Integrable vortices on compact Riemann surfaces of genus one (and two)

2023/08/04

宮本薫,中村厚

北里大学

場の理論と弦理論2023 ポスター発表

Introduction: Vortices

Vortices are ...

- 2-dimensional topological solitons
 It possesses a topological invariant, the vortex number
- Static solutions of 2+1d Abelian Higgs model

$$L=\intiggl[rac{-1}{2}F_{\mu
u}F^{\mu
u}+2C\overline{D_{\mu}\phi}D^{\mu}\phi-(-C_0+C|\phi|^2)iggr]\Omega_0dxdy$$

We would like to focus on the static energy (potential term) of this theory

Static energy functional of Abelian Higgs model

$$E = \int_{M} igg[rac{1}{\Omega_{0}^{2}} F_{xy}^{2} - rac{2C}{\Omega_{0}} |D_{i}\phi|^{2} + (-C_{0} + C|\phi|^{2}) igg] \Omega_{0} dx dy$$

- ullet M is 2-dimensional space
- ullet Ω_0 is a conformal factor of M i.e. $ds_M^2=\Omega_0(dx^2+dy^2)$
- It equals to the Ginzburg-Landau theory with a critical coupling constant

One can apply Bogomol'nyi completion to the energy ${\cal E}$

The energy functional can be transformed into

$$E = \int_M \left[\left(rac{F_{xy}}{\Omega_0} + C_0 - C|\phi|^2
ight)^2 - rac{2C}{\Omega_0}|D_x\phi + iD_y\phi|^2
ight]\Omega_0 dx dy \ - 2C_0 \int_M F_{xy} dx dy$$

- The last term is an integer (Vortex number)
- Bogomol'nyi equations (Vortex eq.) are derived from the formula:

$$D_x\phi+iD_y\phi=0, \quad F_{xy}=\Omega_0(-C_0+C|\phi|^2)$$

ullet Solutions of the Bogomol'nyi eq.s minimize E

Introduction 4/24

■ Jackiw-Pi vortex

When $(C_0, C) = (0, 1)$, the vortex eq. is called Jackiw-Pi vortex eq. It can be transformed into Liouville's eq. (solvable)

[Manton(2016)]

$$D_x \phi + i D_y \phi = 0, \; F_{xy} = \Omega_0 |\phi|^2 \quad \Rightarrow \quad
abla^2 \log |\phi| = \Omega_0 |\phi|^2$$

The general solution of Liouville's eq. (Jackiw-Pi vortex):

$$\phi(z,ar{z})=rac{f'(z)}{1+|f(z)|^2}\quad f:\mathbb{R}^2 o S^2$$

f is a meromorphic function

Jackiw-Pi eq. can also be derived from non-relativistic 2+1d CS matter theory. In this context, the JP vortex relates to the Hall effect.

[Horvathy-Zhang(2009)]

$$L_{CSM} = -ar{\phi}D_t\phi + rac{|D\phi|^2}{2M} - rac{\lambda}{2}|\phi|^4 - rac{\kappa}{4}\epsilon^{lphaeta\gamma}A_lpha F_{eta\gamma}$$

The EOMs are

$$i\partial_t \phi = igg(-rac{ec{D}\cdotec{D}}{2M} - eA_t - \lambda |\phi|^2igg)\phi, \quad rac{\kappa}{2}\epsilon^{\mulphaeta}F_{lphaeta} = eJ^\mu$$

The Hamiltonian of the theory takes the form

$$H=\intigg(rac{|D_\pm\phi|^2}{2M}+rac{\lambda|\kappa|M-e^2}{2|\kappa|M}|\phi|^2igg)dxdy$$

Assuming $D_+\phi=0,$ $\partial_t\phi=0$ and setting $\lambda=e^2/(|\kappa|M),$ EOM of gauge field takes the form

$$\kappa F_{xy} = e |\phi|^2 \quad \Rightarrow \quad
abla^2 \log |\phi| = 2 e^2 |\phi|^2$$

And solutions minimize H

Jackiw-Pi vortex on Torus

J.P. vortices are defined on the Torus if f is the doubly periodic function (elliptic function)

■Example: Jacobi sn

$$\phi_{\mathrm{sn}}(z,ar{z};k) = rac{\mathrm{cn}(z;k)\mathrm{dn}(z;k)}{1+|\mathrm{sn}(z;k)|^2}$$

- ullet is defined on $T^2=\mathbb{R}^2/\Lambda,$ $\Lambda=4K(k)\mathbb{Z}+2iK'(k)\mathbb{Z}$
- Vortex number N=4

■Example: Weierstrass ℘

$$\phi_{\wp}(z,ar{z}) = rac{\wp'(z;\omega_1,\omega_2)}{1+|\wp(z;\omega_1,\omega_2)|^2}$$

- ullet is defined on $T^2=\mathbb{R}^2/\Lambda,$ $\Lambda=2\omega_1\mathbb{Z}+2\omega_2\mathbb{Z}$
- ullet Vortex number N=4

Jackiw-Pi vortices on the torus are classified completely

[Akerblom-Cornelissen-Stavenga-

Holten(2011)]

Jackiw-Pi vortex on Torus

In previous examples, the vortex number N is given by

$$N=rac{1}{2\pi}\int_{M}F_{xy}dxdy$$

- ullet Naively the integral always vanishes if M is a compact surface (e.g. torus)
- ullet However numerical integration gives N
 eq 0 [ACSH(2011)], [Olesen(1991)].
- ullet Vector bandle argument explains it: N is given by the transition function on the intersections of patches

[Manton-Sutcliffe(2004)]

Calculation of Vortex Number

[Miyamoto-Nakamula(2023)] (in preparation)

Instead of the bandle argument, we would like to give an analytical method: We regularize singular points and calculate N directly

- Liouville's equation $\nabla^2 \log |\phi| = 2 |\phi|^2$ is not defined at zeros of ϕ (Singular Points)
- ullet Then we treat $\widetilde{T}^2=T^2ackslash \mathrm{S.P.}$ which has boundary around zeros
- ullet Then we apply Green's theorem to $rac{1}{2\pi}\int F_{xy}dxdy$ on \widetilde{T}^2

Using $F_{xy}=|\phi|^2$, one obtains

$$egin{aligned} rac{1}{2\pi} \int_{\widetilde{T}^2} F_{xy} dx dy &= rac{1}{4\pi} \int_{\widetilde{T}^2} \partial_x^2 \log |\phi|^2 + \partial_y^2 \log |\phi|^2 dx dy \ &= rac{-i}{4\pi} \oint_{\partial \widetilde{T}^2} \partial \log |\phi|^2 dz - \overline{\partial} \log |\phi|^2 dar{z} \end{aligned}$$

where $\partial\widetilde{T}^2$ are infinitesimal circles C_{ξ_i} around zeros $\{\xi_i\}$ $\partial:=(\partial_x-i\partial_y)/2,\ \overline{\partial}:=(\partial_x+i\partial_y)/2$ are Wirtinger derivatives

• ϕ is not holomorphic nor anti-holomorphic. Then one can apply $\partial, \overline{\partial}$ to the function of ϕ

Considering ϕ as a two-variable function, one can expand it

Let ξ_0 be a simple zero of ϕ

Then around ξ_0 , ϕ can be expanded as follows

$$\phi(z,ar{z}) \sim \partial \phi|_{z=\xi_0} (z-\xi_0) + \overline{\partial} \phi|_{z=\xi_0} (\overline{z-\xi_0}) + \cdots$$

ullet We write these coeff.s c^0, c^1 for short

Substituting it into $\partial \log |\phi|^2 dz$, one obtains

$$\partial \log |\phi|^2 dz = \left(rac{\partial \phi}{\phi} + rac{\partial \overline{\phi}}{\overline{\phi}}
ight) dz \ \sim \left(rac{c^0 + \cdots}{c^0 (z - \xi_0) + c^1 \overline{(z - \xi_0)} + \cdots} + rac{c^1 + \cdots}{c^0 \overline{(z - \xi_0)} + c^1 (z - \xi_0) + \cdots}
ight) dz$$

Let $z=\xi_0+\epsilon e^{i\theta}$ around ξ_0 , then $dz=i\epsilon e^{i\theta}d\theta$ Hence, in $\epsilon o 0$

$$\partial \log |\phi|^2 dz \sim \left(rac{c^0}{c^0 e^{i heta} + c^1 e^{-i heta}} + rac{c^1}{c^0 e^{-i heta} + c^1 e^{i heta}}
ight) i e^{i heta} d heta$$

By the same calculation, one obtains

$$\overline{\partial} \log |\phi|^2 dar{z} \sim \left(rac{c^1}{c^0 e^{i heta} + c^1 e^{-i heta}} + rac{c^0}{c^0 e^{-i heta} + c^1 e^{i heta}}
ight) (-i) e^{-i heta} d heta$$

Then the integrand becomes

$$egin{aligned} \left(rac{c^0ie^{i heta}}{c^0e^{i heta}+c^1e^{-i heta}}+rac{c^1ie^{i heta}}{c^0e^{-i heta}+c^1e^{i heta}}
ight)\!d heta + \left(rac{c^1ie^{-i heta}}{c^0e^{i heta}+c^1e^{-i heta}}+rac{c^0ie^{-i heta}}{c^0e^{-i heta}+c^1e^{i heta}}
ight)\!d heta \ &=2id heta \end{aligned}$$

Hence for each simple zero one obtains 1 vortex number

Example 1: $\phi_{ m sn}$

$$\phi_{\mathrm{sn}}(z,ar{z};k)=rac{\mathrm{cn}(z;k)\mathrm{dn}(z;k)}{1+|\mathrm{sn}(z;k)|^2}$$

 $\phi_{
m sn}$ has four simple zeros $\{K,K+iK',3K,3K+iK'\}$

One can calculate

$$c^0 = \left. \left(rac{-\mathrm{sn} \; \mathrm{dn}^2 - k^2 \mathrm{sn} \; \mathrm{cn}^2}{(1 + |\mathrm{sn}|^2)} + rac{-\mathrm{cn}^2 \; \mathrm{dn}^2 \; \overline{\mathrm{sn}}}{(1 + |\mathrm{sn}|^2)^2}
ight)
ight|_{z=\xi_0},
onumber \ c^1 = \left. rac{-\mathrm{sn} \; |\mathrm{cn} \; \mathrm{dn}|^2}{(1 + |\mathrm{sn}|^2)^2}
ight|_{z=\xi_0}$$

	K	K+iK'	3K	3K+iK'
c^0	$\frac{-k'^2}{2}$	$rac{k'^2}{k(1+ 1/k ^2)}$	$\frac{k'^2}{2}$	$rac{-k'^2}{k(1+ 1/k ^2)}$
c^1	0	0	0	0

Then all integrand around zeros takes the form $\left(\frac{c^0ie^{i\theta}}{c^0e^{i\theta}}+\frac{c^0ie^{-i\theta}}{c^0e^{-i\theta}}\right)d\theta$ = $2id\theta$

Hence the vortex number is

$$N=4 imes\left(rac{-i}{4\pi}\int_0^{2\pi}2id heta
ight)=4$$

Example 2: ϕ_{\wp}

$$\phi_{\wp}(z,ar{z})=rac{\wp'(z;\omega_1,\omega_2)}{1+|\wp(z;\omega_1,\omega_2)|^2}$$

 ϕ_{\wp} has four simple zeros $\{0,\omega_1,\omega_2,\omega_1+\omega_2\}$

Then one obtains

$$c^0 = rac{\wp''(1+|\wp|^2)-\overline\wp\wp'^2}{(1+|\wp|^2)^2}igg|_{z=\xi_0},\; c^1 = rac{-\wp|\wp'|^2}{(1+|\wp|^2)^2}igg|_{z=\xi_0}$$

For $\{\omega_1,\omega_2,\omega_1+\omega_2\}$, the calculation is same as $\phi_{\rm sn}$ case: $c^0={\rm complex\ const.}, c^1=0$ Then the integrands for $\{\omega_1,\omega_2,\omega_1+\omega_2\}$ are $2id\theta$

For $\{0\}$, \wp and \wp' have a pole In neighborhood of the point 0 one can write $\wp\sim\frac{1}{z^2},\ \wp'\sim\frac{-2}{z^3}$ Then in $z\to0$

$$c^0 \sim rac{1}{(1+|z|^4)^2}igg(6rac{|z|^8}{z^4}+6rac{|z|^4}{z^4}-rac{g_2}{2}(|z|^8+z|^4)-4rac{|z|^4}{z^4}igg)
ightarrow 2e^{-4i heta}\ c^1 \sim rac{1}{(1+|z|^4)^2}rac{-4|z|^2}{z^2}
ightarrow -4e^{-2i heta}$$

Then the integrand around 0 takes form

$$egin{aligned} \left(rac{2ie^{-3i heta}-4ie^{-3i heta}}{2e^{-3i heta}-4e^{-3i heta}} + rac{2ie^{-5i heta}-4ie^{-i heta}}{2e^{-5i heta}-4e^{-i heta}}
ight)d heta \ &= 2id heta \end{aligned}$$

Integration of this is $2i\pi$, which corresponds to 1 vortex number

Hence the vortex number of ϕ_\wp equals 4 as we expected

\blacksquare Zeros of order n>1 case

There is the solution that has zeros of order $n>1\,$

$$\phi \sim c^{00}(z-\xi_0)^2 + c^{01}(z-\xi_0)(\overline{z-\xi_0}) + c^{10}(z-\xi_0)(\overline{z-\xi_0}) + c^{11}(\overline{z-\xi_0})^2 + \cdots$$

Calculating c^{00}, c^{01}, \ldots , one can obtain the integrand which does not vanish in $\epsilon \to 0$ then one can calculate the vortex number

 ϕ made of $f=\sin^3(z)$ This has zeros of order 2

Conclusion

- Vortices are 2-dimensional topological soliton
- Jackiw-Pi vortex eq. is one of the integrable vortex eq. and can be defined on the torus
- Analytical calculation method of the vortex number of Jackiw-Pi vortices on the torus is given

Future works

Calculation method for the vortices on the higher genus surface

Buckup

There exist Five integrable vortex eq.s These Eq.s have the geometrical interpretation

[Baptista(2014)], [Manton(2016)]

(C_0,C)	Name	Eq.
(0,1)	Jackiw-Pi	$ abla^2 \log \phi = \Omega_0 \phi ^2$
(1,1)	Popov	$ abla^2 \log \phi = \Omega_0(-1+ \phi ^2)$
(-1,1)	Ambjørn-Olesen	$ abla^2 \log \phi = \Omega_0 (1+ \phi ^2)$
(-1, 0)	Bradlow	$ abla^2 \log \phi = \Omega_0$
(-1, -1)	Taubes	$ abla^2 \log \phi = \Omega_0 (1- \phi ^2)$

Introduction 24/2