5D M & ik BEw2023
HAIENF 20234E8 H7H

AR D FikIC X 2JTE DR

Wi 1
(EBERY)

BILAIZE S A (BHIERSE) & oI HEHE

arXiv:1911.01659, 2004.07555, 2108.03876 (fth67)

WS A (RBORSE) | BUEHIB S A (RBORSE) © BILRISE S A & DL
arXiv:2303.10314



1. Introduction

* JT gravity is a simple model of 2d dilaton gravity = (ackiw 85, Teitelboim '83)

r—_52 [_/ VIR + \/_K] / VIo(R + 2) + Vho(K — 1)
27T 2 OM J
topological term sets R = —2 %ives action
= Sox (M) or boundary

. . . . We follow the notati t Saad-Shenker-Stanford ’19
(Throughout this talk we consider Euclidean JT gravity.) (We follow the notation of Saad-Shenker Stanford 719)

* It describes the low-energy dynamics of any near-extremal black hole.

* It has revived as a model for the NAdS2/NCFT correspondence
(Almheiri-Polchinski ’14) (Maldacena-Stanford-Yang ’16) (Jensen ’16) (Engelsoy-Mertens-Verlinde ’16)

low energy dynamics | _ | 1d Schwarzian | _ | boundary description of
of the SYK model theory bulk 2d JT gravity

® Saad-Shenker-Stanford showed that the partition functions of JT gravity
correspond to the genus expansion of a double-scaled matrix integral.
(Saad-Shenker-Stanford ’19)



1. Introduction (continued)

* 2d quantum gravity has been extensively studied since the 1980s.

* Double scaled matrix model — counting of triangulations of surfaces

Z = / dHe NTrVH) (g in-Kazakov *90) (Douglas-Shenker ’90) (Gross-Migdal *90)

* Topological gravity — intersection theory on the moduli space of
Riemann surfaces (Witten 90) (Witten *91)

» Witten conjecture (proved by Kontsevich) (Witten ’91) (Kontsevich *92)
The above two theories are in fact equivalent.
» The generating function for the intersection numbers obeys

the KdV equations and the string equation.

Q: How is the matrix integral of Saad-Shenker-Stanford understood
in the context of traditional matrix models/topological gravity?



1. Introduction (continued)

Main results

[0 JT gravity is a special case of 2d topological gravity j

_ (=D)*
(k- 1)!

(k > 2)

t():tl:O, tk;

* Multi-boundary correlators of 2d topological gravity
are computed by simply solving the KdV equation

Z3(/617 /623 /63) — Z

g=0

B1
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2. Path integral in J'T gravity (Saad-Shenker-Stanford '19)

* JT gravity is a 2d dilaton gravity given by the action

Iz—;[;/M\/ER-I- WWK] {/\f¢(R+2)+ \/Ecb(K—l)J

~" ~"

~"

topological term sets R = — %ives action
= Sox (M) or boundary

* M has n boundaries of lengths Bi/e, ..., 8./€, where ¢ = v/€ (e — 0)

(We will set
2 ~y=1/27%

Zgzz,n:S (/817 /827 /33) —

B

e We are interested in the correlation functions 3 S sunting

<Z(,81) co Z(Bn))c Z(IB) _ Ty o BH parameter

e~ 5o
— Zn(ﬁl, c oo /Bn) — i Zg’n(’Bl’ R Bn) thermal partition function ( ~ gs )

( eSo ) 2g+n—2 in the boundary theory o
g=0 interpretation



2. Path integral in JT gravity (continued) (Saad-Shenker-Stanford *19)

* The path integral can be evaluated as follows:

B2
b2
B geodesic of bs Eound
oundar
length by Bs action g

|

Zgn(B1y.-osPn) = /d(bulk moduli) /D(boundary Wiggles)efaM Vho(K—1)

— bldbl te bndbnvg,n(bla e b’n) H Z;I(;l;lmpet (6@’ bi)
=1

/\ I
vb;

Weil-Petersson volume N 5 75' exp [_ 25-]
of the moduli space of hyﬁerbolic T i

Riemann surfaces with g handles and »
geodesic boundaries of length b1,...,bx




JT gravity as a matrix integral (Saad-Shenker-Stanford ’19)

[Mirzakhani’s recursion relation} - [Eynard—Orantin “topological}

for Weil-Petersson volumes recursion” formulation
(Mirzakhani ’07) I (Eynard-Orantin ’07)

loop equation for
the matrix integral
 Saad-Shenker-Stanford showed that the JT gravity correlation functions

are consistent with the recursion relation of the matrix integral with the
input

po(FE) = 27? sinh(27+/2vF) <=> y(z) = % sin(27+/27v2)

(leading density of eigenvalues) (spectral curve)

* The input is determined from the JT path integral Z,,,(8) for a disk by

o )

Z()’]_(,B) = /O dEpO(E)e_ﬁE

* This is a “double-scaled” matrix integral as po(E) is not normalizable.



3. JT gravity as a special case of topological gravity — (OkuyamaKs’19)
* Mirzakhani’s (< topological) recursion — a slow algorithm

to compute Vg,1(b) we need to know all the data of

Vomwithg +n<g+1 (n>1)
» Zograf proposed an efhicient algorithm for computing the WP volume

by solving the KdV equation. (Zograf ’08)

» KdV eq. must help us to compute the partition function of JT gravity.
But how?

* KdV equation arises in the study of old matrix models of 2d gravity.

» How is the matrix integral of Saad-Shenker-Stanford understood in
terms of old matrix models?

* S§S’s proposal: p — oo limit of the (2,p) minimal string theory

* We propose another (perhaps more natural) understanding.



General 2d topological gravity (Witten *90) (Witten *91)

Y’ : aclosed Riemann surface of genus g with n marked points p1,...,px

M . : the moduli space of 2.

* Intersection numbers (= correlation functions of 2d topological gravity)

d d,
<’/"’de1 * "Tdn> — /_ ’/"’m'l:bll R PPN | m, d19° ° o 7dn € ZZO
Mg.n

K : the first Miller-Morita-Mumford class o< the Weil-Petersson symplectic form

i : the first Chern class of the complex line bundle whose fiber is the cotangent space to p;

* Generating functions (ra = ¥7)

Gs: {tr}) o= ) 02077 (et EFotam) | F({t}) 1= ) g2972 (X0 tem)
g=0 g=0

g
e G and F are related as (Mulase-Safnuk ’06) (Dijkgraaf-Witten ’18)

G(s, {te}) = F({tx + ves*'})

_1\k
['70:71:07 Ye = (=1) (k22)}

with

(k — 1)!




JT gravity as a special case of 2d topological gravity

* Let us consider the one-boundary partition function of JT gravity

(Z(B)) = e zdik + Z et / bdbZEn™*" (8, b) V.1 (b)
|
where WP volume V5, 1(b) is expressed as ———_ < 22 g b2 ¢1>
g1

(Mirzakhani '07)
* By using the selection rule irzakhani

(kFpt)y1 =0 unless k+1=3g—2

one can evaluate the above integral as

(, _ 9s —2 67" d—+2 29—2 d A
26 = L (e 4 Y s ng ()

d=0

I

84G92" (s = 1, {ty, = 0}) (ad P= Bitd)

I

5 0aF*=" ({tx = w})

* We have thus shown that the partition function of JT gravity is
expressed entirely in terms of the general topological gravity
with couplings turned on with the specific value t,, = v..  (OkuyamaKS’19)




4. Multi-boundary correlators in topological gravity

* The n-boundary correlator of topological gravity is given by

Zn({Bi}s {te}) = B(B1) - - - B(Bn) F({tx})

(The symbol = means that the equality holds up to
an additional non-universal part when 3g-3+n<0.)

(Moore-Seiberg-Staudacher 91)
where

—a] BN g O
B(/B)_gs 271_(1;0/8 at,

“boundary creation operator”



Witten conjecture (Kontsevich theorem)

(Witten ’90, ’91) (Kontsevich 92)

(1) u := 295 F obeys the KdV equations (k = 1: traditional KdV)

Oru = O Ri+1

Ry are the Gelfand-Dikii differential polynomials of u

(o= k)

R 1. R.— R_u2+D§u R_u?’ uDgu
0o — 4 1= U, 2—2 12’ 3—6 12
(2) F obeys the string equation
t2 >
OoF = % + ) tpqy10xF
2gs k=0

These equations uniquely determine F.

(_l)()’l,l,)2 4 Dgu
24 240’
(Dy := gsOk)



Izykson-Zuber variables and polynomial structure (tzykson-Zuber 92)

* Izykson-Zuber introduced variables

Z
= In(uo, {tx}) = th— (n > 0)
£=0 (’Ll,o = agFo)
in which genus expansion of F is neatly formulated:

1 [uo
Fy = 5/ dv(Io (v, {tx}) — v)? (& o = Io)
0 (genus zero string equation)

1
PSR, i R

1 I, 29 I,I5 7 I3
b = s T iy 5
1152 (1 — I;)3 5760 (1 — I;)* ' 1440 (1 — Iy)

[Fg (9 > 2) are polynomials in I, (n > 2) and (1 — Il)—a

(Itzykson-Zuber '92) (Eguchi-Yamada-Yang '95) (Zhang-Zhou ’19)

* In the JT gravity case, I, reduce to numerical values

—1)\"
I0:I1:O, In: ( ) (n>

(n —1)! -

2)



Change of variables (Zograf *08)

* Using the polynomial structure, we have only to solve the traditional

KdV equation to determine Fj.

2

O1u = udou + %Bgu (u = 9§8§F>

* 'To solve it, it is enough to treat # and #1 as independent variables and
regard the rest as parameters.

* Instead of 7o and # let us take
Ug 1= BgFO and t:= (Bpuo) ' =1-1,

as independent variables. In terms of these new variables we have
1
80 = Z(au() — I28t), 81 = u080 — 8,5.

This change of variables (first introduced by Zograf), combined with
the property OuoIln = Int1 (n > 2), enables us to solve the KdV
equation recursively and determine Fy very efficiently.



KdV equation for multi-boundary correlators

e Let us introduce the notation

S t t ’
h:= \g/i’ m::% T := El’ := Op = hOg, "~ := O = hO1
W, = Z/, Wy := F’, u=2W; =2F"

: : : 1 :
* Integrating the KdV equation @ = uu’ + 8fu,’” once in f we have

. 1
Wo= (W2 +gWe" e ()
* Applying B(8) on both sides of this equation we obtain
Wy = uW, + %Wl’”

* Similarly, applying B(81) - -- B(8») on (*) we obtain

ICN

- 1
{Wn(ﬁh-.-,ﬁn) = Z WiyWin_p + 6Wfr,1,”(/817'°°7ﬁn)}

N ={1,2,...,n}, I={iniz....0n} W =Wp(Bi,--\0iy)



GGenus expansion of multi-boundary correlators

* The multi-boundary correlators at genus zero are known

79=%(8) = i\/g/:: dv (Iy(v) — v) eP?

H?:l /B’I, (gsao)”—2eZ?=1 Biuo
(2m)" > ie1 Bi (n 22)

(Ambjorn-Jurkiewicz-Makeenko ’90) (Moore-Seiberg-Staudacher *91)

Z5=°({8:}) =

* By solving the KdV equation for W, with the above initial condition
we are able to compute higher genus corrections efficiently up to any

order. (Okuyama-KS$ *20)

* The results for JT gravity is recovered by simply setting

Io=I1,=0, I,= (=D"
(n —1)!

(n > 2)



5. Other expansions, FZZT branes and applications

* So far we have considered the genus expansion: 3 ~1

[small h expansion, 0 :ﬁnite]

* One can calculate some other expansions by solving the KdV equation.

» ’t Hooft expansion (open string/WKB like) 8~ n™* (Okuyama-K$ *19)

[small h expansion, [ :large, A = hf3: ﬁxed]

» T-scaling limit (suitable for SFF)  Img ~ n™* (Saad-Stanford-Yang-Yao *22)
(Blommaert-Kruthoff-Yao ’22)

(Weber-Haneder-Richter-Urbina ’22)

small i expansion, 3 = B+ it,
~ (Okuyama-KS ’23)
B : finite, t:large, T = th: fixed (Anegawa-Tizuka-
Okuyama-KS§ "23)

» low temperature expansion (Airy like) 8~ A= ?/? (Okuyama-KS$ ’19)

[small T =031 expansion, A:small, h = 75ﬂ3/ 2. ﬁxe(a




Spectral form factor (SFF)
_ (Z(B,t)Z*(B,1t)) g Z(B,t) = Tr(e—ﬁH—th)

g(t)
(Z(B))3 Z(B) = Tr(e~PM)
SYK model Airy gravity (=T gravity)
10° . SYK, N, = 34, 90 samples, B=5, g(t) — | ' disc
0.100 F — disc+conn
107 F i
0.050 —— conn
102 ¢
- plateau
% 103 L 0.010:-
0.005 -
10% F -
107 ¢ 0.001
Time tJ
(Cotler, Gur-Ari, Hanada, Polchinski, Saad, (Okuyama-KS ’20)
Shenker, Stanford, Streicher and Tezuka (Anegawa-lizuka-Okuyama-KS "23)

THEP05(2017)118 [arXiv:1611.04650] Fig.1)

* It was thought that the plateau behavior is due to a doubly
non-perturbative effect. Gravity interpretation was missing.

(Okuyama-KS °20)
(Saad-Stanford-Yang-Yao *22)

» It turns out that the plateau can be derived analytically.  Gimociast o 2

(Weber-Haneder-Richter-Urbina *22)



FZ7'T branes in J'T gravity and topological gravity
* Adding FZZT brane = adding vector degrees of freedom

det(¢ + H) = /dXdX eX(§+H)x

X> X : Grassmann-odd vector variables

e Anti FZZ'T brane

o, ¢ : Grassmann-even (bosonic) vector variables



Eftfect of adding FZZ'T brane in J'T gravity

* We show that (when Re (¢ = 22%) > 0) (Okuyama-KS 21)
<det(s + H) [] Z(ﬁi)>
=1 c
o0 gs29—2—|—n—|—m n oo , , m oo ,
— Z n! H / dbgM(bg) H / b’idbiZtrumpet(/Bia bi)Vg,n-l—m(b ’ b)
g,m=0 ’ 7=1 0 i—1 0
Insertion of an FZZT brane
= Sum over topologies with extra boundaries with factor M(b) = —e™*

(det(& + H)Z(B1)Z(B2)Z(83)). - A~ ~




FZ7'T brane amplitudes in general topological gravity

* For finite N, the correlators of determinant operators are well known
(Morozov ’94) (Brezin-Hikami ’00)

<H det (€ + H>> = o det(Pyyina ().

NXN A(8) I =Lk

2O =[[E-&): [ arVOPLANPR() = hnbum

1<jJ

* In the double scaling limit (i.e. for general topological gravity) we have

<Hdet(£i—|-H)> = Z [ Zng(zk—l)H —2k— 18k F({tk})
2 c n= 0 k=0 1

= F({t+})

Ek = t§ —gs(2k — 1)!!22;2k_1 <§z= %Zf)

(The shift of this kind has been known since the 1980’s and is generated
by the infinitesimal Bicklund transformation for the KdV equation.)

(Date-Jimbo-Kashiwara-Miwa ’82)



Macroscopic loop operators, BA function and CD kernel

* Zix's correspond to macroscopic loop operators

"
Z1(B) = / dx'(z'|eP?|z’) = Tr [ePII]
= (x := h™1tp)
Q := 0? + u, H=/w dx'|x") (x'|
% (Okuyama-KS ’19, 20)
Z2(B1,82) = Tr [6(61+62)QH _ eﬁlQHeﬁzQH}
Z5(B1, B2, Bs) = Tr [6(61+Bz+33)QH 1 eP1QTIeP2QTTel QT + P1QTTe QT 21T
PO (B21+83)QYT _ oB2Q1e(Bs+81)QYT _ eﬁsQHe(ﬁl-l—Bz)QH]

general formula is known (Okuyama ’18)

* This allows us to express Z, in terms of Baker-Akhiezer function ¥ (E)

(o )
Tr(ePQII - - - P+ QUT) = /

— 00

dFE - -- / dE, e 21 PiBiK 2 Kag -+ Kpy

OV (Eq)Y(E2) — 09 (E2)vy(Eq)
—FEq, + Eo

Kij = K(Ei ;) = (BiIIE;) = | da'(Ba)(B;) =
(Christoffel-Darboux kernel) %
Ly = —Evp, =My

> 2 1
(1= [ amiByBl)  p=Q@=0itu, M=101tus.+



General correlators of FZZT branes and macroscopic loops

e For even number of FZZT branes we find (the odd case is similar)
(Okuyama-KS "21)

<H Z(IBz) H \Il(gﬂ)\:[!('rlg)> — det Gdet(K(gu 'r]j))

e A(§)A(n) O (wy0,,)

macroscopic loop

Z(8) — Tr e—#H K(&n) = (nIG[¢)

FZZT brane QlE) = &|E)
V() =det(6+ H) Q=02+u (u=g?d2F)

n:/ dz’ |2’ (|

* Our expression here does not rely
on the genus expansion and thus

, _ =1+AH
can be studied non-perturbatively.



6. Conclusions
* JT gravity is a special case of 2d topological gravity:.

* Multi-boundary correlators of 2d topological gravity are computed by
simply solving the KdV equation.

* The genus expansion of the SFF can be summed up in the 't Hooft and
tau-scaling limits. The ramp and plateau behavior can be studied
analytically.

* The effect of adding FZZT branes is clarified.

Outlook

* Non-perturbative effects
* “Swampland”

e Multi-matrix models



