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What will happen to a magnetic monopole

when it is put inside a topological insulator?

—– We expect that the monopole is observed as a

dyon with the electric chage qe = −1/2, because of

the Witten effect.
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What will happen to a magnetic monopole

when it is put inside a topological insulator?

—– We expect that the monopole is observed as a

dyon with the electric chage qe = −1/2, because of

the Witten effect [Witten (’79)].
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EFT of topological insulator and Witten effect

A topological insulator: the bulk is the insulator (gapped), but the

edge is the gapless. The effective theory of the T-symmetric

topological insulator is described by the θ = π vacuum. In the

presence of the magnetic monopole, the θ-term is given by

Lθ =
θ

8π2

!
d
3
xE ·B = −qm

2

!
d
3
xA

0δ(3)(r).

This implies that there is a particle with electric charge

qe = −qm/2 which is coupled to the A
0 potential.

The monopole with qm = 1 obtains the electric charge qe = −1/2.

3



The effective theory description above is quite simple, but can’t

answer to the following questions:

(1) what is the origin of the electric charge? (must be electrons)

(2) if the origin is the electrons, why is it bound to monopole?

(3) why is the electric charge fractional?

In this our work [Aoki, Fukaya, Kan, Koshino Matsuki (’23)], we

try to give answers to the questions from in terms of a microscopic

description.
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A microscopic description

We put a U(1) gauge flux located at the origin describing the

monopole:

Ax =
−qmy

r(r + z)
, Ay =

qmx

r(r + z)
, Az = 0,

of which field strength is

Fij = qm$ijk
xk

r3
− 4πqmδ(x)δ(y)θ(−z)$ij3,

where the second term represents the Dirac string. Due to the

Dirac quantization, we assume qm = n/2 with n ∈ Z.
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Naively a UV description of the system is given by the Dirac

Hamiltonian with a mass m < 0 [Yamagishi (’83)]:

H = γ0 (γi (∂i − iAi) +m) ,

where γ0 = σ3 ⊗ 1 and γi = σ1 ⊗ σi.

In addition to J
2 and J3, there is an operator that commutes with

H; [H,σ3 ⊗D
S2
] = 0, where we define the “spherical” operator

D
S2

:= σi

"
Li +

n

2

xi

r

#
+ 1, Li = −i$ijkxj (∂k − iAk)− n

xi

2r
,

Physical meanings of the operator are explained later.
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We find the normalizable zero-mode (E = 0) solution localized at

the monopole (r = 0) with j = |n/2|− 1/2:

ψj,j3,0 =
Cj,j3,0

r
exp(−|m|r)

$
1

sign(m)sign(n)

%
⊗ χj,j3,0(θ,φ),

where D
S2
χj,j3,0(θ,φ) = 0.

1. No difference between the positive and negative mass in the

solution. The Witten effect predicts the dyon appear only in

the topological insulator (m < 0). The solution can’t explain

it w/o imposing “the chiral boundary condition” by hand.

2. Why does the electric charge become qe = −1/2?
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Regularized Dirac equation



The Wilson term

In order to answer these questions, we take account of the leading

correction from the Pauli–Villars regularization. The partition

function is expanded as

Z = det

&
D +m

D +MPV

'
,

= det

(
1

MPV

&
D +m+

1

MPV
D

†
µD

µ

+O(1/M2
PV,m/MPV, Fµν/MPV)

')
.

“The Wilson term” D
†
µD

µ
/MPV appears as the leading correction.

8



Then the “regularized” Dirac Hamiltonian is given by

Hreg = γ0

$
γiDi +m+

D
†
iD

i

MPV

%
.

Note that the sign of m is well-defined once the sign of MPV(> 0)

is fixed. The Dirac equation is manifestly different between

positive and negative m.
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Since the Laplacian D
†
iD

i is always positive, the mass shift due to

the Wilson term is always positive when we take MPV positive.

For m < 0 (or inside topological insulators), it is possible to locally

flip the sign of the “effective” mass

m < 0 → meff = m+
D

†
iD

i

MPV
∼ m+

1

MPVr
2
1

> 0,

when the magnetic flux is concentrated in the region r < r1.

It’s implies that the inside region r < r1 becomes a normal

insulator, and the spherical domain-wall is dynamically created and

the chiral edge-mode appears on it! (It doesn’t happen in the

normal insulator with m > 0.)
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The regularized Hamiltonian is

Hreg =

$
m−DiDi/MPV σi (∂i − iAi)

−σi (∂i − iAi) −m+DiDi/MPV

%
,

The analytical solution of the zero-mode for r1 → 0 is given by

ψmono
j,j3 =

Be
−MPVr/2

√
r

Iν(κr)

$
1

−sign(n)

%
⊗ χj,j3,0(θ,φ),

where ν =
*

2|n|+ 1/2, and κ = MPV

*
1 + 4m/MPV/2.
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The plot with n = 1, m = −0.1, MPV = 10.

- The solution ψWilson coincides with ψNaive for large r.

- A peak at r = |n|/(2MPV) ∼ 1/MPV is the (spherical)

domain-wall.

- D
S2

is the Dirac operator on the spherical domain-wall

created around the monopole. (cf. Shoto’s talk)
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The Atiyah–Singer index theorem

and the half-integral charge



Because of

σrχj,j3,0(θ,φ) = sχj,j3,0(θ,φ), s := sign(n),

so # of the degeneracy is 2j + 1 = |n|. Then the Dirac index is

IndDS2
= n.

On the other hand, the topological index is

1

4π

!

S2

d
2
x$µνFµν = n.

Stability of the zero modes on the domain-wall is topologically

protected by the AS index theorem.
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So far, we considered a R3 space, but in order to discuss

topological feature of the fermion zero mode, we also need an IR

regularization, such as the one-point compactification, S3.

Then the topological insulator region with (meff < 0) has topology

of a disk with a small S2 boundary at r = r1.

However, due to the cobordism

invariance of the AS index,
!

∂M
F =

!

M
dF = 0,

the disk is not possible.
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A resolution is: to create another domain-wall at, say, r = r0,

outside of the topological insulator.

Another zero-modes are localized at the outside domain-wall, and

the index is kept trivial:

0 =

!

M
dF =

!

Σmono

F +

!

Σout

F,

where ∂M = Σmono ∪ Σout.

Then the 50% of the zero-mode state

is located at the monopole, while the

other 50% is sit at the domain-wall.

Thus the dressed electric charge of the monopole becomes −1/2!
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Numerical analysis



Lattice setup

On a three-dimensional hyper-cubic lattice with size L with open

boundary conditions, we put a monopole at xm = (L/2, L/2, L/2)

with a magnetic charge n/2. We also put an antimonopole at

xa = (L/2, L/2, 1/2) with the opposite charge −n/2.
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Domain-wall creation

To directly confirm creation of the domain-wall near the monopole,

we plot distribution of the “effective mass” (normalized by m0),

meff(x) = φ(x)†

+

,−
-

i=1,2,3

1

2
∇f

i ∇
b
i +m(x)

.

/φ(x)

0
φ(x)†φ(x),

on the z = (L+ 1)/2 slice.

17



The effective mass of the nearest zeromode with n = 1 on z = 16

slice:
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Amplitude

The amplitude of the nearest-zero mode for n = 1 in z = 16 slice:
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Electric charge

Let’s quantify the electric charge that the monopole gains.

We plot the cumulative distribution of the nearest zero modes:

Ck(r) =

!

|x|<r
d
3
xφk(x)

†φk(x).
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For n = 1:
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Summary

We discussed a microscopic description of the Witten effect with

the Wilson term.

How do we distinguish between the normal insulator (m > 0) and

topological insulator (m < 0)?

- It is the topological insulator if the mass is relatively negative

compared to the PV mass.

Why are electrons bound to monopole?

- Because of the positive mass correction from the magnetic

field of the monopole, the domain-wall is dynamically created

(only for the negative mass).
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Why do the stable chiral zero modes appear?

- Because the zero modes localized at the domain-wall are

protected by the AS index.

Why is the electric charge fractional?

- Because the 50% of the wavefunction is located around the

monopole (the other 50% is located at the surface of the

topological insulator).
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