are enhanced, about ∼ 75% come from the
region 2mπ <

√
s < 1GeV dominated by the π+π− chan-

nel. Experimental errors imply theoretical uncertainties,
the main issue for the muon g−2. Typically, results are col-
lected from different resonances and regions as presented
in table 2. Statistical errors (stat) are summed in quadra-
ture, systematic (syst) ones are taken into account linearly
(100% correlated) within the different contributions of the
list, and summed quadratically from the different regions
and resonances. From 5.2 GeV to 9.46 GeV and above 13
GeV pQCD is used. Relative (rel) and absolute (abs) er-
rors are also shown. The distribution of contributions and
errors are illustrated in the pie chart figure 3. As a result
we find

ahad(1)µ = (686.99 ± 4.21)[687.19± 3.48] × 10−10 (3)

based on e+e−–data [incl. τ-decay spectra [35]]. In the
last 15 years e+e− cross-section measurements have dra-
matically improved, from energy scans [27–29] at Novosi-
birsk (NSK) and later, using the radiative return mecha-
nism, measurements via initial state radiation (ISR) at me-
son factories (see figure 4) [30–34]. A third possibility to

0.0 GeV, ∞

ρ,ω

1.0 GeV

φ, . . . 2.0 GeV
3.1 GeV

ψ 9.5 GeVΥ
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contribution error

Figure 3. Muon g − 2: distribution of contributions and error
squares from different energy ranges.
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Figure 4. a) Initial state radiation (ISR), b) Standard energy scan.

γ γ

e− u, d

e+ ū, d̄

π+π−, · · · [I = 1]

⇑

isospin rotation
⇓

W W

ν̄µ d

τ− ū

π0π−, · · ·

Figure 5. τ-decay data may be combined with I=1 part of e+e−
annihilation data after isospin rotation [π−π0] ⇔ [π−π+] and
applying isospin breaking (IB) corrections (e.m. effects, phase
space, isospin breaking in masses, widths, ρ0 − ω mixing etc.).

enhance experimental information useful to improve HVP
estimates are τ –decay spectra τ → ν̄τπ

0π−, · · · , supplied
by isospin breaking effects [5–7, 35–40]. In the conserved
vector current (CVC) limit τ spectra should be identical
to the isovector part I = 1 of the e+e− spectra, as illus-
trated in figure 5. Including the I = 1 τ → ππντ data
available from [41–45] in the range [0.63-0.96] GeV one
obtains [35]:

ahadµ [ee→ ππ] = 353.82(0.88)(2.17)[2.34] × 10−10

ahadµ [τ→ ππν] = 354.25(1.24)(0.61)[1.38] × 10−10

ahadµ [ ee + τ ] = 354.14(0.82)(0.86)[1.19] × 10−10 ,

which improves the LO HVP as given in (3). We briefly
summarize recent progress in data collection as follows.

2.1 Data

As I mentioned the most important data are the ππ produc-
tion data in the range up to 1 GeV. New experimental input
for HVP comes from BESIII [34]. Still the most precise
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enhance experimental information useful to improve HVP
estimates are τ –decay spectra τ → ν̄τπ

0π−, · · · , supplied
by isospin breaking effects [5–7, 35–40]. In the conserved
vector current (CVC) limit τ spectra should be identical
to the isovector part I = 1 of the e+e− spectra, as illus-
trated in figure 5. Including the I = 1 τ → ππντ data
available from [41–45] in the range [0.63-0.96] GeV one
obtains [35]:

ahadµ [ee→ ππ] = 353.82(0.88)(2.17)[2.34] × 10−10

ahadµ [τ→ ππν] = 354.25(1.24)(0.61)[1.38] × 10−10

ahadµ [ ee + τ ] = 354.14(0.82)(0.86)[1.19] × 10−10 ,

which improves the LO HVP as given in (3). We briefly
summarize recent progress in data collection as follows.

2.1 Data

As I mentioned the most important data are the ππ produc-
tion data in the range up to 1 GeV. New experimental input
for HVP comes from BESIII [34]. Still the most precise



Hadronic Light-by-Light (HLbL) 
contributions

Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD
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HLbL from Models
n Model estimate with non-perturbative constraints at the chiral / 

low energy limits using anomaly :  (9—12) x 10-10  with 25-40% 
uncertainty

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 85

My own calculation: h3 ⌅ [�10, 10] GeV�2

X aµ(LbL; X) ⇥ 1011

⇥0, �, �⇤ 93.91 ± 12.40 a1, f ⇤1, f1 28.13 ± 5.63 a0, f ⇤0, f0 �5.98 ± 1.20

JN09 based on Nyffeler 09:

aLbL;had
µ = (116 ± 39) ⇥ 10�11

Summary of results
Contribution BPP HKS KN MV PdRV N/JN

⇥0, �, �⇤ 85±13 82.7±6.4 83±12 114±10 114±13 99±16
⇥,K loops �19±13 �4.5±8.1 � 0±10 �19±19 �19±13

axial vectors 2.5±1.0 1.7±1.7 � 22± 5 15±10 22± 5
scalars �6.8±2.0 � � � �7± 7 �7± 2

quark loops 21± 3 9.7±11.1 � � 2.3 21± 3

total 83±32 89.6±15.4 80±40 136±25 105±26 116±39

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 92

F. Jegerlehner ,  x 1011
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There is a tension of 3.7� for the muon aµ = (gµ � 2)/2:

aEXP
µ � aSM

µ = 27.4 (2.7)|{z}
HVP

(2.6)|{z}
HLbL

(0.1)|{z}
other

(6.3)|{z}
EXP

⇥10�10

HVP
this talk

HLbL
Harvey’s talk

2019: �aEXP
µ ! 4.5 ⇥ 10�10 (avg. of BNL/estimate of 2019 Fermilab result)

Targeted final uncertainty of Fermilab E989: �aEXP
µ ! 1.6 ⇥ 10�10

) by 2019 consolidate HVP/HLbL, over the next years uncertainties to O(1 ⇥ 10�10)

1 / 22



Dramatic Improvement !
Luchang JinZero External Momentum Transfer Improvement 29/32
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tsep

q = 2π/L Nprop = 81000
q = 0 Nprop = 26568

Figure 20. Phys.Rev.Lett. 114 (2015) 1, 012001. arXiv:1407.2923. Compare with latest method and
result.

• 243× 64 lattice with a−1= 1.747GeV and mπ= 333MeV. mµ= 175MeV.

• For comparison, at physical point, model estimation is 0.08 ± 0.02. The agreement is
accidental, the lattice value has a strong dependence on mµ.

a=0.11 fm, 243x64  (2.7 fm)3, 
mπ = 329 MeV,   mμ =~ 190 MeV, e=1

more than x100  reduced cost !
- coordinate space Point Photo method
- Important sampling of EM vertex
- directly taking photon q2->0 by moment

61

Table 4.10: Results for F2(q2) from applying the conserved and moment methods to the

the 24IL ensemble with mµa = 0.1 using a muon source-sink separation tsep = 32. As

before,
p
Var = Err

p
NconfNprop. We use the conserved current for the external photon

and local currents for the internal photons for both methods. The conserved results are for

q2 = (2⇡/L)2 while the moment methods gives a q2 = 0 result.

Method F2/(↵/⇡)3 Nconf Nprop

p
Var

Conserved 0.0825(32) 12 (118 + 128)⇥ 2⇥ 7 0.65

Mom. 0.0804(15) 18 (118 + 128)⇥ 2⇥ 3 0.24

q2 = 0. Since these calculations are less computationally costly than those for QCD, we

can evaluate a number of volumes and lattice spacings (all specified with reference to the

muon mass) and examine the continuum and infinite-volume limits. We can then compare

our results, extrapolated to vanishing lattice spacing and infinite volume, with the known

result calculated in standard QED perturbation theory [9, 10]. This QED calculation serves

both as a demonstration of the capability of lattice methods to determine such light-by-light

scattering amplitudes and as a first look at the size of the finite-volume and nonzero-lattice-

spacing errors.

In Fig. 4.6 we show results for F2(0) computed for three di↵erent lattice spacings, i.e.

three di↵erent values of the input muon mass in lattice units, but keeping the linear size of

the system fixed in units of the muon mass. The data shown in Fig. 4.6 are also presented

in Table 4.11. We use two extrapolation methods to obtain the continuum limit. The first,

shown in the figure, uses a quadratic function of a2 to extrapolate to a2 = 0. The second

makes a linear extrapolation to a2 = 0 using only the two leftmost points for each of the

three values of mµL. The coe�cients for the quadratic-in-a2 fits shown in Fig. 4.6 as well as

those for the linear-in-a2 fits are given in tabular form in Tables. 4.12 and 4.13.

Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.tsep

2.2 fm
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2023 HLbL status

Hadronic light-by-light scattering: status

0 20 40 60 80 100 120 140 160

a
µ

HLbL
× 10

11

WP20

WP20 data-driven

RBC/UKQCD19

Glasgow consensus (09)

N/JN09

J17

 + charm-loop

dispersive

Mainz21 (uds) + 22 (c)
not used in WP20

RBC/UKQCD23
 + charm-loop Lattice QCD Mainz 2021, 2022:

a
HLbL
µ [uds] = 107(15)⇥ 10�11

a
HLbL
µ [c] = 2.8(5)⇥ 10�11

New result RBC/UKQCD 2023:

a
HLbL
µ [uds] = 122(15)⇥10�11

Good agreement between lattice QCD and phenomenology at ' 20 ⇥ 10�11

Need another factor of 2 for final Fermilab precision

M. Hoferichter (Institute for Theoretical Physics) Overview g � 2 Jun 07, 2023 27
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Summary

n FNAL muon g-2 Run-2, Run-3 results will be announced 
https://indico.fnal.gov/event/60738/

August 10, 10AM central == August 11, 0:00 Japan
expect a factor of 2 smaller error

n R-ratio data driven approach and muon g-2 has 4.2 σ tension, 
n New CMD-3 two pion data is significantly larger, may make muon g-2 value consistent 

with SM, if difference between other R-ratio results will be understood.

n Lattice QCD 
n For short distance and mid distance, lattice calculations are now mostly agreeing to each

other, a tension with R-ratio may 
n For window value [0.4 fm, 1.0 fm], adding new finer ensemble analysis, our 2018 analysis 

seems to underestimate a^4 discretization error
(a Λ)^4  ~   0.5 %   for Λ = 0.4 fm

n BMW results so far only precise SD, MD, LD, close to g-2

n New full g-2 HVP results including Long Distance contribution soon

n Tau decay experiment input + Lattice IB correction may shed a light
n For HLbL, good agreement between Lattice and phenomenology, but needs another 

factor of 2 improvement for 10% relative error goal.
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