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Introduction

® [-duality: physical equivalence between different spacetimes

® A well-known example of T-duality is the relation between the
NS5-brane and the Taub-NUT.



T-duality: well-known example

NS5-brane Taub-NUT
bi-hypercomplex hyperkahler
(Ja,i’ a)a,i’ g’ B) (]aa a)aa g)

® A well-known example of T-duality is the relation between the NS5-brane
and the Taub-NUT.

® Ihe Taub-NUT space has a hyperkahler structure.

® It is known that the NSb5-brane has a bi-hypercomplex structure.



Bi-hypercomplex structure

® Let M be a 4n-dimensional differentiable manifold.

e [he bi-hypercomplex structure on M is (J, ., @, ., g) satisfying the

following conditions.

p Each J, . is an integrable almost complex structure on M.
p Each of {J, } and {J,_} satisfies a quaternion algebra.
» J,. and J, _ are commutative: [J, ., J, ] =0.

p g is a Hermitian metric for each J ..

p @, is a fundamental 2-form satistying condition @, + = — gJ, ;.



T-duality: Taub-NUT and 5%—brane

NS5-brane Taub-NUT 5%—brane
bi-hypercomplex hyperkahler 77
(Ja,i’ a)a,i’ 8> B) (‘]cp a)a’ g) 7?

® It is known that making another isometry on the Taub-NUT and applying
T-duality yields a 5%—brane

® | he metric, B-field, and dilaton of the 5%—brane are known, but its

geometric structure is not well-known

® Ihe 5%—brane has strange properties



T-fold: 5%—brane

[de Boer-Shigemori, 1004.2521, 1209.6056]

Taub-NUT space ds* = Hdx,, + H™'(dx; + A, dx')?
T-duality transformation (Buscher rule) along x*
g/ — g —_— giygjy _ Binjy g/ o @ g’ = L
] ] gyy Ly gyy yy gyy
B8y — 8B, 8iy 1
B, =B, — Yoy O B =22 b =d——logg..
] ] gyy Ly gyy b yy
5%—brane geometry
A H
ds* =H dx122 + dx324, B=-— S dx3 A dx®, e*? = 2% :
H? + Az H? + A3 H? + A3



T-fold: 5%—brane

[de Boer-Shigemori, 1004.2521, 1209.6056]

H 1
0=0: —
H>+A; H
H H

9=27Z': =

H>+ A2  H?+ (270)?

® [he geometry of 5%—brane IS

torus fibered

® [he torus radii do not match
at 0 =0 and 27

® This geometry has a
monodromy

® This monodromy is neither a
diffeo. nor a B-field gauge
transformation



T-fold: 5%—brane

[de Boer-Shigemori, 1004.2521, 1209.6056]

@ Ilhe 5% monodromy is clearly evaluated in O(D, D) covariant form

® [he metric and B-fields are combined into an O(D, D) covariant form called the

g—Bg~'B Bg!
H = —1 —1
—g B g

generalized metric:

» generalized metric for 55 at 6 = 0:

HS 0 0 0

0 H'§ 0 0

HE=0)=| , 0 H-§ 0
0 0 0 H¢

p generalized metric for 55 at 6 = 2

Ho 0 0 0
0 H 16 0 2roH e
HO=2m =19 o H 0

0 H 1'% 0 (H + (2mo)*H~1)6



T-fold: 5%—brane

[de Boer-Shigemori, 1004.2521, 1209.6056]

@ Ilhe 5% monodromy is clearly evaluated in O(D, D) covariant form

® [he metric and B-fields are combined into an O(D, D) covariant form called the

g—Bg~'B Bg!
H = —1 —1
—g B g

generalized metric:

» generalized metric for 55 at 6 = 0:

Ho 0 0 0
0 H 16 0 0
7—[(9—0)— 0 0 H 15 0
0 0 0 Ho
p generalized metric for 55 at 6 = 2
) 0 0O O Ho 0 0 0 o 0 O 0
0 ) 0 O 0 H Y 0 0 0 & 0 2moe
HO=2m) =10 ¢ 4 ¢ 0 0 H% 0 006 O
) 0 0 0 Ho 0O 0 O

0 —2moe 0

T— O(D, D) matrix known as the fS-shift —T



T-fold: 5%—brane

® |he 5%—brane monodromy is an O(D, D) transformation
p the charts are glued together by T-duality — T-fold [Hull "04]
@ Ihe 5% should have a bi-hypercomplex structure as required by SUSY

® It is expected that the bi-hypercomplex structure also has a
monodromy

® Combining these geometric structures into O(D, D) covariant form

p generalized (hyper)Kahler structure



T-duality b/w Kahler and bi-Hermitian



T-duality b/w (J,w) and (J., w.)

® Here, we derive the T-duality transformation rule for geometric structures
® We focus on the Kahler and bi-Hermitian structures

® The relation b/w the hyperkdhler and bi-hypercomplex structures can be
considered in the same way as in the following discussion

® O(D, D) covariant form: generalized Kahler structure

T+ = leB (jj+ + 75+ T, F jw_)e—B

Depending on how to

take the D-dimensional
D-dimensional section sections, a Kihler or bi-

Hermitian structures

Kahler structure bi-Hermitian structure can be obtained.




T-duality b/w (J,w) and (J., w.)

® Using the generalized Kahler structure, we derive the T-duality
transformation rule for geometric structures

T-duality transformation from the Kahler (J, w) [Hassan '95][Kimura-Sasaki-KS '22]
to the bi-hermitian structure (J, ®..): [Blair-Hulik-Sevrin-Thompson '22]
Ji g Ji
N / yoyj g Y — Ny
(Ji)lj — ]l] — . (Ji)ly - 4+, (]i)yj ==t a)yja (Ji)yy — 09
gyy gyy
/ Diy8yj t 8iyDyj / _ Wi
(wi)ij — a)ij o ’ (a)i)iy -+ .
8yy Eyy

® The above transformation rules have been studied previously using the

supersymmetric sigma models, but we can systematically derive them by using our
O(D, D) covariant formulation

® In general, a bi-Hermitian structure maps to a bi-Hermitian structure by T-duality;
the Kahler structure is a special case where the J, and J_ are degenerate



- 2
(Almost) bi-hypercomplex structure of 5;

@ Using the analogue of the Buscher rule, we can derive the 5% (almost) bi-

hypercomplex structure from the hyperkahler structure of the Taub-NUT
[Kimura-Sasaki-KS, to appear]

( 0 0 AgK' —HK! (0 0 —AgK™! —HK—l\
oo o HEKT Akt [0 0 —HKEl A
L= | —4s -H 0 0 R VTR 0 0 ’
\E A5 0 0 ) \H 45 0 0 )
_ (0 0 —HE' 4K [0 0  HE  —AgK
bi-hypercomplex o0 0 AsxTt —HE! | 0 0 —AskTt —HE!
2T | g — A 0 0 27 | -H Ag 0 0 ’
structure KAS H 0 0 ) \Ag H 0 0 )
0 -1 0 0 0 -1 0 0
1 0 0 0 1 0 0 0
_ _ 172 L A2
B+=1o 0o o 1| B-=10 0 0 -1 K= H"+ A
0 0 -1 0 0 0 1 0
[0 0 —As H ( 0 0 As H \
o | 0 0 —H —As ol 0 0 H -4
e =HE 4 om0 0 | T HE T g —n o0 0 |
\-H A5 0 0 ) \-H 45 0 0 )
corresponding [0 0 H 4 (00 —H A
o4 0 0 -4y H |l 0o o 4 H
fundamental w2,+_HK —H AS 0 0 ) wa,— = HK \H _A8 0 0 )
—As —H 0 0 —As —H 0 0
2-forms \~4: / ’ /
0 H 0 0 0 H 0 0
~H 0 0 0 |-H o0 0 0
“+=lo o o -—HK'|]" ““~T[o0o o 0o HK
0 0 HK™' 0 0 0 —-HK' 0



Monodromy of (J, ., w, ) In 55-brane

@ |t is expected that the bi-hypercomplex structure of the 5%—brane also has a

monodromy, as well as the metric and B-fields

® \We examine the monodromy using a generalized hyperkahler structure that
combines the bi-hypercomplex structure into the O(D, D) covariant form

® A result was obtained as follows, explicitly showing that the bi-hypercomplex

2
structure of the 55-brane has a monodromy [Kimura-Sasaki-KS, to appear]

\7(%) Q_ 27n7(0) Qor, jg(,zf) — Q—zwjg(gzﬁzm j3(72_|7_r) Q_ 2wj(0)92w7
(QW) 27n71(0) Qor, 2(,2_7T) = Q—Qﬁjg(?_)QQwa \7(2_@ j(ol

QQW — (é —16) B =




Application: Worldsheet Instantons



Worldsheet instantons

[Wen-Witten ‘86]

® A worldsheet instanton spacetime
is a mapping from a

worldsheet with S? X (o) Y
. ﬁ
topology to a 2-cycle in mapping c

the target space

® [ his map is classified by q2 C, ~ §?
the homotopy group
m(S?) =7

string worldsheet 2-cycle in spacetime

@ [his map satisfies the worldsheet instanton eq.: dX* + J¥ *dX" =0

p J?

— 1 : complex structure of spacetime

® [ he worldsheet instantons contribute to the string scattering amplitude
as non-perturbative effects of a’ < a “stringy” nature of spacetime



Worldsheet instantons in T-fold

® [he geometry of T-fold is not well understood

® In order to evaluate the worldsheet instantons appropriately, a

complex structure is required

® [he complex structures of T-fold have a monodromy, so the
worldsheet instantons will be multivalued = ill-defined

dX' £ JF, xdXY =0 | £ | dXF£J¥", xdX" =0

0 =0 S L
0 =21 . JH,

® If we use the O(D, D) covariant description, the worldsheet instantons

are well-defined

p consider the Born geometry



Born sigma model

® A 2-dim. sigma model in which the target space is a 2D-dim. Born

geometry : a Born sigma model [Tseytlin "90][Hull '07][Copland "11][Arvanitakis-Blair "18]
[Sakatani-Uehara '20][Marotta-Szabo '22] &c.

1 ~
S = Z/ (”HMN dXM A #dXN — Qppy daXY /\dXN) XM = (X", X,)
generalized metric topological term

By imposing the chiral condition, a D-dim. subspace of the 2D-dim.
target space is selected

XM + (nMPpy) * dXN = 0 XM = (X", X))

chiral condition choosing T-dual frame

® The Born sigma model is then reduced to a string sigma model

1

S =3 / (91 dX¥ A +dXY + By, dX" A dX*)



Instantons in Born sigma model

[Kimura-Sasaki-KS '22]

The Bogomol'nyi completion of the Born sigma model action is as follows.

generalized (hyper)Kahler strc.

/

/HMN dXM j

+ 2/(wi)MN dX

£ 7} p*dXP)/\*

Mo axV

> jtZ/(wi)MN dXM A dxN

The following instanton eq. is obtained as a cond. for saturating this bound.

dXM

dou bled instanton equation

=0

Since the Born sigma model is an O(D, D) covariant formulation,

this instanton eq. is also T-duality covariant.



Consistency check

axM -

- TM p s dXP =0

doubled instantons

SBorn

Inst.

i/
= — | [ w
A +

action bound

choosing a polarization

(
— [ Q
+1

chiral constraint

dX" 4

worl

:J’uy*dXV:O

dsheet instantons

action bound



Non-wrapping inst. as doubled inst.

. . partition function
TN polarization P

1 . ~ TN
Si':EllS\L.Zg / Wy dXH A dX" +%/ B, dX" N dXY Z:/DX/DX =S T (X)
Ca Cs _
T 2-cycle in physical space — well-defined T

+i/Q Z:/DX e=57""X)

1
SNS5 — / W' dX*ANdX"

+%/ B, dX"™ NdX" Z:/DX’/DX’ g5 (X))
Cy

NS5 polarization 2-cycle does not lie in physical space vol. D-dim.



Non-wrapping inst. as doubled inst.

NS5-brane on S* Taub-NUT

\5) — ) DA ) DA

/ \ T-dual

2-cycle

no 2-cycle in physical space
Doubled space

but it exists in doubled space
half in phys. space

instantons are well-defined W _ \\m
(] 1 : 1 1 : >

worldsheet wraps in dual winding direction

2-cycle

an interpretation of “non-wrapping” inst. half in winding space

(“point-like inst."”)



Instantons in T-fold

doubled inst. action

1
st = 1 | [ s

l 5% polarization

(
— [
v/

/ wZVdX”“ AdX"
C>

2-cycles?? T-fold is non—geometric

however, 2-cycle still exist in doubled space

+ % / B!, dX"" /\dX””
C

partition function

_ / DX 6_SBorn (X)

/DX,//DX/, —352(X”)

vol. D-dim.

(2D-dim. Born geometry with gen. hyperKahler strc.)



T-duality covariant instanton

® [he T-fold spacetime can be realized as a 2D-dim. Born geometry
with a generalized (hyper)Kahler structure

® In the Born sigma model, the worldsheet instanton eq. is well-defined

because it can be transformed as follows

. . / . .
dX™M + M Ly gX'P = 0 (J+ is at § = 0 and J. is at 6 = 27)
& (Qgn) " NAXN £ (Qon) " NIV K (Q2n) " p ¥ (Q2n) @dX2 =0
e (Q_o)My (dXN + TN dXK) ~ 0
well-defined!

= The worldsheet instantons in T-fold have to be treated in an O(D, D)
covariant doubled formalism



Summary



Summary

® The T-duality relates a Kahler (hyperkahler) manifold to a bi-Hermitian
(bi-hypercomplex) manifold

® We systematically derived the T-duality transformation rules for complex
structures and fundamental 2-forms by using the O(D, D) covariant form

@ We also found the local geometric structure (J, ., @, +) of the 55-brane

known as a T-fold, and explicitly showed that not only metric and B-
fields, but also they have monodromy

® [ he worldsheet instantons in T-fold also have the monodromy, so the

O(D, D) covariant formulation is a good description to study the physics
of T-fold



Future directions

T-fold geometry (in detail)

Worldsheet instanton effects in T-folds (in detail)

T-duality of integrability conditions for geometric structures

U-duality relations of geometric structures

Membrane instantons and U-duality

&c.

Thank you






Backup



Generalized Kahler structure

Bi-Hermitian manifold (M, J+,w+)

Jy:TM — TM wa :TM — T*M
O(D, D) covariant formulation of structure [Gualtieri '04]
. _(J+ 0 (0 —wi
Gualtieri map 5. = ( 0 _J:*t> Ty = (wi 0 )

generalized Kahler structure

T = %(Jh £ Ty + Ty ¥ T )

ji = —1 T4, J-| =0

Jr : TMST"M —TMBT"M



Born geometry

Born structure (Z, J, /) on 2D-dimensional manifold M=P

7° = —J° = - K? = -1 TJTK = —1

para-quaternion

algebra

; {Z,J}={J, K} ={K, 2} =0
J  : almost complex structure T=H1'0=-Q'H
J  : chiral structure J = 77_17-[ — 7—[_177

JC  : almost para-complex structure IC = 77_1Q — Q_177

metrics in Born geometry

H  : generalized metric l
T . O(D, D) invariant metric J DFT quantities

() : fundamental two-form



Born and generalized Kahler

bi-quaternion geometry

(M2D7jj7u7w717 j,IC,P, Q)
P=KJ, Q=KJ;

— T~

Born structure generalized Kahler structure
(I,j,lC) (jj,jw,j)
metrics in Born metrics in gen. Kahler

(anvﬂ) (Haw—l—aw—)



Monodromy of codim 2 branes

defect NSb5-brane

o 0 O 0\ (H(S 0 0 0 ) 0 0 O
;|0 6 0 Ase| [0 HS 0 0 0 & 0 0
|10 0 & O 0 0 H 16 0 0 0 o O
000 6/\0 0 0 H'W \0O —As 0 &
T—O(D, D) matrix known as the B-shift (gauge symmetry)—T
KK-vortex
AT 0 7 0 A 0 o 0 0 Ho 0 0
H = 0 A_l 0 -1 0 A_T A=10 1 0 go — 0 H 0
o Jo /N 0 A; 1 0 0 H!
T T O(D, D) matrix corresponding to diffeomorphism
5%—brane
) 0 0 O Hé 0 0 0 o 0 O 0
0 ) 0 0 0 H 1Y 0 0 0 0 0 27moe
HO=2m=1g o s ofllo o m@% o]loos o
0 —2moe 0 0 0 0 0 Ho 0 O

0 0

T— O(D, D) matrix known as the f-shif —T

non-geometry!




