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•動機と背景


•測定型量子シミュレーション


•リソース状態とanomaly inflow


•リソース状態と古典分配関数の双対性・
SymTFT

Plan of the talk
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• Quantum simulation of lattice gauge theories is 
expected to become a major application of quantum 
computers.


• It's still too early to decide which simulation schemes 
will be the most efficient, and different schemes 
should be investigated.


• Simulation schemes can be roughly divided into 
digital and analog quantum simulations.  I focus on 
digital schemes.

Motivations and background
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• Digital simulation uses the Suzuki-Trotter 
approximation to realize discrete time evolution.


• So far, most efforts have focused on circuit-based 
methods.


• In quantum computation, there are alternative 
quantum computation (QC) schemes: measurement-
based QC, adiabatic QC, etc.  We want to apply the 
idea of measurement-based QC for simulation.


• Does a quantum simulation scheme reflect intrinsic 
properties of the simulated field theory?
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• Introduced by Raussendorf and Briegel (2001). 


• Also called one-way quantum computation.


• An alternative computational scheme that replaces 
circuit-based computation.


• Uses quantum teleportation and adaptive 
measurements on a resource (cluster) state.

Review: measurement-based 
quantum computation (MBQC)
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Gate teleportation

• X-eigenstate 


•  is an arbitrary 1-qubit state


• Entangle  and  by a controlled-Z gate .


• Measure the first qubit in bases .  The measurement 
outcome is  corresponding to .


• The state on the second qubit becomes 


.


Up to  and , the state and the unitary transformation  are 
teleported.   is an example of a byproduct operator.
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Adaptive measurement

• Suppose that an earlier measurement in a bigger circuit had 
produced the state , where  is the 
known measurement outcome.  Suppose also that we wish to 
obtain .


• Substituting this to the teleportation formula , we 
get .


• To get the desired state  (up to byproducts), we need 
to set  to .   We need to adjust the measurement 
angle  adaptively according to earlier measurement outcomes.  
In this way we can achieve a deterministic computation.

|Ψ⟩ = XtH |Φ⟩ t = 0,1

e−iαX |Φ⟩

Xse−iξXH |Ψ⟩
Xse−iξXHXtH |Φ⟩ = XsZte−i(−1)tξX |Φ⟩

e−iαX |Φ⟩
ξ ξ = (−1)tα ⇒
ξ
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Resource state

• Measurement based quantum computation is performed by 
adaptive one-qubit measurements on a resource state.


• As a resource state, one usually considers a cluster state 


.


• Cluster states can be constructed by a finite-depth circuit and 
can be characterized by stabilizer operators.

⨂
pair

CZpair | + ⟩⊗qubits
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• Measurement-based quantum computation on a 2-
dimensional cluster state is universal:  it can 
reproduce any computation of a circuit-based 
quantum computation.


• There exist versions of MBQC and cluster states with 
discrete and continuous-variable qudits.


• Large-scale  (continuous-variable) optical 
cluster states have been experimentally generated.

𝒪(104)
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Review: Hamiltonian lattice  
gauge theory in 2+1 dimensions

• Cell complex for a square lattice.


• 0-cells 


• 1-cells 


• 2-cells 


• Degrees of freedom (qubits) are on 
1-cells (edges) . 

σ0 ∈ Δ0

σ1 ∈ Δ1

σ2 ∈ Δ2

σ1 ∈ Δ1

σ0

σ1 σ2
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• Hamiltonian:  with 

.


• Gauss law constraint: for any , 


.


• The  limit is Kitaev’s toric code.

H = − ∑
σ1∈Δ1

X(σ1) − λ ∑
σ2∈Δ2

Z(∂σ2)

Z(∂σ2) = ∏
σ1⊂∂σ2

Z(σ1)

σ0 ∈ Δ0

X(∂*σ0) |ψphys⟩ = |ψphys⟩

λ → ∞
σ1

∂σ2

∂*σ0

• Generalization:  gauge theory in 
2+1 dimensions =     
Wegner’s model : higher-form 
gauge theory in  dimensions.  The 

 case is the Ising model.

ℤ2
M(3,2) ⇒

M(d,n)
d

n = 1
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Trotterization
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• Ideally we want to implement the continuous time evolution  for 
any .  Decompose .   and 

 do not commute.


• In digital quantum simulation (such as by quantum circuits), we 
implement  and  separately.


• Suzuki-Trotter approximation: .  


• We want to realize  and .

e−iHt
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• Claim: we can implement the Trotterized 
time evolution  by


1. preparing a generalized cluster state that 
reflects the spacetime structure of the 
gauge theory


and then by


2. performing adaptive single-qubit 
measurements adaptively in a prescribed 
pattern.

(e−iH1t/ne−iH2t/n)n

Proposal: measurement-based 
quantum simulation of abelian 
lattice gauge theories
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Resource state for   lattice 
gauge theory in 2+1 dimensions

ℤ2
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• Place one qubit on each 1-cell 
 and 2-cell  on 

a 3d cubic lattice.


• Entangle the neighboring 1-cells 
and 2-cells by controlled-Z 
gates.  

 


• A version of three-dimensional 
cluster state.


• Stabilizers  
and .

σ1 ∈ Δ1 σ2 ∈ Δ2

|gCS⟩ = ∏
σ1⊂∂σ2

CZσ1,σ2
| + ⟩⊗Δ1∪Δ2

K(σ2) = X(σ2)Z(∂σ2)
K(σ1) = X(σ1)Z(∂*σ1)

K(σ1) |gCS⟩ = K(σ2) |gCS⟩ = |gCS⟩



Measurement pattern = 
simulation protocol
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• Trotterized time evolution is 
deterministically 
implemented by the 
measurement pattern and 
adaptive choices of the 
measurement angles  to 
absorb minus signs .


• Main result of the paper.  
The resource state reflects 
the spacetime structure of 
the simulated gauge theory.

ξ
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Toward experimental realization
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• The measurement-based approach requires only 
simple interactions (such as Ising interactions) 
between qubits because interactions are only used to 
create the resource state.


• Since the resource state includes the time direction, 
the measurement-based approach requires more 
qubits than the circuit-based approach.


• Possible experimental platforms: 


• Lattices formed by cold atoms


• Continuous-variable cluster states created optically



• Simulation time is linear in the number of Trotter steps in both 
schemes.


• 


• 


• In the measurement-based scheme, the resource state is created 
by a finite-depth circuit consisting of CZ.  The number of 
necessary qubits grows linearly in the number of Trotter steps.

TMB ∼ (#Trotter steps) × Tmeas

TCB ∼ (#Trotter steps) × TCZ

Comparison with circuit-based simulation
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• Exact diagonalization is only possible for up to tens of sites.


• Using tensor network methods, low-entanglement states are 
accessible for up to thousands of sites.


• In MBQS, the number of required qubits scales linearly with the 
number of Trotter steps.


• MBQS may have an advantage for problems with high-
entanglement states if there are sufficiently many  qubits 
of good quality. 

𝒪(104)

Comparison with classical simulation
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• Generalizations to  gauge groups and the Kitaev Majorana 
chain are given in the paper.  (Other generalizations in progress.)


• Non-compact U(1) ( ) gauge group discussed in the paper.  
Compact U(1) case to be explored.


• Correction of Gauss law violation discussed in the paper.


• Scheme for imaginary time evolution given in the paper.

ℤN

ℝ

Other aspects and generalizations 
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• Claim: the natural resource state (qubits on - and -cells) for 
simulating Wegner’s model  is protected by global  
- and  -form symmetries.  (For , shown by 
Yoshida.)


• For the  gauge theory in  dimensions , they are both 
one-form symmetries generated by membrane (surface) operators  

  with 2-cycle  ( ) and  with dual 2-

cycle  ( ).


• The SPT order of the resource state for  can be demonstrated 
by showing that “gauging” the symmetries of the resource state and 
the product state give rise to distinct topological orders.  [Levin-Gu, Yoshida]

n (n − 1)
M(d,n) ℤ2 (n − 1)

ℤ2 (d − n) d = 3, n = 2

ℤ2 2 + 1 M(3,2)

∏
σ2⊂z2

X(σ2) z2 ∂z2 = 0 ∏
σ1⊂z*2

X(σ1)

z*2 ∂*z*2 = 0

M(d,n)

SPT order of the resource state
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• Claim: the anomaly of the simulated boundary theory  is 
canceled by the bulk resource state .


• More precisely, the relevant anomalous symmetry is 
 present in a particular (toric code) limit of .


• The resource state  for the MBQS of  is the cluster 
state on a -dimensional hypercubic lattice with qubits on - and 

-cells.  We believe that the continuum description is given 

by the classical action .

Md,n
|gCSd,n⟩

ℤ[d−n]
2 × ℤ[n−1]

2 Md,n

|gCSd,n⟩ Md,n
d n

(n − 1)
S =

i
π ∫ Bn ∧ Bd−n+1

リソース状態と anomaly inflow
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• Quantum Wegner model :  

with .


• Generalized toric code : 

.


• The partition function is a functional of background gauge fields.


• Background gauge fields are Poincare-dual to the world-volume 
of symmetry defects.  

Md,n H = − ∑
σn−1

X(σn−1) − λ∑
σn

Z(∂σn)

X(∂*σn−2) |phys⟩ = |phys⟩

TCd,n

H = − ∑
σn

Z(∂σn) − ∑
σn−2

X(∂*σn−2)
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• The ’t Hooft anomaly is the non-invariance of the (boundary) 
partition function under the gauge transformations of the 
background gauge fields.  Such transformations are equivalent to 
the deformations of symmetry defects.  


• On the lattice, symmetry defects (both space-like and time-like) 
can be explicitly constructed.  Gauge non-invariance is 
equivalent to the non-commutation of symmetry generators 
(logical operators).


• In the coupled boundary+bulk system, symmetry generators on 
the boundary get extended into the bulk.  The total partition 
function is invariant under deformations of defects.
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Example: (d, n) = (2,1)

The amplitudes for (a) and (b) have a relative minus sign.

When the boundary is coupled to the bulk, the minus sign is compensated an 
additional sign that arises from the symmetry generator acting on a bulk excitation.



• Using the resource state , define 
.


• Up to the Hadamard transform, this is a state in the generalized 
toric code : 

.


• Consider the product state .


• The overlap  (sometimes called the strange 
correlator) equals the classical partition function of .

|gCSd,n⟩
|Φd,n⟩ = ( ⊗σn−1

⟨ + | ) ⋅ |gCSd,n⟩

TCd+1,n+1
Z(∂*σn−1) |Φd,n⟩ = X(∂σn+1) |Φd,n⟩ = |Φd,n⟩

⟨Ω(J) | := ⊗σn
⟨0 |eJX(σn)

⟨Ω(J) |Φd,n⟩
Md,n

リソース状態と古典分配関数の双対性
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• Let  be the state constructed in the same way as 
 but on the dual lattice rather than the original lattice.


• Let  be the simultaneous Hadamard transform.  Both  
and  belong to the code subspace of [Raussendorf, 

Bravyi, Harrington]. 


• They are related as

|Φ*d,d−n⟩
|Φd,d−n⟩

𝙷 𝙷 |Φd,n⟩
|Φ*d,d−n⟩ TCd+1,n+1
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• We also have  with .


• From , we get an equality 
between the partition functions of two lattice models on the torus, 
showing the precise duality (cf. van den Nest, Dür, Briegel ‘06)


 .


•  is the partition function of .   
is the partition function of .   and  
are stabilized by different logical operators (Wilson loop-like 
operators) and define different topological boundary conditions.


• The topological field theory underlying  (BF theory) 
plays the role of the so-called symmetry topological field theory 
(SymTFT).  [Gaiotto-Kulp, Apruzzi et al., Freed et al., Kaidi-Ohmori-Zheng, …]

⟨Ω(J) |𝙷 ∝ ⟨Ω(J*) | J* = −
1
2

log tanh J

⟨Ω(J) |Φd,n⟩ = ⟨Ω(J) |𝙷 ⋅ 𝙷 |Φd,n⟩

Md,n ≃ Md,d−n/ℤ[d−1−n]
2

⟨Ω(J) |Φd,n⟩ Md,n ⟨Ω(J) |𝙷 |Φ*d,d−n⟩
Md,n/ℤ[n−1]

2 |Φd,n⟩ 𝙷 |Φ*d,d−n⟩

TCd+1,n+1
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• The relation between the (generalized) toric code and the 
resource state is a special case of the so-called “foliation” 
construction of a cluster state from a CSS code.


• The entangler  that appears in the cluster state can be 
used to implement the Kramers-Wannier duality as an operator 
acting on the Hilbert space [Tantivasadakarn et al.]　One can exhibit non-
invertible symmetry and compute the fusion rule.


• Generalization to fracton models in progress.

∏CZ

Other aspects
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• More general gauge theories: non-abelian gauge groups, fracton 
models.


• More general fermions.


• Relate SPT order to computational power.


• Experimental realizations.


• Quantum simulation on cloud quantum computers with 
(adaptive) mid-circuit measurement capabilities.

Future directions

32


