Integrable vortices on compact Riemann
surfaces of genus one (and-tweo)
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Introduction: Vortices

Vortices are ...

o 2-dimensional topological solitons
It possesses a topological invariant, the vortex number

e Static solutions of 2+1d Abelian Higgs model

1
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We would like to focus on the static energy (potential term) of this

theory
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Static energy functional of Abelian Higgs model

-

e M is 2-dimensional space
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Qodzdy

e ()gis aconformal factor of M i.e. ds%w — Qo(de + dyz)

e |t equals to the Ginzburg-Landau theory with a critical coupling

constant

One can apply Bogomol'nyi completion to the energy F/

Introduction

3/24



The energy functional can be transformed into

B 2
F, 20 .
E = ( Qy - Cy — C’\¢\2) — Q—\Dx¢+ZDy¢|2
yal 0 0
M

e The last term is an integer (Vortex number)

e Bogomol'nyi equations (Vortex eq.) are derived from the formula:

Dw¢+2Dy¢: 07 Fwy — QO(_CO+C‘¢‘2)

e Solutions of the Bogomol'nyi eq.s minimize E
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B Jackiw-Pi vortex

When (Cy, C) = (0, 1), the vortex eq. is called Jackiw-Pi vortex

eq. It can be transformed into Liouville's eq. (solvable)
[Manton(2016)]

D.¢ +iD,¢p =0, Fpy = Qolo|* = VZlog|d| = Q|o|’

The general solution of Liouville's eq. (Jackiw-Pi vortex):

N\ f'(2) T2 2
gb(z,z)—l O f:R*—=§

f is ameromorphic function
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Jackiw-Pi eq. can also be derived from non-relativistic 2+1d CS
matter theory. In this context, the JP vortex relates to the Hall

effect.
[Horvathy-Zhang(2009)]
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The Hamiltonian of the theory takes the form

|Diqﬁ\2 AMe|M —e* |,
H = | dxd

Assuming D¢ = 0, 0;¢ = 0 and setting A\ = e*/(|k| M),

EOM of gauge field takes the form
Foy =e|d]” = V’log|g| = 2€°|¢|”

And solutions minimize H
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Jackiw-Pi vortex on Torus

J.P. vortices are defined on the Torus if f is the doubly periodic
function (elliptic function)

BExample: Jacobi sn

cn(z; k)dn(z; k)

sn 7_;k —
P2 2 k) = G )P

e is defined on T? = R?/A,
A=4K(k)Z + 2iK'(k)Z
e Vortex number N =4
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BExample: Weierstrass o

. @,(z;w17w2)
1+ |p(2z;wi,ws)|?

Pp(2, Z)

e isdefinedon T? = R?/A,
A = 2&)12 -+ 2LLJ2Z

e Vortex number N =4

Jackiw-Pi vortices on the torus

are classified completely

[Akerblom-Cornelissen-Stavenga-
Holten(2011)]
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In previous examples, the vortex number N is given by

1
N = / Fp,dzdy
M

27

e Naively the integral always vanishes if M is a compact surface (e.g.
torus)

e However numerical integration gives N # 0
[ACSH(2011)], [Olesen(1991)].

e Vector bandle argument explains it: IV is given by the transition

function on the intersections of patches
[Manton-Sutcliffe(2004)]
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Calculation of Vortex Number
[Miyamoto-Nakamula(2023)] (in preparation)

Instead of the bandle argument, we would like to give an analytical
method: We regularize singular points and calculate IV directly

e Liouville's equation V? log |¢| = 2|¢|? is not defined at zeros of ¢
(Singular Points)

e Then we treat T2 = T?\S.P. which has boundary around zeros

e Then we apply Green's theorem to % f Fyydxdy on T2
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Using F,, = |$|?, one obtains
1 1
o= | Fudzdy=_— [ 08;log|¢|* + 9, log |#|*dzdy
27’(’ T2 47'(' T2
— " d Olog|e|’dz — Dlog ||*dz
4:7T 852'72

where 8T? are infinitesimal circles C¢, around zeros {&;}
0 := (0, —1i0,)/2, 0 := (8, + i0,)/2 are Wirtinger derivatives

o qb is not holomorphic nor anti-holomorphic. Then one can apply
0, O to the function of ¢

Calculation of Vortex Number 12/24



Considering gb as a two-variable function, one can expand it

Let & be a simple zero of ¢
Then around &g, ¢ can be expanded as follows

P(z,2) ~ 0P|.—¢ (2 — &o) + 5¢‘z:§0 (z — &) + -

0

e We write these coeff.s ¢, c! for short
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Substituting it into 0 log |¢|*dz, one obtains

0 log |p|*dz = ((ZZS + Eyf)dz

N( b+ ... N el 4+ ... )dz
e~ &) +el(z—Eo) o Az &) ez &)+

Let z = &y + €€ around &y, then dz = iee’’d@
Hence,ine — (

0 1

O log |p|*dz ~ ( - | - )z’ewde
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By the same calculation, one obtains

c! c’

0log |¢|*dz ~ | (—i)e *¥db

Then the integrand becomes

( CO,’:eiO N cliew ) s N ( Clie—w N cOie—iH ) ”

COGZ'O 4 cle—ie Coe—ie + Cleit9 CﬂeiH + cle—’ie 606—2'9 + Clei9

— 21d0
Hence for each simple zero one obtains 1 vortex number
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BExample 1: ¢,

. __cn(z;k)dn(z;k)
¢sn(za 2 k) — 1+4sn(z;k)|?

®sn has four simple zeros {K, K +iK',3K,3K + iK'}

One can calculate

2 oo
0 (—sn dn? — k2sn cn? | —cn? dn )
! 9

CrfmP) @ sa)2 )|,
. —sn |cn dnl?
C =

1+ [snp)? |,
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K K+iK' 3K 3K + iK'

O —k,2 k,2 k,2 _klz
C | 2= | RQ11/kD) | 2 | EA+|1/RP)
cl| 0 0 0 0
: cOiew coie_w
Then all integrand around zeros takes the form ( 0.0 T S0, )d@

= 21d0
Hence the vortex number is
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BExample 2: ¢,

=\ p,(Z;CU1,CU2)
¢p(zaz) 14 p(zwi,w2)]|?

¢, has four simple zeros {0, w1, wy, w1 + wy}

Then one obtains

o (14 |p|?) — pp” L —ple
S 212 y € = 22
(1+ |p]?) (1+ |p]?)
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For {w1, w2, w; + wa }, the calculation is same as ¢, case:
¢’ = complex const.,ct =0

Then the integrands for {w1, wo, w1 + wsy } are 2id6

For {0}, p and g’ have a pole
In neighborhood of the point 0 one can write g ~
Theninz — 0

22 B 3

1 2|8 z|* g9 2|
0 8 4 40
~ 650 167 I8 Lty 4P ) o
- (1+ |z]*)? ( z4 z4 2 (21" + 21%) z4 :
1 —4]z]|?
¢l z s —4e 20
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Then the integrand around O takes form

25e 310 _ 445e—310 | 25e 00 _ 4410 70
2p0—3i0 _ fo—3i0 2po—5i0 _ fo—if

— 2:d0
Integration of this is 227, which corresponds to 1 vortex number

Hence the vortex number of qbp equals 4 as we expected
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BZeros of order n > 1 case

There is the solution that has
zeros of ordern > 1

b~z — &)+ Mz - &)z = &)+
0z — )z — &)+ (z = &) + -

Calculating ¢!, ™!

obtain the integrand which does
not vanishine — 0O

,...,0Nnecan

then one can calculate the ¢ made of f = sn®(2)

vortex number This has zeros of order 2
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Conclusion

e Vortices are 2-dimensional topological soliton

e Jackiw-Pi vortex eq. is one of the integrable vortex eq. and can be
defined on the torus

e Analytical calculation method of the vortex number of Jackiw-Pi
vortices on the torus is given

BFuture works

e Calculation method for the vortices on the higher genus surface
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Buckup
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There exist Five integrable vortex eq.s

These Eq.s have the geometrical interpretation
[Baptista(2014)], [Manton(2016)]

(0,1) Jackiw-Pi V2 log |4 = Qo|¢|?
(1,1) Popov V¥ log [¢] = Qo(—1 + |¢]*)
(—1,1) | Ambjgrn-Olesen| V*log |¢| = Qo(1 + |$|*)
(—1,0) Bradlow V2 log |é| = Qo
(—1,-1) Taubes V¥ log || = Qo(1 — |9]°)
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