行列模型の手法によるJT重力研究の進展

酒井 一博 (明治学院大学)

奥山和美さん(信州大学)との共同研究

arXiv:1911.01659, 2004.07555, 2108.03876 (他6編)

姉川尊徳さん(大阪大学)、飯塚則裕さん(大阪大学)、奥山和美さんとの共同研究 arXiv:2303.10314

1. Introduction

• JT gravity is a simple model of 2d dilaton gravity (Jackiw '85, Teitelboim '83)

$$I = -\underbrace{\frac{S_0}{2\pi} \left[\frac{1}{2} \int_{\mathcal{M}} \sqrt{g}R + \int_{\partial \mathcal{M}} \sqrt{h}K \right]}_{\text{topological term}} - \underbrace{\left[\frac{1}{2} \int_{\mathcal{M}} \sqrt{g}\phi(R+2) + \int_{\partial \mathcal{M}} \sqrt{h}\phi(K-1) \right]}_{\text{sets } R = -2}$$
 gives action for boundary

(Throughout this talk we consider Euclidean JT gravity.)

(We follow the notation of Saad-Shenker-Stanford '19)

- It describes the low-energy dynamics of any near-extremal black hole.
- It has revived as a model for the NAdS₂/NCFT₁ correspondence

(Almheiri-Polchinski '14) (Maldacena-Stanford-Yang '16) (Jensen '16) (Engelsöy-Mertens-Verlinde '16)

• Saad-Shenker-Stanford showed that the partition functions of JT gravity correspond to the genus expansion of a double-scaled matrix integral.

(Saad-Shenker-Stanford '19)

1. Introduction (continued)

- 2d quantum gravity has been extensively studied since the 1980's.
 - Double scaled matrix model counting of triangulations of surfaces $\mathcal{Z} = \int dH e^{-N \operatorname{Tr} V(H)} \text{ (Brezin-Kazakov '90) (Douglas-Shenker '90) (Gross-Migdal '90)}$
 - Topological gravity intersection theory on the moduli space of Riemann surfaces (Witten '90) (Witten '91)
- Witten conjecture (proved by Kontsevich) (Witten '91) (Kontsevich '92)

 The above two theories are in fact equivalent.
 - ▶ The generating function for the intersection numbers obeys the KdV equations and the string equation.
- Q: How is the matrix integral of Saad-Shenker-Stanford understood in the context of traditional matrix models/topological gravity?

1. Introduction (continued)

Main results

• JT gravity is a special case of 2d topological gravity

$$t_0=t_1=0,\quad t_k=rac{(-1)^k}{(k-1)!}\quad (k\geq 2)$$

• Multi-boundary correlators of 2d topological gravity are computed by simply solving the KdV equation

Plan of the talk

1. Introduction

2. Path integral in JT gravity (review)

3. JT gravity as a special case of topological gravity

4. Genus expansion of multi-boundary correlators

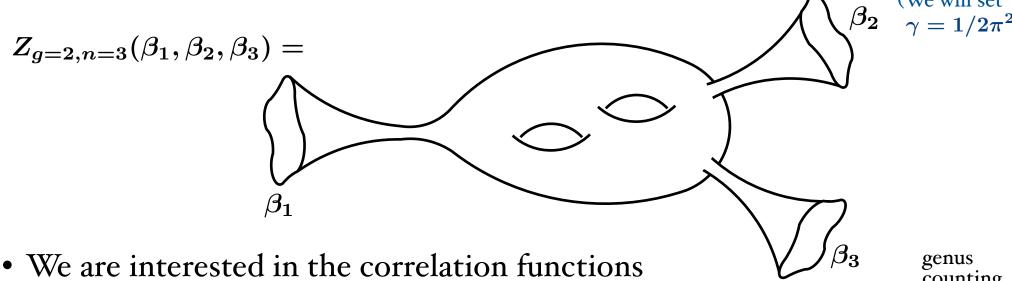
5. Other expansions, FZZT branes and applications

6. Conclusions and outlook

- 2. Path integral in JT gravity
- JT gravity is a 2d dilaton gravity given by the action

$$I = -\underbrace{\frac{S_0}{2\pi} \left[\frac{1}{2} \int_{\mathcal{M}} \sqrt{g}R + \int_{\partial \mathcal{M}} \sqrt{h}K \right]}_{\text{topological term}} - \underbrace{\left[\frac{1}{2} \int_{\mathcal{M}} \sqrt{g}\phi(R+2) + \int_{\partial \mathcal{M}} \sqrt{h}\phi(K-1) \right]}_{\text{sets } R = -2}$$
 gives action for boundary

• \mathcal{M} has n boundaries of lengths $\beta_1/\epsilon, \ldots, \beta_n/\epsilon$, where $\phi = \gamma/\epsilon \ (\epsilon \to 0)$



$$\langle Z(eta_1)\cdots Z(eta_n)
angle_{
m c} \ = Z_n(eta_1,\ldots,eta_n) = \sum_{g=0}^{\infty} rac{Z_{g,n}(eta_1,\ldots,eta_n)}{(e^{S_0})^{2g+n-2}}$$

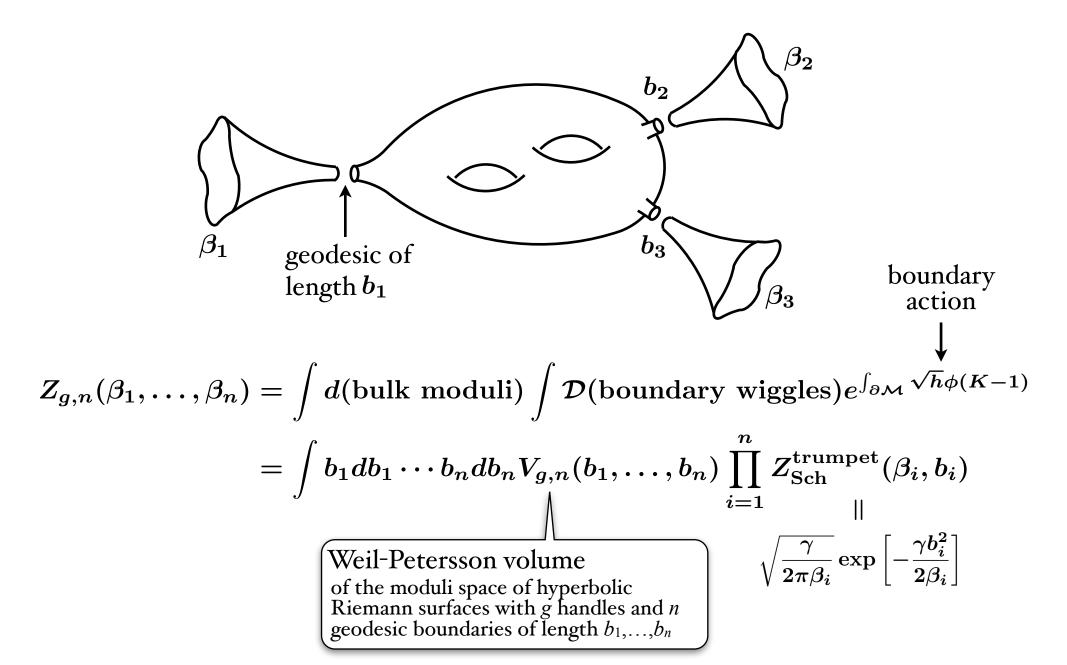
$$Z(\beta) = \operatorname{Tr} e^{-\beta H}$$

thermal partition function
in the boundary theory
interpretation

counting parameter $\sim g_{
m s}$

(Saad-Shenker-Stanford '19)

• The path integral can be evaluated as follows:



Mirzakhani's recursion relation for Weil-Petersson volumes

Eynard-Orantin "topological recursion" formulation

|| (Eynard-Orantin '07)

loop equation for the matrix integral

(Mirzakhani '07)

• Saad-Shenker-Stanford showed that the JT gravity correlation functions are consistent with the recursion relation of the matrix integral with the input

$$ho_0(E)=rac{\gamma}{2\pi^2}\sinh(2\pi\sqrt{2\gamma E})$$
 \iff $y(z)=rac{\gamma}{2\pi}\sin(2\pi\sqrt{2\gamma}z)$ (leading density of eigenvalues) (spectral curve)

• The input is determined from the JT path integral $Z_{0,1}(\beta)$ for a disk by

$$Z_{0,1}(eta) = \int_0^\infty dE
ho_0(E) e^{-eta E}$$

• This is a "double-scaled" matrix integral as $\rho_0(E)$ is not normalizable.

- 3. JT gravity as a special case of topological gravity (Okuyama-KS '19)
- Mirzakhani's (\Leftrightarrow topological) recursion a slow algorithm to compute $V_{g,1}(b)$ we need to know all the data of $V_{g',n}$ with $g'+n \leq g+1 \quad (n \geq 1)$
- Zograf proposed an efficient algorithm for computing the WP volume by solving the KdV equation. (Zograf '08)
 - ▶ KdV eq. must help us to compute the partition function of JT gravity. But how?
- KdV equation arises in the study of old matrix models of 2d gravity.
 - ▶ How is the matrix integral of Saad-Shenker-Stanford understood in terms of old matrix models?
 - SSS's proposal: $p \to \infty$ limit of the (2,p) minimal string theory
 - We propose another (perhaps more natural) understanding.

 Σ : a closed Riemann surface of genus g with n marked points $p_1,...,p_n$

 $\mathcal{M}_{g,n}$: the moduli space of Σ

• Intersection numbers (= correlation functions of 2d topological gravity)

$$\langle \kappa^m au_{d_1} \cdots au_{d_n} \rangle = \int_{\overline{\mathcal{M}}_{q,n}} \kappa^m \psi_1^{d_1} \cdots \psi_n^{d_n}, \qquad m, d_1, \ldots, d_n \in \mathbb{Z}_{\geq 0}$$

 κ : the first Miller-Morita-Mumford class \propto the Weil-Petersson symplectic form ψ_i : the first Chern class of the complex line bundle whose fiber is the cotangent space to p_i

Generating functions

$$\left(au_d=\psi^d
ight)$$

$$G(s,\{t_k\}) := \sum_{g=0}^{\infty} g_{\mathrm{s}}^{2g-2} \left\langle e^{s\kappa + \sum_{d=0}^{\infty} t_d au_d}
ight
angle_g, \quad F(\{t_k\}) := \sum_{g=0}^{\infty} g_{\mathrm{s}}^{2g-2} \left\langle e^{\sum_{d=0}^{\infty} t_d au_d}
ight
angle_g$$

• G and F are related as

(Mulase-Safnuk '06) (Dijkgraaf-Witten '18)

with

$$G(s, \{t_k\}) = F(\{t_k + \gamma_k s^{k-1}\})$$

$$\gamma_0 = \gamma_1 = 0, \quad \gamma_k = rac{(-1)^k}{(k-1)!} \quad (k \geq 2)$$

JT gravity as a special case of 2d topological gravity

• Let us consider the one-boundary partition function of JT gravity

$$\langle Z(\beta)
angle = e^{S_0} Z_{\mathrm{Sch}}^{\mathrm{disk}} + \sum_{g=1}^{\infty} e^{(1-2g)S_0} \int_0^{\infty} b db Z_{\mathrm{Sch}}^{\mathrm{trumpet}}(\beta, b) \underline{V_{g,1}(b)}$$
 where WP volume $V_{g,1}(b)$ is expressed as $\langle e^{2\pi^2 \kappa + \frac{b^2}{2} \psi_1} \rangle_{g,1}$

• By using the selection rule

$$\langle \kappa^k \psi_1^l \rangle_{g,1} = 0$$
 unless $k + l = 3g - 2$

one can evaluate the above integral as

$$\begin{split} \langle Z(\beta) \rangle &= \frac{g_{\mathrm{s}}}{\sqrt{2\pi}\beta^{3/2}} \bigg(g_{\mathrm{s}}^{-2} e^{\beta^{-1}} + \sum_{d=0}^{\infty} \beta^{d+2} \sum_{\underline{g=1}}^{\infty} g_{\mathrm{s}}^{2g-2} \langle e^{\kappa} \psi_{1}^{d} \rangle_{g,1} \bigg) \\ & \qquad \qquad \parallel \\ \partial_{d} G^{g \geq 1} (s = 1, \{t_{k} = 0\}) \\ & \qquad \qquad \parallel \\ \partial_{d} F^{g \geq 1} (\{t_{k} = \gamma_{k}\}) \end{split} \quad \left(\partial_{d} := \frac{\partial}{\partial t_{d}} \right) \end{split}$$

 We have thus shown that the partition function of JT gravity is expressed entirely in terms of the general topological gravity with couplings turned on with the specific value $t_k = \gamma_k$. (Okuyama-KS '19)

4. Multi-boundary correlators in topological gravity

• The *n*-boundary correlator of topological gravity is given by

$$Z_n(\{\beta_i\},\{t_k\}) \simeq B(\beta_1)\cdots B(\beta_n)F(\{t_k\})$$

(The symbol \simeq means that the equality holds up to an additional non-universal part when 3g-3+n<0.)

(Moore-Seiberg-Staudacher '91)

where

$$B(eta) = g_{
m s} \sqrt{rac{eta}{2\pi}} \sum_{d=0}^{\infty} eta^d rac{\partial}{\partial t_d}.$$

"boundary creation operator"

Witten conjecture (Kontsevich theorem) (Witten '90, '91) (Kontsevich '92)

(1) $u := g_s^2 \partial_0^2 F$ obeys the KdV equations (k = 1: traditional KdV)

$$\partial_k u = \partial_0 \mathcal{R}_{k+1}$$
 $\left(\partial_k := \frac{\partial}{\partial t_k}\right)$

 \mathcal{R}_k are the Gelfand-Dikii differential polynomials of u

$$\mathcal{R}_0 = 1, \quad \mathcal{R}_1 = u, \quad \mathcal{R}_2 = rac{u^2}{2} + rac{D_0^2 u}{12}, \quad \mathcal{R}_3 = rac{u^3}{6} + rac{u D_0^2 u}{12} + rac{(D_0 u)^2}{24} + rac{D_0^4 u}{240}, \quad \cdots . \ egin{aligned} (D_k := g_{
m s} \partial_k) \end{aligned}$$

(2) F obeys the string equation

$$\partial_0 F = rac{t_0^2}{2g_{
m s}^2} + \sum_{k=0}^\infty t_{k+1} \partial_k F$$

These equations uniquely determine F.

Izykson-Zuber variables and polynomial structure (Itzykson-Zuber '92)

Izykson-Zuber introduced variables

$$I_n = I_n(u_0, \{t_k\}) = \sum_{\ell=0}^{\infty} t_{n+\ell} \frac{u_0^{\ell}}{\ell!} \quad (n \ge 0)$$
 $(u_0 := \partial_0^2 F_0)$

in which genus expansion of F is neatly formulated:

$$F_0 = rac{1}{2} \int_0^{u_0} dv (I_0(v,\{t_k\}) - v)^2 \quad (\Leftrightarrow \ u_0 = I_0) \ ext{(genus zero string equation)}$$
 $F_1 = -rac{1}{24} \log(1 - I_1)$ $F_2 = rac{1}{1152} rac{I_4}{(1 - I_1)^3} + rac{29}{5760} rac{I_2 I_3}{(1 - I_1)^4} + rac{7}{1440} rac{I_2^3}{(1 - I_1)^5}$

$$F_g$$
 $(g \ge 2)$ are polynomials in I_n $(n \ge 2)$ and $(1 - I_1)^{-1}$

(Itzykson-Zuber '92) (Eguchi-Yamada-Yang '95) (Zhang-Zhou '19)

• In the JT gravity case, I_n reduce to numerical values

$$I_0=I_1=0,\quad I_n=rac{(-1)^n}{(n-1)!}\;(n\geq 2)$$

• Using the polynomial structure, we have only to solve the traditional KdV equation to determine F_g .

$$\partial_1 u = u \partial_0 u + rac{g_{
m s}^2}{12} \partial_0^3 u \qquad \qquad \left(u = g_{
m s}^2 \partial_0^2 F
ight)$$

- To solve it, it is enough to treat t_0 and t_1 as independent variables and regard the rest as parameters.
- Instead of t_0 and t_1 let us take

$$u_0 := \partial_0^2 F_0$$
 and $t := (\partial_0 u_0)^{-1} = 1 - I_1$

as independent variables. In terms of these new variables we have

$$\partial_0 = rac{1}{t}(\partial_{u_0} - I_2 \partial_t), \qquad \partial_1 = u_0 \partial_0 - \partial_t.$$

This change of variables (first introduced by Zograf), combined with the property $\partial_{u_0} I_n = I_{n+1}$ $(n \ge 2)$, enables us to solve the KdV equation recursively and determine F_g very efficiently.

KdV equation for multi-boundary correlators

Let us introduce the notation

$$egin{align} \hbar := rac{g_{\mathrm{s}}}{\sqrt{2}}, \quad x := rac{t_0}{\hbar} \quad au := rac{t_1}{\hbar}, \quad ' := \partial_x = \hbar \partial_0, \quad \vdots := \partial_ au = \hbar \partial_1 \ W_n := Z_n', \qquad W_0 := F', \qquad u = 2W_0' = 2F'' \ \end{align}$$

• Integrating the KdV equation $\dot{u} = uu' + \frac{1}{6}u'''$ once in t_0 we have

$$\dot{W}_0 = (W_0')^2 + \frac{1}{6}W_0''' \qquad \cdots \ (*)$$

• Applying $B(\beta)$ on both sides of this equation we obtain

$$\dot{W}_1 = uW_1' + rac{1}{6}W_1'''$$

• Similarly, applying $B(\beta_1) \cdots B(\beta_n)$ on (*) we obtain

$$egin{aligned} \dot{W}_n(eta_1,\ldots,eta_n) &= \sum_{I\subset N} W'_{|I|}W'_{|N-I|} + rac{1}{6}W'''_n(eta_1,\ldots,eta_n) \end{aligned}$$

$$N = \{1, 2, \ldots, n\}, \quad I = \{i_1, i_2, \ldots, i_{|I|}\}, \quad W'_{|I|} = W'_{|I|}(eta_{i_1}, \ldots, eta_{i_{|I|}})$$

Genus expansion of multi-boundary correlators

• The multi-boundary correlators at genus zero are known

$$Z_1^{g=0}(eta) = rac{1}{g_{
m s}}\sqrt{rac{eta}{2\pi}}\int_{-\infty}^{u_0}dv\left(I_0(v)-v
ight)e^{eta v}$$

$$Z_n^{g=0}(\{eta_i\}) = \sqrt{rac{\prod_{i=1}^n eta_i}{(2\pi)^n}} rac{(g_{
m s}\partial_0)^{n-2} e^{\sum_{i=1}^n eta_i u_0}}{\sum_{i=1}^n eta_i} \quad (n \ge 2)$$

(Ambjørn-Jurkiewicz-Makeenko '90) (Moore-Seiberg-Staudacher '91)

- By solving the KdV equation for W_n with the above initial condition we are able to compute higher genus corrections efficiently up to any order.

 (Okuyama-KS '20)
- The results for JT gravity is recovered by simply setting

$$I_0=I_1=0,\quad I_n=rac{(-1)^n}{(n-1)!}\;(n\geq 2)$$

5. Other expansions, FZZT branes and applications

• So far we have considered the genus expansion: $\beta \sim 1$

small \hbar expansion, β : finite

- One can calculate some other expansions by solving the KdV equation.
 - 't Hooft expansion (open string/WKB like) $\beta \sim \hbar^{-1}$ (Okuyama-KS '19)

small \hbar expansion, β : large, $\lambda = \hbar \beta$: fixed

• τ -scaling limit (suitable for SFF) Im $\beta \sim \hbar^{-1}$

$$\operatorname{Im} \beta \sim \hbar^{-1}$$

$$egin{aligned} & ext{small } \hbar ext{ expansion,} & eta & = ilde{eta} + ext{i} t \,, \ & ilde{eta} : ext{finite,} & t : ext{large,} & oldsymbol{ au} & = t \hbar : ext{fixed} \end{aligned}$$

(Saad-Stanford-Yang-Yao '22)

(Blommaert-Kruthoff-Yao '22)

(Weber-Haneder-Richter-Urbina '22)

(Okuyama-KS '23)

(Anegawa-Iizuka-

Okuyama-KS '23)

• low temperature expansion (Airy like) $\beta \sim \hbar^{-2/3}$

$$\beta \sim \hbar^{-2/}$$

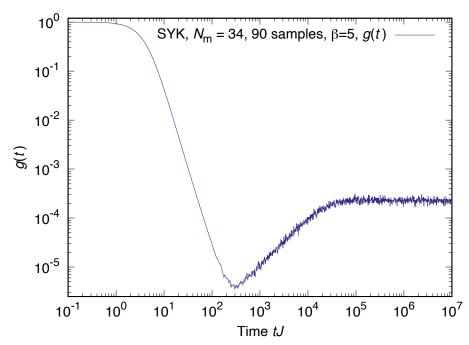
(Okuyama-KS '19)

small $T = \beta^{-1}$ expansion, \hbar : small, $h = \hbar \beta^{3/2}$: fixed

Spectral form factor (SFF)

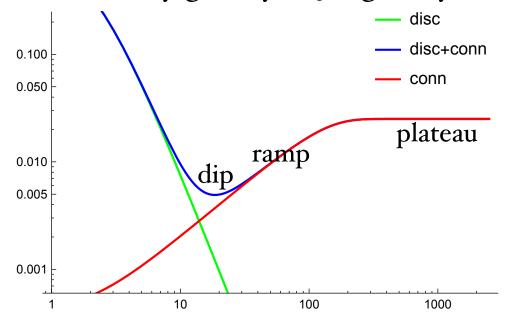
$$g(t) = rac{\langle Z(eta,t)Z^*(eta,t)
angle_J}{\langle Z(eta)
angle_J^2} \qquad egin{aligned} Z(eta,t) &= \mathrm{Tr}(e^{-eta H - iHt}) \ Z(eta) &= \mathrm{Tr}(e^{-eta H}) \end{aligned}$$

SYK model



(Cotler, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher and Tezuka JHEP05(2017)118 [arXiv:1611.04650] Fig.1)

Airy gravity (≈ JT gravity)



(Okuyama-KS '20) (Anegawa-Iizuka-Okuyama-KS '23)

- It was thought that the plateau behavior is due to a doubly non-perturbative effect. Gravity interpretation was missing.
- ▶ It turns out that the plateau can be derived analytically.

(Okuyama-KS '20) (Saad-Stanford-Yang-Yao '22) (Blommaert-Kruthoff-Yao '22) (Weber-Haneder-Richter-Urbina '22)

FZZT branes in JT gravity and topological gravity

• Adding FZZT brane = adding vector degrees of freedom

$$\det(\xi+H)=\int d\chi dar\chi\,e^{ar\chi(\xi+H)\chi}$$

 $\chi, \bar{\chi}$: Grassmann-odd vector variables

• Anti FZZT brane

$$\det(\xi + H)^{-1} = \int d\phi d\bar{\phi} \, e^{\bar{\phi}(\xi + H)\phi}$$

 $\phi, \bar{\phi}$: Grassmann-even (bosonic) vector variables

Effect of adding FZZT brane in JT gravity

• We show that (when $\mathrm{Re}\,(\xi=\frac{1}{2}z^2)>0$)

(Okuyama-KS '21)

$$egin{aligned} \left\langle \det(\xi+H) \prod_{i=1}^m Z(eta_i)
ight
angle_{
m c} \ &= \sum_{g,n=0}^\infty rac{g_{
m s}^{2g-2+n+m}}{n!} \prod_{j=1}^n \int_0^\infty db_j' \mathcal{M}(b_j') \prod_{i=1}^m \int_0^\infty b_i db_i Z_{
m trumpet}(eta_i,b_i) V_{g,n+m}(b',b) \end{aligned}$$

Insertion of an FZZT brane

= Sum over topologies with extra boundaries with factor $\mathcal{M}(b) = -e^{-zb}$

$$\langle \det(\boldsymbol{\xi} + \boldsymbol{H}) Z(\beta_1) Z(\beta_2) Z(\beta_3) \rangle_{\mathbf{c}}$$

$$= \sum_{g} \sum_{\beta_1} \dots \sum_{\beta_2} \dots \sum_{\beta_3} \dots \sum_{\beta_3}$$

FZZT brane amplitudes in general topological gravity

• For finite *N*, the correlators of determinant operators are well known (Morozov '94) (Brezin-Hikami '00)

$$\left\langle \prod_{i=1}^k \det(\xi+H)
ight
angle_{N imes N} = rac{1}{\Delta(\xi)} \detigl(P_{N+i-1}(\xi_j)igr)_{i,j=1,...,k}$$

$$\Delta(\xi) = \prod_{i < j} (\xi_i - \xi_j), \qquad \int d\lambda e^{-V(\lambda)} P_n(\lambda) P_m(\lambda) = h_n \delta_{n,m}$$

• In the double scaling limit (i.e. for general topological gravity) we have

$$egin{align} \left\langle \prod_i \det(\xi_i + H)
ight
angle_{\mathrm{c}} &= \sum_{n=0}^{\infty} rac{1}{n!} \left[-\sum_{k=0}^{\infty} \sum_i g_{\mathrm{s}}(2k-1)!! z_i^{-2k-1} \partial_k
ight]^n F(\{t_k\}) \ &= F(\{\tilde{t}_k\}) \end{aligned}$$

$$ilde{t}_k = t_k - g_{
m s}(2k-1)!! \sum_i z_i^{-2k-1} \qquad \qquad \left(\xi_i = rac{1}{2} z_i^2
ight)$$

(The shift of this kind has been known since the 1980's and is generated by the infinitesimal Bäcklund transformation for the KdV equation.)

Macroscopic loop operators, BA function and CD kernel

• Z_n 's correspond to macroscopic loop operators

$$Z_1(\beta) = \int_{-\infty}^x dx' \langle x'|e^{\beta Q}|x'\rangle = \operatorname{Tr}\left[e^{\beta Q}\Pi\right] \qquad (x := \hbar^{-1}t_0)$$

$$Q := \partial_x^2 + u, \quad \Pi = \int_{-\infty}^x dx'|x'\rangle \langle x'| \qquad \text{(Okuyama-KS '19, '20)}$$

$$Z_2(\beta_1,\beta_2) = \operatorname{Tr}\left[e^{(\beta_1+\beta_2)Q}\Pi - e^{\beta_1 Q}\Pi e^{\beta_2 Q}\Pi\right]$$

$$Z_3(\beta_1,\beta_2,\beta_3) = \operatorname{Tr}\left[e^{(\beta_1+\beta_2+\beta_3)Q}\Pi + e^{\beta_1 Q}\Pi e^{\beta_2 Q}\Pi e^{\beta_3 Q}\Pi + e^{\beta_1 Q}\Pi e^{\beta_3 Q}\Pi e^{\beta_2 Q}\Pi - e^{\beta_1 Q}\Pi e^{(\beta_2+\beta_3)Q}\Pi - e^{\beta_2 Q}\Pi e^{(\beta_3+\beta_1)Q}\Pi - e^{\beta_3 Q}\Pi e^{(\beta_1+\beta_2)Q}\Pi\right]$$

$$= e^{\beta_1 Q}\Pi e^{(\beta_2+\beta_3)Q}\Pi - e^{\beta_2 Q}\Pi e^{(\beta_3+\beta_1)Q}\Pi - e^{\beta_3 Q}\Pi e^{(\beta_1+\beta_2)Q}\Pi$$

$$= e^{\beta_1 Q}\Pi e^{(\beta_2+\beta_3)Q}\Pi - e^{\beta_2 Q}\Pi e^{(\beta_3+\beta_1)Q}\Pi - e^{\beta_3 Q}\Pi e^{(\beta_1+\beta_2)Q}\Pi$$

$$= e^{\beta_1 Q}\Pi e^{(\beta_2+\beta_3)Q}\Pi - e^{\beta_2 Q}\Pi e^{(\beta_3+\beta_1)Q}\Pi - e^{\beta_3 Q}\Pi e^{(\beta_1+\beta_2)Q}\Pi$$

$$= e^{\beta_1 Q}\Pi e^{(\beta_2+\beta_3)Q}\Pi - e^{\beta_2 Q}\Pi e^{(\beta_3+\beta_1)Q}\Pi - e^{\beta_3 Q}\Pi e^{(\beta_1+\beta_2)Q}\Pi$$

$$= e^{\beta_1 Q}\Pi e^{(\beta_2+\beta_3)Q}\Pi - e^{\beta_2 Q}\Pi e^{(\beta_3+\beta_1)Q}\Pi - e^{\beta_3 Q}\Pi e^{(\beta_1+\beta_2)Q}\Pi$$

$$= e^{\beta_1 Q}\Pi e^{(\beta_2+\beta_3)Q}\Pi - e^{\beta_2 Q}\Pi e^{(\beta_3+\beta_1)Q}\Pi - e^{\beta_3 Q}\Pi e^{(\beta_1+\beta_2)Q}\Pi$$

$$= e^{\beta_1 Q}\Pi e^{(\beta_2+\beta_3)Q}\Pi - e^{\beta_2 Q}\Pi e^{(\beta_3+\beta_1)Q}\Pi - e^{\beta_3 Q}\Pi e^{(\beta_1+\beta_2)Q}\Pi$$

$$= e^{\beta_1 Q}\Pi e^{(\beta_2+\beta_3)Q}\Pi - e^{\beta_2 Q}\Pi e^{(\beta_3+\beta_1)Q}\Pi - e^{\beta_3 Q}\Pi e^{(\beta_1+\beta_2)Q}\Pi$$

• This allows us to express Z_n in terms of Baker-Akhiezer function $\psi(E)$

$$\operatorname{Tr}(e^{\beta_1 Q}\Pi \cdots e^{\beta_n Q}\Pi) = \int_{-\infty}^{\infty} dE_1 \cdots \int_{-\infty}^{\infty} dE_n \, e^{-\sum_{i=1}^n \beta_i E_i} K_{12} K_{23} \cdots K_{n1}$$

$$K_{ij} \equiv K(E_i, E_j) = \langle E_i | \Pi | E_j \rangle = \int_{-\infty}^{x} dx' \psi(E_i) \psi(E_j) = \frac{\partial_x \psi(E_1) \psi(E_2) - \partial_x \psi(E_2) \psi(E_1)}{-E_1 + E_2}$$

$$(\operatorname{Christoffel-Darboux kernel})$$

$$L\psi = -E\psi, \quad \dot{\psi} = M\psi$$

$$\left(1 = \int_{-\infty}^{\infty} dE_i | E_i \rangle \langle E_i | \right) \qquad L = Q = \partial_x^2 + u, \qquad M = \frac{2}{3} \partial_x^3 + u \partial_x + \frac{1}{2} u'$$

General correlators of FZZT branes and macroscopic loops

• For even number of FZZT branes we find (the odd case is similar)

(Okuyama-KS '21)

$$\left\langle \prod_{i=1}^n Z(eta_i) \prod_{j=1}^k \Psi(\xi_j) \Psi(\eta_j)
ight
angle = \det G rac{\det \left(ilde{K}(\xi_i, \eta_j)
ight)}{\Delta(\xi) \Delta(\eta)} igg|_{\mathcal{O}(w_1 \cdots w_n)}$$

macroscopic loop

$$Z(\beta) = \operatorname{Tr} e^{-\beta H}$$

FZZT brane

$$\Psi(\xi) = \det(\xi + H)$$

• Our expression here does not rely on the genus expansion and thus can be studied non-perturbatively.

$$egin{aligned} ilde{K}(\xi,\eta) &= \langle \eta | \Pi G^{-1} | \xi
angle \ Q | \xi
angle &= \xi | \xi
angle \ Q &= \partial_x^2 + u \qquad (u = g_{
m s}^2 \partial_0^2 F) \ \Pi &= \int_{-\infty}^x dx' | x'
angle \langle x' | \ G &= 1 + A \Pi \ A &= -1 + \prod_{i=1}^n \left(1 + w_i e^{eta_i Q}
ight) \ \Delta(\xi) &= \prod (\xi_i - \xi_j) \end{aligned}$$

6. Conclusions

- JT gravity is a special case of 2d topological gravity.
- Multi-boundary correlators of 2d topological gravity are computed by simply solving the KdV equation.
- The genus expansion of the SFF can be summed up in the 't Hooft and tau-scaling limits. The ramp and plateau behavior can be studied analytically.
- The effect of adding FZZT branes is clarified.

Outlook

- Non-perturbative effects
- "Swampland"
- Multi-matrix models