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Introduction

» Quantum field theories on noncommutative spaces such as Moyal
spaces have given a new perspective to matrix models.

Matrix model on noncommutative spaces (Grosse-Wulkenhaar model)

» It corresponds to scalar field theories on noncommutative spaces,
which is renormalizable by adding harmonic oscillator potentials to
the action.

» &3 matrix model [Grosse-Sako-Wulkenhaar ('17)]

» &% matrix model [Grosse-Hock-Wulkenhaar ('19)]

Approach to ®* matrix model
» ®3-d* Hybrid-Matrix-Model [Kanomata-Sako ('23)]

In order to mathematically formulate quantum field theories as a toy
model, it is necessary to clarify the properties of the matrix model on
noncommutative spaces (Grosse-Wulkenhaar model).




Scalar QFT on the Moyal Plane (2 =1 case)

Definition(Action of the N.C. Real Scalar ¢3 QFT)
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Kontsevich model (®3 matrix model)

Definition(Action of Kontsevich model)

S[®] = iVitr (Ed>2 + Kk + §¢3>

> &= (d;), i,j=1,---,N : Hermitian matrix
» E =(Exk-16km), k,m=1,--- N : diagonal matrix
> kel

Definition(Partition function of Kontsevich model)

Z[J] = / Do exp(—S[®] + iVir(Jo))

» J=(Jmn), mn=1--- N : Hermitian matrix

> Do =] dd)f.j [T dcbff : integral measure

i<j
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Z N;-point function of Kontsevich model is defined as follows:
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> Any Z N;-point function of ®3 matrix model was calculated by
j=1
solving Schwinger-Dyson equation exactly by using Ward-Takahashi
B

identity. Any Z N;-point function of ®3 matrix model in large N, V
j=1

limit was calculated in the previous studies by Grosse, Wulkenhaar,

and Sako.
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» In this study, we obtained the exact solutions of Z N;-point function
Jj=1
of the finite Kontsevich model ($3 matrix model).

» It is known that any G|a%. a5| can be expressed using

ah |.]af..
1
G|a1...]an| type n-point function. Thus we focused on the rigorous
calculation of Gja1| |- The formula for Gy, ,n was obtained, and
it was achieved by using the partition function Z[J] calculated by

Harish-Chandra-Itzykson-Zuber integral.

In the next talk, we will deal with a model in which a potential is
integrable as well as Kontsevich model.




d3-d* Hybrid-Matrix-Model

Definition(Action of ®3-®* Hybrid-Matrix-Model)

1 A
S[®] = Vir (Ed>2 + £+ SMOM® + VAM®S + Zcb“)

> M2 =F

» We constructed Feynman rules for ®3-®# Hybrid-Matrix-Model and
calculated the perturbative expansion in ordinary methods.

» We calculated the path integral of the partition function Z[J] and
used the result to compute exact solutions for 1-point function G|,
with 1-boundary, 2-point function G),p with 1-boundary, 2-point

function G, with 2-boundaries, and n-point function Gj,1,2|...an|
with n-boundaries.




Feynman Rules of ®3-®* Hybrid-Matrix-Model (x = 0)

We calculate Zgee[J];

Zheel] = / Db exp (— Vir (Ed>2 + %M(DM(D)) exp (Vtr(J))
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We introduce the free n-point functions:
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The Feynman graph of the propagator (ribbon) is then defined as follows:
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From —VirvVAM®? = —VVA Y \/E 104 ®m® i, the vertex
k,/;m=1
weight of the three-point interaction is determined:

» The black dot v corresponds to /E, 1.




we use the following notation:
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> {{v1, 2, v3}} means multi set.
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_ Y
4




Perturbative Expansion of 1-Point Function G, (x = 0)

We calculate the connected 1-point function Gy, using perturbative
expansion.
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We compute each term of this expansion by drawing perturbative
expansions of the 1-point function G, in Feynman diagrams.
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Perturbative Expansion of 1-Point Function G;; (k = 0)

When N =2, we calculate the connected 1-point function Gj;| using
perturbative expansion.

1 dlog Z[J]
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We compute each term of this expansion by drawing perturbative
expansions of the 1-point function Gy in Feynman diagrams.
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Calculation of Partition Function Z[J]

Z[J] :/m exp ( Vir <E¢2 + kb + %Md)MCD + VAM®® + Z\CD“))

x exp (Vtr (JP))

l
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J(fee(224)) (L)
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The integration is divided into diagonal elements and off-diagonal elements.

N
» DX =[]dx [] (x—x0)?dU

i=1  1<k<I<N




ltzykson-Zuber integral
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> A B : Hermitian matrix
» Xi(A),\i(B) i=1,---,N : Eigenvelues of A, B

> dU= [[ (U du)F(Urdv);

1<i<j<N
> tc C\{0}

> A(NA)) = H (Aj(A) = Ai(A)) : Vandermonde determinant
1<i<j<N

gy N(N-1) .
> cy = H i'x T 2 : normalization constant
i=1



The off-diagonal elements are integ\tated using ltzykson-Zuber integral.
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The diagonal elements are intégrated using a function P(z).
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Calculation of 1-Point Function G, (x = 0)

In the following, J is treated as a diagonal matrix and k = 0. In the
calculation of the 1-point function G,
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Calculation of 1-Point Function Gy (x = 0)

In the following, J is treated as a diagonal matrix and x = 0. When
N = 2, calculating of the 1-point function Gy is

1 dlog Z[J] 1 1 92[J]

G+ = — E— = ...
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We approximate 1-Point Function G|;| by a saddle point method.
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This is consistent with the calculation of the 1-point function G;| (N = 2)
using perturbative expansion.



Perturbative Expansion of 2-Point Function G, (x = 0)

We calculate the connected 2-point function Gj,p((a # b) using
perturbative expansion.
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Calculation of 2-Point Function G|, (k = 0)

In the calculation of the 2-point function G|,p,
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Perturbative Expansion of 2-Point Function G, (x = 0)

We calculate the connected 2-point function G, using perturbative
expansion.
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Calculation of 2-Point Function G, (k = 0)

In the calculation of the 2-point function Gy,
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Calculation of n-Point Function G,1|z|...|an| (5 = 0)

In the calculation of the n-Point Function G‘al|32|...|an‘,
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Overall Summary and Future Prospect

In order to mathematically formulate quantum field theories as a toy
model, it is necessary to clarify the properties of the matrix model on
noncommutative spaces (Grosse-Wulkenhaar model).

» We constructed Feynman rules for ®3-®# Hybrid-Matrix-Model and
calculated the perturbative expansion in ordinary methods.

> We calculated the path integral of the partition function Z[J] and
used the result to compute exact solutions for 1-point function G,
with 1-boundary, 2-point function G, with 1-boundary, 2-point
function Gy, with 2-boundaries, and n-point function Gj,1).2...|an|
with n-boundaries.

» In the future, we would like to clarify the solvability of ®* matrix
model (Grosse-Wulkenhaar model).



