Neutron Stars and Hypernuclei

Akira Ohnishi (YITP, Kyoto U.) JAEA-ASRC-TPI Theory Lecture Series June 2, 2015, JAEA

- Introduction
- Part I : Basics of Neutron Star Physics
- Part II : Hypernuclear Physics & Neutron Stars
- Summary

Basic properties of neutron stars

- Mass: $M = (1-2) M_{\odot} (M \sim 1.4 M_{\odot})$
- Radius: 5 km < R < 20 km (R ~ 10 km)</p>
- Supported by Nuclear Pressure c.f. Electron pressure for white dwarfs
- Cold enough (T ~ 10⁶ K ~ 100 eV) compared with neutron Fermi energy.
- Various constituents (conjectured) n, p, e, μ, Y, K, π, q, g, qq,

Wide density range \rightarrow various constituents NS = high-energy astrophysical objects and laboratories of dense matter.

QCD Phase Diagram

Inside Neutron Stars

For pasta nuclei, ask Maruyama-san

M-R curve and EOS

- M-R curve and NS matter EOS has 1 to 1 correspondence
 - TOV(Tolman-Oppenheimer-Volkoff) equation =GR Hydrostatic Eq.

Puzzles of NS

- Magnetar, NS oscillation,
- Rapid NS cooling puzzle (CasA cools too fast ?)
- Compact NS problem (9 km NS ?)
- Massive NS puzzle (2 M_{\odot} NS ?)

Nuclear Superfluidity and Cooling Curve

- Surface T measurement and Cooling curve
 - Stable superfluid \rightarrow Gap \rightarrow Suppression of v emission

 - Precise T and Cooling rate measurement in Cas A Heinke, Ho, ApJ 719('10) L167 [arXiv:1007.4719] Page et al., PRL 106 ('11) 081101 [arXiv:1011.6142]
- Can we predict the pairing cap around $5\rho_0$ $\int_{10.0}^{10.0} \frac{10.5 + 1^{p/p_0} + 2}{p(^1S_0)}$

Binary Neutron Star Mergers and Nucleosynthesis

Origin of Strong Magnetic Field

- **Magnetic field in NS** $B = 10^{12} 10^{15} G$
 - How can we make strong B ?
 - How can we keep strong B ?
 - Fossil, Dynamo, Ferromagnetism, ...
- A new idea: Chiral Plasma Instability AO, N. Yamamoto, arXiv:1402.4760
 - Left-handed electrons are eaten in electron capture → chiral chem. pot. p + e_L⁻ → n + ν_L^e.
 - Chiral plasma instability:
 N₅ is converted to magnetic helicity

$$j_z = \frac{2\alpha}{\pi} \mu_5 B_z$$
, $\frac{d}{dt} \left(N_5 + \frac{\alpha}{\pi} \mathcal{H} \right) = 0$, $N_5 = \int d\boldsymbol{x} \, n_5$

• Finite magnetic helicity makes magnetic field stable. $\mathcal{H} = \int dx A \cdot B$

See also, D. Grabowska, D. B. Kaplan, S. Reddy, PRD('15)085035

NS matter Grant-in-Aid Study in Japan(2012-)

Accelerators and Satellites for Neutron Star Physics

Contents

- Introduction
- Part I : Basics of Neutron Star Physics
 - Neutron star mass & radius observations
 - Nuclear matter EOS and neutron stars
 - Massive Neutron Star Puzzle
- Part II : Hypernuclear Physics & Neutron Stars
 - Hypernuclear Physics : Implications from Experiments
 - What is necessary to solve massive NS puzzle ?
 - Recent Attempts toward the massive NS puzzle
- Summary

Mass & Radius Measurements of Neutron Stars

Neutron Star Observables: Mass (1)

- Please remember Kepler motion basics
 - major axis=a, eccentricity=e, reduced mass=m, total mass=M

$$E/m = \frac{1}{2}v_f^2 - \frac{GM}{a(1+e)} = \frac{1}{2}v_n^2 - \frac{GM}{a(1-e)}$$

$$L = mv_f a(1+e) = mv_n a(1-e)$$

$$\Rightarrow v_f^2 = \frac{GM}{a} \frac{1-e}{1+e}, L = 2m\frac{dS}{dt} = m\sqrt{GMa(1-e^2)}$$

$$\Rightarrow P = S/(dS/dt) = 2\pi a^2 \sqrt{1-e^2}/\sqrt{GMa(1-e^2)} = 2\pi a^{3/2}/\sqrt{GM}$$

Neutron Star Observables: Mass (2)

- Binary stars
 - inclination angle = i
 - Doppler shift (Pulse timing change) is given by the radial velocity (視線速度)
 K = v sin i

 - Mass function (observable)

$$f = \frac{(M_2 \sin i)^3}{M^2} = \frac{4\pi^2 (a_1 \sin i)^3}{G} P^2$$
$$= \frac{K^3 P (1 - e^2)^{3/2}}{2\pi G}$$
$$(K = v \sin i, M = M_1 + M_2)$$

and GR effects ...

Hulse-Taylor Pulsar (PSR 1913+16)

- Precisely (and firstly) measured neutron star binary (1993 Nobel prize to Hulse & Taylor)
- **a** Radial velocity \rightarrow P, e, $a_1 \sin i \rightarrow$ Mass function

HULSE AND TAYLOR

More on Hulse-Taylor Pulsar (PSR 1913+16)

- General Relativistic Effects
 - Perihelion shift (近日点移動)

$$\dot{\omega} = 3 \left(\frac{2\pi}{P} \right)^{5/3} \frac{(GM)^{2/3}}{(1-e^2)c^2}$$

Einstein delay

$$\Delta_E = \gamma \sin u$$

(u=eccentric anomaly)

$$y = \frac{eP_b Gm_2(m_1 + 2m_2)}{2\pi c^2 a_{\rm R} M} \qquad \frac{a_{\rm R}^3}{P_b^2} = \frac{GM}{4\pi^2} \left[1 + \left(\frac{m_1 m_2}{M^2} - 9\right) \frac{GM}{2a_{\rm R} c^2} \right]^2$$

- Two observable
 - \rightarrow Precise measurement of m₁ and m₂.

$$m_1 = 1.442 \pm 0.003 M_{sun}$$

 $m_2 = 1.386 \pm 0.003 M_{sun}$

Massive Neutron Star

- General Relativity Effects on Time Delay
 - Einstein delay : varying grav. red shift
 - Shapiro delay : companion's grav. field
- A massive neutron star (J1614-2230)
 - M = 1.97 \pm 0.04 M $_{\odot}$ is obtained using the Shapiro delay Demorest et al. (2010)

Neutron Star Masses

- NS masses in NS binaries can be measured precisely by using some of GR effects.
 - Perihelion shift+Einstein delay
 → M = 1.442 ± 0.003 M_☉
 (Hulse-Taylor pulsar)
 Taylor, Weisenberg ('89)
 - Shapiro delay $\rightarrow M = 1.97 \pm 0.04 M_{\odot}$

Demorest et al. ('10)

• Another obs.: $M = 2.01 \pm 0.04 M_{\odot}$ Antoniadis et al. ('13)

Neutron Star Mass $M = (1-2) M_{\odot}$ Canonical value = 1.4 M_{\odot}

Neutron Star Radius

- How can we measure 10 km radius of a star with 10-100 thousands light year distance from us ?
 - Size of galaxy ~ 3×10^{14} km (~ $10 \text{ kpc} \sim 3 \times 10^{4}$ light year)
 - \rightarrow Model analysis is necessary !
- X-ray burster
 - Mass accretion from companion occasionally induces explosive hydrogen / helium burning.
 - High temperature \rightarrow NS becomes bright !
 - Three methods to measure NS radius

NS Radius Measurement (1)

- Surface emission
 - Stefan-Boltzmann law is assumed
 → NS radius is obtained
 from Flux, Temperature,
 and Distance measurement.

$$L = 4 \pi R_{\infty}^{2} \sigma_{\rm SB} T^{4} , \quad F = \frac{L}{4 \pi D^{2}}$$

$$\Rightarrow R = \sqrt{\frac{F D^{2}}{\sigma_{\rm SB} T^{4}}} \left(1 - \frac{2 G M}{R c^{2}}\right)^{-1/2}$$

NS Radius Measurement (2)

- Eddington Limit
 - Eddington Limit radiation pressure = gravity

$$\frac{4\pi r^2 \sigma_{\rm SB} T^4}{4\pi r^2 c} \cdot N_e \cdot \sigma_{\rm T}$$
$$= \frac{GM}{r^2} \cdot N_N \cdot m_N$$
$$\rightarrow R_{\infty}^2 = \frac{2GMcm_N}{\sigma_{\rm T}\sigma_{\rm SB} T^4} \frac{N_N}{N_e}$$

- Eddington limit is assumed to be achieved at "touch down".
- Electron-nucleon ratio
 N_e/N_N=(1+X)/2

(X=1 for hydrogen atmosphere X=0 for light elements)

NS Radius Measurement (3)

- Red Shift
 - Neutron Star surface is expected to contain Irons.
 - Absorption lines should be red shifted.
 → Almost direct observation of M/R.

$$E_{\rm obs} = E_{\rm surf} \sqrt{1 - \frac{2GM}{Rc^2}}$$

 ASTRO-H will measure Iron absorption line from NS, and determine M/R with 1 % accuracy !

ASTRO-H simulation

Neutron Star Radius

(1) 0-8 s

(2) 8-16 s

 10^{2}

 10^{2}

- Do three methods give consistent (M, R) ?
 - Surface emission & Eddington limit have large error bars from Distance & Composition uncertainty.
 - Red shift of discrete lines have not been observed unambiguously.

Compact NS puzzle

Some analyses suggest smaller Guillot et al. (2013) **R_{NS}** than nucl. phys. predictions. 2.5 MPA1 PAL1 Some make objections. WFF1 $({}^{\circ}M)_{NW}^{2.0}$ Suleimanov+, $R_{14} > 13.9$ km MS1 Lattimer+, $R_{14} = 12 \pm 1.4$ km 1.00.5 3.0F 4U1608-52 10 12 6 8 14 16 EX01745-248 F. Ozel, ('13). $R_{\rm NS}$ (km) 4U1820-30 <S1731-260 2.5SAXJ1748.9-2100 MPA1 Base, N₁₁ (D90), Dist (G13), H+He GS1826-24 0.9 U24 in NGC6397 AP4 M13 2.0 0.8 NGC2808 Mass (M_☉) ω Cen 0.7 1.5 0.6 MS1 (^oM (M_o) 0.5 1.0 GS1 0.4 0.3 0.5 0.2 SQM1 0.5 0.1 0.0 14 15 11 12 13 16 10 10 15 0 5 ^R (kn Lattimer, Steiner (2014). Radius (km) A. Ohnishi @ JAEA, June 2, 2015 25

Neutron Star Density

Star

Neutron Stars are supported by Nuclear Force !

- Average density of NS ~ (1-3) ρ_0 , Max. density ~ (5-10) ρ_0
 - → Supported by Nuclear Force
 - c.f. White Dwarfs are supported by electron pressure.
- Nuclear Force
 - Long-range part: π exchange Yukawa (1935)
 - Medium-range attraction:
 2 π exchange, σ exchange,
 - Short-range repulsion: Vector meson exchange, Pauli blocking btw. quarks Gluon exchange *Tamagaki; Oka, Yazaki; Aoki, Hatsuda, Ishii*

TOV equation

General Relativistic Hydrostatic Equation
 = TOV(Tolman-Oppenheimer-Volkoff) equation

$$\frac{dP}{dr} = -G \frac{(\varepsilon/c^2 + P/c^2)(M + 4\pi r^3 P/c^2)}{r^2(1 - 2GM/rc^2)}$$
$$\frac{dM}{dr} = 4\pi r^2 \varepsilon/c^2, \ P = P(\varepsilon) \ (EOS)$$

- Spherical and non-rotating.
- 3 Variables (ε(r), P(r), M(r)),
 3 Equations.
- Initial cond. ε(r=0)
 Solve TOV until P=0

M-R Relation and EOS

Solving TOV eq.

starting from the "initial" condition, $\varepsilon(r=0) = \varepsilon_c = given$ until the "boundary" condition P(r)=0 is satisfied.

 $\rightarrow M \text{ and } R \text{ are the functions of } \epsilon(r=0)$ and functionals of EOS, $P=P(\epsilon)$.

$$M = M(\varepsilon_c)[P(\varepsilon)]$$
, $R = R(\varepsilon_c)[P(\varepsilon)]$

→ M-R curve and NS matter EOS : 1 to 1 correspondence

Bethe-Weizsacker mass formula Nuclear binding energy is roughly given by Liquid drop. Nuclear size measurement $\rightarrow R = r_0 A^{1/3}$

$$B(A,Z) = a_v A - a_s A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_a \frac{(N-Z)^2}{A} + a_p \frac{\delta_p}{A}$$

Volume Surface Coulomb Symmetry

 $A \propto \frac{4\pi}{3} R^3 \qquad A^{2/3} \propto 4\pi R^2 \qquad \propto \frac{Q^2}{R}$ Ignore Coulomb, consider $\mathbf{A} \to \infty$,

$$B/A = a_v(\rho) - a_a(\rho)\delta^2$$
, $\delta = (N - Z)/A$
 $a_v \simeq 16 \text{ MeV}$
 $a_a \simeq 23 \text{ MeV}(a_a(\text{vol}) \simeq 30 \text{ MeV})$

Coef. may depend on the number density $\rho \rightarrow$ Nuclear Matter EOS

R & A1/3

Pairing

Neutron Star Matter EOS

Energy per nucleon in nuclear matter

$$E_{\rm NM}(\rho, \delta) = E_{\rm SNM}(\rho) + S(\rho)\delta^2 , \quad \delta = (N - Z)/A$$
$$E_{\rm SNM}(\rho) \simeq E_0 + \frac{K(\rho - \rho_0)^2}{18\rho_0^2} , \quad S(\rho) = S_0 + \frac{L(\rho - \rho_0)}{3\rho_0}$$

- Saturation point (ρ_0 , E_0) ~ (0.16 fm⁻³, -16 MeV)
- Symmetry energy parameters (S $_0$ (=J), L) ~ (30 MeV, 70 MeV)
- Incompressibility K ~ 230 MeV
- Uniform neutron star matter
 - Constituents at low density = proton, neutron and electron $E_{\text{NSM}}(\rho) = E_{\text{NM}}(\rho, \delta) + E_e(\rho_e = \rho_p)$
 - $E_{\rm NSM}(\rho) = E_{\rm NM}(\rho, \sigma) + E_e(\rho_e = \rho_p)$ • Charge neutrality
 - $\rightarrow \rho(\text{elec.}) = \rho(p) (\rho_e = \rho_p = \rho(1 \delta)/2)$
 - $\boldsymbol{\delta}$ is optimized to minimize energy.

Symmetry Energy

- Symmetry Energy has been extracted from various observations.
 - Mass formula, Isobaric Analog State, Pygmy Dipole Resonance, Isospin Diffusion, Neutron Skin thickness, Dipole Polarizability, Asteroseismology

A. Ohnishi @ JAEA, June 2, 2015 33

Simple parametrized EOS

Skyrme int. motivated parameterization

$$E_{\rm SNM} = \frac{3}{5} E_F(\rho) + \frac{\alpha}{2} \left(\frac{\rho}{\rho_0}\right) + \frac{\beta}{2+\gamma} \left(\frac{\rho}{\rho_0}\right)^{1+\gamma}$$
$$S(\rho) = \frac{1}{3} E_F(\rho) + \left[S_0 - \frac{1}{3} E_F(\rho_0)\right] \left(\frac{\rho}{\rho_0}\right)^{\gamma_{\rm sym}}$$

•
$$\rho_0$$
, E/A(ρ_0), K $\rightarrow \alpha$, β , γ , L $\rightarrow \gamma_{sym}$

K=220 MeV, S₀=30 MeV

Simple parametrized EOS

Theories/Models for Nuclear Matter EOS

- Mean Field from Effective Int. ~ Nuclear Density Functionals
 - Skyrme Hartree-Fock

Non.-Rel.,Zero Range, Two-body + Three-body (or ρ-dep. two-body)

$$\frac{E}{A} = \left\langle \frac{\mathbf{p}^2}{2m^*} \right\rangle + V(\rho, \delta) , \quad V \simeq \frac{\alpha}{2} \frac{\rho}{\rho_0} + \frac{\alpha' \delta}{2} \frac{\rho}{\rho_0} + \frac{\beta}{1+\gamma} \left(\frac{\rho}{\rho_0}\right)^{\gamma} + \dots$$

- Relativistic Mean Field
 - Relativistic, Meson-Baryon coupling, Meson self-energies

$$\frac{E}{A} = \left\langle \sqrt{\mathbf{p}^2 (M - g_\sigma \sigma)^2} \right\rangle + g_\omega \omega + \frac{1}{\rho_B} \left[\frac{1}{2} m_\sigma \sigma^2 - \frac{1}{2} m_\omega \omega^2 + \dots \right]$$

- Microscopic (ab initio) Approaches (starting from bare NN int.)
 - Variational calculation
 - Quantum Monte-Carlo
 - Bruckner Theory (G-matrix)

Mean Field models

- Fit parameters to nuclear properties (B.E., radius, ...) → predict neutron star (M,R).
 - In Non-Rel. treatment with SLy (std. parametrization), FPS (impr.) → Mmax ~ (1.8-2.0) M_☉
 - Rel. MF (TM1) \rightarrow Mmax ~ 2.2 M $_{\odot}$

Variational Calculation

Variational Calculation starting from bare nuclear force

B. Friedman, V.R. Pandharipande, NPA361('81)502; A. Akmal, V.R.Pandharipande, D.G. Ravenhall, PRC58('98)1804; H. Kanzawa, K. Oyamatsu, K. Sumiyoshi, M. Takano, NPA791 ('07) 232.

Argonne v18(v14) + Rel. corr. + Three Nucleon Int.

Quantum Monte-Carlo calc.

- Auxiliary Field Diffusion Monte-Carlo (AFDMC) calc.
 - Hubbard-Stratonovich transf. + MC integral over aux. fields.
 - In force parameters are tuned to fit finite nuclei.
 - 2 MeV Difference in Esym results in 1.5 km (15 %) diff. in R_{NS}.

Bruckner-Hartree-Fock

- Effective interaction from bare NN int. (G-matrix).
 - G-matrix = Lowest order Bruckner theory, but next-to-leading terms give small effects at ρ < 4 ρ₀.

Song, Baldo, Giansiracusa, Lombardo ('98)

Need 3-body force to reproduce saturation point.

 $g(E) = V + V \frac{\Sigma}{E - H_{t}}$

Z.H.Li, U. Lombardo, H.-J. Schulze, W. Zuo, L. W. Chen, H. R. Ma, PRC74('06)047304.

A. Ohnishi @ JAEA, June 2, 2015 40

0.6

 $\epsilon_{\rm p} > \epsilon_{\rm F}$

- □— V14: Argonne V14 - ☆— V18: Argonne V18 - ●— A: Bonn A

-▼— N93: Nijmegen93 -◀— NI: Nijmegen I

– ►– NII: Nijmegen II

-o-PAR: Paris

■ - B: Bonn B
 ● - C: Bonn C
 ○ - CD: CD-Bonn
 ▲ - R93: Reid93

50

20

BHF with Ch-EFT & Lattice NN force

- Bruckner-HF calc. with NN (N3LO)+3NF(N2LO) interactions from Chiral Effective Field Theory *M.Kohno (*13)*
 - Ch-EFT = Eff. Field Theory with the same symmetry as QCD *Weinberg; Gasser, Leutwyler ('84)*
 - → Systematically gives NN & NNN interaction terms.

Epelbaum, Gockle, Meissner ('05)

Bruckner HF calc. with NN int. from Lattice QCD. *Inoue et al. (HAL QCD Coll.)*,

PRL111 ('13)112503

Not yet reliable but promising !

M. Kohno, PRC88('13)064005

Neutron star – Is it made of neutrons ?

Possibilities of various constituents in neutron star core

R~10 km

Hyperons in Dense Matter

- What appears at high density ?
 - Nucleon superfluid (³S₁, ³P₂), Pion condensation, Kaon condensation, Baryon Rich QGP, Color SuperConductor (CSC), Quarkyonic Matter,

Hyperons

Tsuruta, Cameron (66); Langer, Rosen (70); Pandharipande (71); Itoh(75); Glendenning; Weber, Weigel; Sugahara, Toki; Schaffner, Mishustin; Balberg, Gal; Baldo et al.; Vidana et al.; Nishizaki, Yamamoto, Takatsuka; Kohno, Fujiwara et al.; Sahu, Ohnishi; Ishizuka, Ohnishi, Sumiyoshi, Yamada; ...

Neutron Star Masses

- NS masses in NS binaries can be measured precisely by using some of GR effects via doppler shifts.
 - Perihelion shift+Einstein delay
 → M = 1.442 ± 0.003 M_☉
 (Hulse-Taylor pulsar)
 Taylor, Weisenberg ('89)
- **Many NSs have** $M \sim 1.4 M_{\odot}$.

Massive Neutron Star Puzzle

- Observation of massive neutron stars ($M \sim 2 M_{\odot}$)
 - PSR J1614-2230 (NS-WD binary), $1.97 \pm 0.04 M_{\odot}$

Demorest et al., Nature 467('10)1081 (Oct.28, 2010). "Kinematical" measurement (Shapiro delay, GR) + large inclination angle

• PSR J0348+0432 (NS-WS binary), $2.01 \pm 0.04 M_{\odot}$

Antoniadis et al., Science 340('13)

Bruckner-Hartree-Fock theory with Hyperons

- Microscopic G-matrix calculation with realistic NN, YN potential and microscopic (or phen.) 3N force (or 3B force).
 - Interaction dep. (V18, N93, ...) is large → Need finite nuclear info. *E.Hiyama, T.Motoba, Y.Yamamoto, M.Kamimura / M.Tamura et al.*
 - NS collapses with hyperons w/o 3BF.

Z.H.Li, H.-J.Schulze, PRC78('08), 028801.

RMF with Hyperons (Single A hypernuclei)

RMF for Λ hypernuclei

x ~ 1/3: R. Brockmann, W. Weise, PLB69('77)167; J. Boguta and S. Bohrmann, PLB102('81)93. x ~ 2/3: N. K. Glendenning, PRC23('81)2757, PLB114('82)392;

- Tensor: Y. Sugahara, H. Toki, PTP92('94)803; H. Shen, F. Yang, H. Toki, PTP115('06)325;
 - J. Mares, B. K. Jennings, PRC49('94)2472.
- *ρ-dep. coupling: H. Lenske, Lect. Notes Phys.* 641('04)147; C. M. Keil, F. Hofmann, H. Lenske, *PRC* 61('00)064309.

SU(3) or SU(6) (ς, φ): J. Schaffner, C. B. Dover, A. Gal, C. Greiner, H. Stoecker, PRL71('93)1328;
Schaffner et al., Ann.Phys.235('94)35; J. Schaffner, I. N. Mishustin, PRC 53('96)1416.
Chiral SU(3) RMF: K. Tsubakihara, H. Maekawa, H. Matsumiya, AO, PRC81('10)065206.

Sep. E. of Λ is well fitted 30 S_{Λ} from $A^{+1}{}_{\Lambda}Z$ SCL3 by $U_{\Lambda} \sim -30 \text{ MeV} \sim 2/3 U_{N}$ 25 exp. 20 Coupling with mesons $S_{\Lambda}(MeV)$ 15 $x_{\rm M} = g_{\rm MA} / g_{\rm MN}$ s 10 quark counting: $x_{c} \sim 2/3$ 5 π exchanges: $x_{2} \sim 1/3$ 0 \rightarrow Which is true ? -5 0.05 0.1 0.150.2 0.250.3 0 -2/3

K. Tsubakih<u>ara, H</u>. Maekawa, H. Matsumiya, AO, PRC81('10)065206. Acore

Hyperon Composition in Dense Matter

- **B** Hyperon start to emerge at (2-3) ρ_0 in Neutron Star Matter !
- Hyperon composition in NS is sensitive to Hyperon potential.
 - $U_{\Lambda} \sim -30$ MeV: Well-known
 - U_E ~ -(12-15) MeV
 (K⁻,K⁺) reaction, twin hypernuclei
 P. Khaustov et al. (E885),PRC61('00)054603; S. Aoki et al., PLB355('95)45.
 - $U_{\Sigma} \sim -30$ MeV (Old conjecture) $\rightarrow \Sigma$ - appears prior to Λ
 - U_Σ > 0 (repulsive) → No Σ in NS
 Σ atom (phen. fit), QF prod.
 S. Balberg, A. Gal, NPA625('97)435;
 H. Noumi et al., PRL89('02)072301;
 T. Harada, Y. Hirabayashi, NPA759('05)143;
 M. Kohno et al. PRC74('06)064613.

J. Schaffner-Bielich, NPA804('08)309.

NS M-R Relation in RMF with Hyperons

Ishizuka, AO, Tsubakihara, Sumiyoshi, Yamada, J. Phys. G35(08),085201

c.f. H.Shen+('09) \rightarrow n, p, $\land EOS$

Summary of Part I

- Neutron star can be regarded as a gigantic nucleus
 - $M \sim 1.4 M_{\odot}, R \sim 10 \text{ km} \rightarrow \text{Density} \sim (1-3) \rho_0$
- Some of NS masses have been obtained precisely.
 - Kepler orbit + General Relativity corrections $\rightarrow m_1, m_2$
 - Two NSs are found to have M ~ 2 M_☉ recently. PSR J1614-2230, PSR J0348+0432
- NS radii are more difficult to measure, and model dependent.
 - Three methods: Surface emission, Eddington limit, Redshift.
 - Conservative estimate: $R_{NS} = (8-15)$ km.
- Nuclear matter EOSs have been studied in various ways.
 - Microscopic calc. (starting from bare NN force), Phen. model calc. (using effective NN force).
 - Many of them with hyperons predict NS max. mass $< 2 M_{\odot}$.

Thank you for your attention ! See you 15(?) minutes later.

Contents

- Introduction
- Part I : Basics of Neutron Star Physics
 - Neutron star mass & radius observations
 - Nuclear matter EOS and neutron stars
 - Massive Neutron Star Puzzle
- Part II : Hypernuclear Physics & Neutron Stars
 - Hypernuclear Physics : Implications from Experiments
 - What is necessary to solve massive NS puzzle ?
 - Recent Attempts toward the massive NS puzzle
- Summary

Hypernuclear Physics Implications from Experiments

Hyperons (Baryons with Strangeness)

Ground state baryon SU(3)_f octet ($J^{\pi}=1/2+$)

Baryon	M(Mev)	S	Comp.
n	940	0	udd
р	938	0	uud
Λ	1116	-1	(uds-dus)/√2
Σ^+	1189	-1	uus
Σ^0	1193	-1	(uds+dus)/√2
Σ^{-}	1197	-1	dds
Ξ^0	1315	-2	uss
Ξ	1321	-2	dss

Exotic Hadrons

Exotic hadrons

 \rightarrow X, Y, Z, Θ^+ , Discovered/Proposed at LEPS, Belle, BaBar,...

- Various pictures
 - Di-quark component
 - Hadronic molecule
 - $Q\overline{Q}$ couples with $Q\overline{Q}$ $q\overline{q}$

 $SU(3)_{f}$ transformation

- Fundamental triplet $(u,d,s)^T = q \rightarrow q'=U q (U \in SU(3))$
- **Diquark** $\mathbf{D}_{i} = \varepsilon_{ijk} \mathbf{q}_{j} \mathbf{q}_{k} \rightarrow \mathbf{D'} = \mathbf{D} \mathbf{U}^{+}$
- **Baryon octet** $\mathbf{B}_{ij} = \mathbf{D}_j \mathbf{q}_i \rightarrow \mathbf{B'} = \mathbf{U}\mathbf{B}\mathbf{U}^+$

$$\begin{pmatrix} [ds]u & [su]u & [ud]u\\ [ds]d & [su]d & [ud]d\\ [ds]s & [su]s & [ud]s \end{pmatrix} = \begin{pmatrix} \frac{\Lambda}{\sqrt{6}} + \frac{\Sigma^0}{\sqrt{2}} & \Sigma^+ & p\\ \Sigma^- & \frac{\Lambda}{\sqrt{6}} - \frac{\Sigma^0}{\sqrt{2}} & n\\ \Xi^- & \Xi^0 & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix}$$

 $SU(3)_{f}$ transformation

- Fundamental triplet $(u,d,s)^T = q \rightarrow q'=U q (U \in SU(3))$
- Anti-quark $\overline{\mathbf{q}} \to \overline{\mathbf{q}}' = \overline{\mathbf{q}} \mathbf{U}^+$
- Meson octet $M_{ij} = \overline{q}_j q_i \rightarrow M' = UMU^+$

$$\begin{pmatrix} \overline{u} u & \overline{d} u & \overline{s} u \\ \overline{u} d & \overline{d} d & \overline{s} d \\ \overline{u} s & \overline{d} s & \overline{s} s \end{pmatrix} = \begin{pmatrix} \frac{\eta}{\sqrt{6}} + \frac{\pi^0}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{\eta}{\sqrt{6}} - \frac{\pi^0}{\sqrt{2}} & K^0 \\ K^- & \overline{K}^0 & -\frac{2\eta}{\sqrt{6}} \end{pmatrix} = P$$

$$S = \begin{vmatrix} \frac{\sigma}{\sqrt{2}} + \frac{a_0}{\sqrt{2}} & a_0^{+} & \kappa^{+} \\ a_0^{-} & \frac{\sigma}{\sqrt{2}} - \frac{a_0}{\sqrt{2}} & \kappa^{0} \\ \kappa^{-} & \bar{\kappa}^{0} & \zeta \end{vmatrix} \qquad \qquad V = \begin{vmatrix} \frac{\omega}{\sqrt{2}} + \frac{\rho^{0}}{\sqrt{2}} & \rho^{+} & K^{*+} \\ \rho^{-} & \frac{\omega}{\sqrt{2}} - \frac{\rho^{0}}{\sqrt{2}} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \varphi \end{vmatrix}$$

SU(3), invariant coupling

- Baryon-Meson coupling
 - $\mathcal{L}_{\rm BV} = \sqrt{2} \{ g_s \operatorname{tr} (M_v) \operatorname{tr} (\bar{B}B) + g_D \operatorname{tr} (\bar{B} \{M_v, B\}) + g_F \operatorname{tr} (\bar{B} [M_v, B]) \}$ $= \sqrt{2} \{ g_s \operatorname{tr} (M_v) \operatorname{tr} (\bar{B}B) + g_1 \operatorname{tr} (\bar{B}M_vB) + g_2 \operatorname{tr} (BBM_v) \}$
- Assumption
 - BM coupling is SU(3) invariant
 - N does not couple with s vector meson

$$g_{\omega\Lambda} = \frac{5}{6}g_{\omega N} - \frac{1}{2}g_{\rho N}, \ g_{\phi\Lambda} = \frac{\sqrt{2}}{6}\left(g_{\omega N} + 3g_{\rho N}\right)$$

Further simplification: $g_{\rho N} = g_{\omega N}/3$ (quark counting)

$$g_{\omega N} = g_{\nu}, g_{\rho N} = g_{\nu}/3, g_{\omega \Lambda} = 2g_{\nu}/3, g_{\varphi \Lambda} = \sqrt{2}g_{\nu}/3$$

Hypernuclear formation

■ (K⁻, π), (π , K⁺), and (K⁻,K⁺) reactions on nuclei \rightarrow Hypernuclei

Reaction	Elementary Processes		
	Main Process	Other Processes	
(K^{-},π^{-})	$K^-n \to \pi^-\Lambda,$	$K^-n \to \pi^- \Sigma^0, \ K^-p \to \pi^- \Sigma^+$	
(K^-,π^+)	$K^- p \to \pi^+ \Sigma^-,$	$K^-pp \to \pi^+\Lambda n$ (n-rich hypernuclear formation)	
(π^+, K^+)	$\pi^+ n \to K^+ \Lambda,$	$\pi^+ n \to K^+ \Sigma^0, \ \pi^+ p \to K^+ \Sigma^+$	
(π^{-}, K^{+})	$\pi^- p \to K^+ \Sigma^-,$	$\pi^- pp \to K^+ \Lambda n$ (n-rich hypernuclear formation)	
(K^{-}, K^{+})	$K^- p \to K^+ \Xi^-,$	$K^- pp \to K^+ \Lambda \Lambda$	

Hypernuclear formation

Hypernuclear formation

- **(K**⁻, π ⁻): Q>0, Small momentum transfer \rightarrow substitutional reaction
- (π , K⁺): Q<0, Momentum transfer ~ 300 MeV/c ~ k_F

A hypernuclear formation

- **(** π^+ , K⁺) reactions on nuclei
 - $q \sim k_F \rightarrow various s.p.$ states of Λ are populated

Single particles states of A in nuclei

- Single particle potential depth of Λ is around -30 MeV
 - s, p, d, f, ... states are clearly seen

•
$$A_{core}^{-2/3} \propto R^{-2} \propto K.E.$$
 of Λ

Σ production in nuclei

- Only one bound state ${}^{4}_{\Sigma}$ He (Too light !)
 - \rightarrow Continuum (Quasi-Free) Spectroscopy is necessary
- Cont. Spec. Theory = Distorted Wave Impulse Approx. (DWIA)

- Large (ω , q) range \rightarrow Important to respect On-Shell Kinematics
- Another way: Σ⁻ atomic shift
 - Atomic shift of Σ^- with O, Mg, Al, S, Si, W, Pb core are measured
- **\Sigma** potential in nuclei
 - Isoscalar part: 15-35 MeV repulsion
 - Isovector part: 20-30 % of SU(3) value

Σ production in nuclei

Σ - atomic shift

Ξ hypernuclear formation

- Missing mass spectroscopy BNL E885 ¹²C(K⁻,K⁺) Fukuda et al. PRC58('98),1306; Khaustov et al. PRC61('00), 054603.
 - No clear bound states found
- Twin hypernuclear formation Aoki et al. PLB355('95),45.
- Potential depth U_± ~ -14 MeV

Where is the S=-2 dibaryon (uuddss) "H"?

- RHIC & LHC = Hadron Factory including Exotics
- "H" would be formed as frequently as stat. model predicts. Cho,Furumoto,Hyodo,Jido, Ko, Lee,Nielsen,AO,Sekihara,Yasui,Yazaki (ExHIC Collab.), PRL('11)212001; arXiv:t:1107.1302

Nagara event

⁶He hypernuclei

Takahashi et al., PRL87('01)212502 (KEK-E373 experiment) Lambpha

 $m({}_{\Lambda\Lambda}^{6}\text{He}) = 5951.82 \pm 0.54 \text{MeV}$ $B_{\Lambda\Lambda} = 7.25 \pm 0.19^{+0.18}_{-0.11} \text{MeV}$ $\Delta B_{\Lambda\Lambda} = 1.01 \pm 0.20^{+0.18}_{-0.11} \text{MeV}$ (assumed $B_{\Xi}^{-} = 0.13 \text{ MeV}$)

 \rightarrow B_{AA} = 6.91 MeV (PDG modified(updated) Ξ^{-} mass)

$$\overline{Z}^{-} + {}^{12}C \longrightarrow {}^{6}_{\Lambda\Lambda}He + {}^{4}He + t$$

$${}^{6}_{\Lambda\Lambda}He \longrightarrow {}^{5}_{\Lambda}He + p + \pi^{-}$$

AA interaction models

- Boson exchange potentials
 - Nijmegen potentials: various versions Rijken et al., ('77-'10) Hard core: Nijmegen model D & F (ND, NF) Soft core: Nijmegen soft core '89 & '97 (NSC89, NSC97) Extended soft core: ESC08
 - Ehime potential: would be too attractive. Ueda et al., ('98) Ehime fits old double Λ hypernucl. data, $\Delta B_{\Lambda\Lambda} = 4$ MeV
- Quark cluster model
 - fss2 *Fujiwara, Kohno, Nakamoto, Suzuki ('01)* Short range repulsion from quark Pauli blocking & OGE Core is softer due to non-locality
- Modified Nijmegen potentials fitting Nagara data. *Filikhin, Gal ('02), Hiyama et al.('02)*
 - Potential Fitting Nagara data $\Delta B_{\Lambda\Lambda} = 1.0 \text{ MeV}$

Lattice QCD predicts bound "H"

• "H" bounds with heavy π (M_{π} > 400 MeV)

$\Lambda\Lambda$ correlation from (K⁻,K⁺ $\Lambda\Lambda$) reaction

Enhancement at ~ 2 M(Λ)+ 10 MeV,

"Stars" of Hyperon Potentials (A la Michelin)

- $U_{\Lambda}(\rho_0) \sim -30 \text{ MeV} \quad \begin{array}{c} \varepsilon_{3} \\ \varepsilon_$
 - Bound State Spectroscopy + Continuum Spectroscopy
- $U_{\Sigma}(\rho_0) > +15 \text{ MeV}$
 - Continuum (Quasi-Free) spectroscopy
 - Atomic shift data (attractive at surface) should be respected.
- $U_{\Xi}(\rho_0) \sim -14 \text{ MeV}$
 - No confirmed bound state, No atomic data, High mom. transf., → Small Potential Deps.
 - Continuum low-res. spectrum shape $\rightarrow -14$ MeV
- **V**_{$\Lambda\Lambda$} : Weakly attractive. \mathcal{C}

But these potentials lead to collapse of massive NS

Toward the Solution of Massive Neutron Star puzzle

Massive Neutron Star Puzzle

- **Observation of massive neutron stars (M \sim 2 M_{\odot})**
 - PSR J1614-2230 (NS-WD binary), $1.97 \pm 0.04 \text{ M}_{\odot}$

Demorest et al., Nature 467('10)1081 (Oct.28, 2010). "Kinematical" measurement (Shapiro delay, GR) + large inclination angle

PSR J0348+0432 (NS-WS binary), 2.01 ± 0.04 M_o Antoniadis et al., Science 340('13)1233232.

Possible Solutions to Massive NS puzzle

Proposed "Solutions" of Massive NS puzzle

 Modification of YN interaction Weisenborn, Chatterjee, Schaffner-Bielich ('11); Jiang, Li, Chen ('12); Tsubakihara, AO ('13)

Introducing BBB repulsion

Bednarek, Haensel et al.('11); Miyatsu, Yamamuro, Nakazato ('13); Tsubakihara, this session.

Early crossover transition to quark matter

Masuda, Hatsuda, Takatsuka (*12)

Choose Stiff EOS for nuclear matter Tsubakihara, AO ('14)

NS matter EOS with hyperons

These are phenomenological "solutions". How can we examine them ?

Star Ma

Early crossover transition to quark matter

- A possible solution of the massive NS puzzle = quark matter K. Masuda, T. Hatsuda, T. Takatsuka, ApJ764('13)12
 - With large vector qq coupling, finite density QCD phase transition can be crossover.
 - Crossover transition \rightarrow EOS can be stiffer and can support 2 M_{\odot}
 - Transition density = (2-4) ρ_0 . Is it consistent with heavy-ion collisions ?

Possible Solutions to Massive NS puzzle

- Proposed "Solutions" of Massive NS puzzle
 - Modification of YN interaction Weisenborn, Chatterjee, Schaffner-Bielich ('11); Jiang, Li, Chen ('12); Tsubakihara, AO ('13)
 - Introducing BBB repulsion Bednarek, Haensel et al.('11); Miyatsu, Yamamuro, Nakazato ('13).
 - Early crossover transition to quark matter *Masuda, Hatsuda, Takatsuka ('12)*
 - Choose Stiff EOS for nuclear matter Tsubakihara, AO ('14)
- What is necessary to solve the massive NS puzzle ?
 - EOS of nucleon matter need to be precisely settled.
 - Yet un-explored YN & YY interactions
 - Three-body interaction including hyperons (YNN, YYN, YYY) and its effects on EOS
 - Finding onset density of quark matter

Massive Neutron Stars with Hyperons

Tsubakihara, Harada, AO, arXiv:1402.0979

- Ruled-out EOS with hyperons = GM3 Glendenning & Moszkowski (1991)
- **We did NOTHING special and find 2** M_{\odot} NS can be supported.
 - "Typical" RMF for nucl. matter NL1, NL-SH, TM1 Reinhardt et al. ('86); Sharma, Nagarajan, Ring ('93); Sugahara, Toki ('94).
 - ss mesons are introduced
 - Hypernuclear data

 Λ, ΛΛ hypernuclei
 Σ atomic shifts
 SU(3) relation to isoscalar
 -vector couplings

Yet Un-explored YN & YY Interactions

- **ΞN** interaction
 - Indirect evidence of $U_{\Xi}(\rho_0) \sim -14 \text{ MeV}$
 - First evidence of deeply bound

 Ξ hypernucleus Ξ⁻ + 14N
 K. Nakazawa et al., PTEP 2015, 033D02.
 B(Ξ⁻)= 4.38 ± 0.25 MeV (g.s.) or 1.11 ± 0.25 MeV (exc.)
- ΛΛ interaction
 - Double hypernuclear bond energy $\Delta B_{\Lambda\Lambda}(^{6}_{\Lambda\Lambda}He)=0.67\pm0.16$ MeV
 - ΛΛ int. from two-particle corr. from heavy-ion collisions
 -1.25 fm < a₀(ΛΛ) < 0
- Isospin dependent part of ΣN

<u>K. Morita, T. Furumoto, AO, PRC91('15),02491</u>6

Hadron-Hadron correlation in HIC

Correlation function formula *Bauer, Gelbke, Pratt ('92); Lednicky ('09)*.

$$C(q) = \int d x_{12} S(x_{12}) |\Psi(x_{12})|^2$$

Source wave fn.

Free boson + Gaussian source
 Hanbury-Brown & Twiss effect

$$C(\boldsymbol{q}) = 1 + \exp(-4 q^2 R^2)$$

Free fermion + Gaussian source

$$C(q) = 1 - \frac{1}{2} \exp(-4 q^2 R^2)$$

- Correlation fn. has info. both on source and w.f. (~ int.)
- ΛΛ correlation measurement
 - (K-,K+) reaction C.J. Yoon et al. (KEK-E522)('07); J.K.Ahn et al. (KEK-E224); AO, Hirata, Nara, Shinmura, Akaishi ('01).
 - Heavy-ion collisions

STAR collab. arXiv:1408.4360;

C. Greiner, B. Muller ('89); AO, Hirata, Nara, Shinmura, Akaishi ('01).

AA correlation and favored AA interaction

 $\Lambda\Lambda$ correlation with long. and transverse flow effects, $\Sigma0$ feed down, and unknown long tail effects

K.Morita, T.Furumoto, AO, PRC91('15)024916 [arXiv:1408.6682] Data: Adamczyk et al. (STAR Collaboration), PRL 114 ('15) 022301.

Do we see AAN interaction ?

Do we see diff. btw

 $V_{\Lambda\Lambda}$ from RHIC (~ vacuum $\Lambda\Lambda$ int.) and $V_{\Lambda\Lambda}$ from Nagara ? *Hiyama et al. ('02); Filikhin, Gal ('02)*

 Mechanism: Pauli blocking in the intermediate \(\frac{\mathcal{E}N}\) channel Kohno ('13) / Myint, Shinmura, Akaishi ('03) / Nishizaki, Takatsuka, Yamamoto('02) / Machleidt.

BBB interaction including Hyperons

BBB int. incl. YNN, YYN and YYY should exist and contribute to EOS.

Nishizaki, Takatsuka, Yamamoto ('02)

- Chiral EFT, Multi-Pomeron exch., Quark Pauli, Lattice 3BF, SJ, ... Kohno('10); Heidenbauer+('13); Yamamoto+('14); Nakamoto, Suzuki; Doi+(HALQCD,'12); Tamagaki('08); ...
- Quant. MC study D.Lonardoni, S.Gandolfi, F.Pederiva.('13)
- Quark Meson Coupling Miyatsu et al.; Thomas (HHIQCD)
- AAN K. Morita, T. Furumoto, AO, PRC91('15)024916
- Caveat: Missing data (or data precision is low ...)

NNN force from Lattice QCD

- HAL QCD method for BB int.
 Aoki, Hatsuda, Ishii ('07)
 Nambu-Bethe-Salpeter amplitude ~ w.f.
 → NN force from Sch. Eq.
 - Consistent with Luscher's method in asymptotic region Luscher ('91), NPLQCD Collab. ('06, ππ)
- NNN force T. Doi (HAL QCD Collab.)('12)

BBB force incl. hyperons

Triple pomeron vertex model of BBB repulsion

 $\mathcal{L}_{PPP} = g_{3P} \mathcal{M} \sigma_P^3(x)/3!$

Pomeron = gluon ladder, flavor blind, induces BB repulsion

- How can we fix BBB force strength ?
 - Multi-pomeron coupling strength is determined in AA scattering.
 - Multi-baryon force gives better S_{Λ} , and may support 2 M_{\odot} NS.

Yamamoto, Furumoto, Yasutake, Rijken ('13)

Variational Calculation including Hyperons

Togashi, Hiyama, Takano, Yamamoto

Summary of Part II

- Strangeness nuclear physics has extracted the depths of hyperons in nuclei, and EOSs based on these potentials fail to support 2M_o NS. (Massive NS puzzle)
- Solving the massive NS puzzle is a big challenge in physics.
 - All relevant BB (and MB) interactions, Many-body theories, Multi-body interactions, and Transition to quark matter have to be understood properly.
- There are several attempts to answer the massive NS puzzle, but not convincing yet.
 - How can we justify "model assumptions" ?
 - How can we access various YY (and MB) interactions ?
 → J-PARC experiments, heavy-ion collisions, ...
 - How can we determine BBB (and BBBB) force ?
 - \rightarrow Chiral EFT, Lattice QCD, Quark model (Nakamoto), ... "Model" BBB force + phenomenology (precise S_A is necessary)

Summary

- Neutron Star physics is attracting much attention, and many current/future facilities/projects are aiming at solving NS puzzles.
 - Radioactive beam facilities \rightarrow Sym. E. at $\rho < \rho_0$ and $\rho \sim (2-3) \rho_0$ Hadron machines \rightarrow YN and YY int., Hadrons in nuclear matter Heavy-ion machines \rightarrow EOS at high density, hh int.
- More NS observations are necessary !
 - Precise (and assumption free) measurement of R_{NS} \rightarrow many satellites will be launched soon: ASTRO-H, NICER, LOFT
 - Larger NS mass will further constrain (or kill ?) nuclear physics.
- There are more subjects in neutron star physics.
 - Cooling, Magnetic field, Crust, Pasta, finite T, ... were not discussed. (Ask Maruyama-san on Pasta and Crust.)

Do I have time ?

Alternative approach

- Alternative method ~ "Ab initio" Nucl. Matter EOS + Y phen.
 - Fit "Ab initio" EOSs in a phen. model,

Star Matter

Include hyperons, and explain hypernuclear data.

Tsubakihara et al., PRC81('10)065206 Tsubakihara, Harada, AO, arXiv:1402.0979

We fit ab initio EOS in RMF with multi-body couplings, and introduce hyperons.

"Ab initio" EOS

- Ab initio" EOS under consideration
 - FP: Variational calc. (Av14+3NF(att.+repl.))
 B. Friedman, V.R. Pandharipande, NPA361('81)502.
 - APR: Variational chain summation (Av18+rel. corr.; Av18+ rel. corr.+3NF)
 A. Akmal, V.R.Pandharipande, D.G. Ravenhall, PRC58('98)1804.
 - DBHF: Dirac Bruckner approach (Bonn A)
 G. Q. Li, R. Machleidt,
 R. Brockmann,
 PRC45('92)2782

n=2 and n=3 terms in RMF

■ n=B/2+M+D=2 RMF model (+ effective pot.) →2-body interaction (and rel. 3-body corr.)

$$\overline{\Psi}_{B}g_{mB}m\Psi_{B} \stackrel{\sim}{\longleftrightarrow} \stackrel{\sim}{\Rightarrow} \stackrel{\circ}{\Rightarrow} \stackrel{\circ}{\bullet} \stackrel{\circ}{\bullet}$$

■ n=3 model → 3-body coupling

$$g_{mm'B}\overline{\Psi}mm'\Psi$$

 $c_{mm'm'}mm'm''$
 $mm'm'$

Bmm terms are ignored in FST paper (field redefinitions).

Tsubakihara

Fitting "Ab initio" EOS via RMF

RMF with multi-body couplings: 15 parameters

- Working hypothesis σ self-energy: SCL2 model *Tsubakihara, AO ('07)* $M_N \rightarrow 0 @ \sigma \rightarrow f_{\pi}$
- Markov Chain Monte-Carlo (MCMC)-like parameter search
 - Langevin type shift
 +Metropolis judge
 - Simultaneous fit of SNM and PNM is essential.
 - std. dev=0.5-0.7 MeV

Symmetry Energy

- Symmetry E. = E(PNM)-E(SNM)
 - APR-fit: (S₀, L)=(32, 47) MeV
 - APRv2-fit: (S₀, L)=(33, 47) MeV
 - DBHF-fit: (S₀, L)=(35, 75) MeV
 - FP-fit: (S₀, L)=(32, 40) MeV

Neutron Star Matter EOS

- Asymmetric Nuclear Matter EOS
 E_{ANM}(ρ)=E_{SNM}(ρ)+ δ² S(ρ)
 β-equilibrium condition → NS matter EOS
- Max. mass in the fit EOS deviates from the original one by ~ 0.1 M_☉.

 $\eta = (KL^2)^{1/3}$?

Sotani et al.(2014)

NS matter in "ab initio"-fit + A

A potential in nuclear matter at $\rho_0 \sim -30$ MeV

- Scheme 1: $U_{\Lambda}(\rho) = \alpha U_{N}(\rho)$
- Scheme 2: $U_{\Lambda}(\rho) = 2/3 U^{n=2}N(\rho) + \beta U^{n>2}N(\rho)$

Thank you !

Results with smaller AA bond energy

Chiral EFT NN & NNN force

E. Epelbaum ('09)

中性子物質と冷却原子

- BEC-BCS crossover and unitary gas
 - 散乱長 >> 粒子間距離 → EOS は普遍的 (unitary gas) $E^{\text{Unitary}} = \xi E^{\text{Free}} \quad \xi \simeq 0.4 (\text{Bertsch parameter})$
 - nn 間の ${}^{1}S_{0}$ 散乱長は長い! (a_{0} = 18.5 fm) → Drip した中性子ガスは、ほぼ unitary gas (-1/ $k_{F}a_{0} \sim 0.1$)
- My question
 - 核子あたりの相互作用エネルギー $\propto k_F^2 \propto \rho^{2/3}$ $\frac{V^{\text{Unitary}}}{N} = (\xi - 1) \frac{3}{5} \frac{\hbar^2 k_F^2}{2m} \propto \rho^{2/3}$
 - どのようにして EOS(密度汎関数)ト 取り込むか? (Hartree なら ∝ ρ)
 - unitary gas / BEC-BCS crossover は ^{CS Imit} クラスト・原子核の性質に どのような影響を及ぼすか?

- 変分法による計算結果 Friedman-Pandharipande (1981)
 - 広い密度領域において E_{unit} < E_{FP} < E_{Fermi}
 - 低密度領域でポテンシャルエネ ルギーは ρ^{2/3} と振る舞っている か?

What is necessary to solve the massive NS puzzle ?

- There are many "model" solutions.
- Ab initio calculation including three-baryon force (3BF)
 - Bare 2NF+Phen. 3NF(UIX, IL2-7) + many-body theory (verified in light nuclei).
 - Chiral EFT (2NF+3NF) + many-body theory

J. Carlson et al. ('14)

Relativistic Mean Field with Multi-body couplings

$\sigma \omega \rho$ model +std. non-linear terms + multi-body couplings

$$\mathcal{L}_{N} = \overline{\psi} \left(i \gamma^{\mu} \partial_{\mu} - M_{N} - U_{s} - \gamma^{\mu} U_{\mu} \right) \psi + \mathcal{L}_{\sigma \omega \rho}$$

$$\mathcal{L}_{\sigma \omega \rho} = \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{1}{4} \omega_{\mu\nu} \omega^{\mu\nu} - \frac{1}{4} R_{\mu\nu} \cdot R^{\mu\nu} - \mathcal{V}_{\sigma \omega \rho}$$

$$U_{s} = -g_{\sigma} \sigma \left[1 + r_{\sigma\sigma} (1 - \sigma/f_{\pi}) \right] + g_{\sigma} \omega^{\mu} \omega_{\mu} / f_{\pi} \left[r_{\omega\omega} + r_{\sigma\omega\omega} (1 - \sigma/f_{\pi}) \right] \right]$$

$$U_{\mu} = g_{\omega} \omega_{\mu} \left[1 - r_{\sigma\omega} \sigma / f_{\pi} + r_{\omega3} \omega^{\nu} \omega_{\nu} / f_{\pi}^{2} \right]$$

$$+ g_{\rho} \tau \cdot R_{\mu} \left[1 - r_{\sigma\rho} \sigma / f_{\pi} + r_{\omega\rho} \omega^{\nu} \omega_{\nu} / f_{\pi}^{2} \right]$$

$$\mathcal{V}_{\sigma \omega \rho} = \frac{1}{2} m_{\sigma}^{2} \sigma^{2} \left[-a_{\sigma} f_{\log} (\sigma / f_{\pi}) + \frac{1}{4} c_{\sigma4} (\sigma^{4} - 4f_{\pi} \sigma^{3}) \right]$$

$$- \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} \left[1 - c_{\sigma\omega} \sigma / f_{\pi} \right] - \frac{1}{4} c_{\omega4} (\omega^{\mu} \omega_{\mu})^{2} \right]$$

$$- \frac{1}{2} m_{\rho}^{2} R^{\mu} \cdot R_{\mu} \left[1 - c_{\sigma\rho} \sigma / f_{\pi} + c_{\omega\rho} \omega^{\mu} \omega_{\mu} / f_{\pi}^{2} \right] - \frac{1}{4} c_{\rho4} (R^{\mu} \cdot R_{\mu})^{2}$$

$$f_{\log}(x) = \log (1 - x) + x + \frac{1}{2} x^{2} \quad a_{\sigma} = f_{\pi}^{2} (m_{\sigma}^{2} - m_{\pi}^{2}) / 2 - f_{\pi}^{4} c_{\sigma4}$$

RMF with many-body coupling

Naive dimensional analysis (NDA) and naturalness

Manohar, Georgi ('84)

The vertex is called "natural" if C ~ 1.

$$L_{\rm int} \sim (f_{\pi}\Lambda)^2 \sum_{l,m,n,p} \frac{C_{lmnp}}{m!\,n!\,p!} \left(\frac{\overline{\psi}\,\Gamma\,\psi}{f_{\pi}^2\Lambda}\right)^l \left(\frac{\sigma}{f_{\pi}}\right)^m \left(\frac{\sigma}{f_{\pi}}\right)^n \left(\frac{R}{f_{\pi}}\right)^p$$

 \rightarrow Consistent with the idea that the vertex is generated by loop diagrams under the assumption that the QCD coupling is small.

A. Ohnishi @ JAEA, June 2, 2015 107

0

vector

scalar

◇ mixed × natural

5

ſ

n=3 coupling terms

- RMF with n=3 terms
 - n=B/2+M+D; baryon, meson, derivative

$$\mathcal{L}_{n=3}^{\sigma\omega} = -\frac{1}{f_{\pi}} \sum_{B} \bar{\psi}_{B} \left[g_{\sigma\sigma B} \sigma^{2} + g_{\omega\omega B} \omega_{\mu} \omega^{\mu} - g_{\sigma\omega B} \sigma \omega_{\mu} \gamma^{\mu} \right] \psi_{B} - c_{\sigma\omega\omega} f_{\pi} \sigma \omega_{\mu} \omega^{\mu}$$

- $g_{\sigma\Lambda}/g_{\sigma N} \sim 0.8 > 2/3 \rightarrow 2 M_{\odot} NS$
- Parameter fitting: (ρ₀, E/A), Vector pot. in DBHF, S₀, L, ...

Tsubakihara, AO, NPA914 ('13), 438.

"Universal" mechanism of "Three-body" repulsion

- Mechanism of "Universal" Three-Baryon Repulsion.
 - "σ"-exchange ~ two pion exch. w/ res.
 - Large attraction from two pion exchange is suppressed by the Pauli blocking in the intermediate stage.

A. Ohnishi @ JAEA, June 2, 2015 109

"Universal" TBR

- Coupling to Res. (hidden DOF)
- Reduced " σ " exch. pot. ?

How about YNN or YYN?

AA interaction in vacuum and in nuclear medium

- Vacuum ΛΛ interaction may be theoretically accessible Lattice QCD calc. HAL QCD ('11) & NPLQCD ('11)
- In-medium ΛΛ interaction may be experimentally accessible
 - a_0 (Nagara fit) = 0.575 fm, -0.77 fm ($\Delta B_{\Lambda\Lambda}$ =1.0 MeV) *Hiyama et al. ('02), Filikhin, Gal ('02)*
 - Bond energy of ${}^{6}_{\Lambda\Lambda}$ He: $\Delta B_{\Lambda\Lambda}$ =1.0 MeV \rightarrow 0.6 MeV Nakazawa, Takahashi ('10)
- Difference of vacuum & in-medium ΛΛ int. would inform us ΛΛN int. effects.
 - ΛΛ-ΞΝ couples in vacuum
 - Coupling is suppressed in ${}^{6}_{\Lambda\Lambda}$ He

Is there Any way to access "vacuum" AA int. experimentally ?

Hyperons in Dense Matter

- What appears at high density ?
 - Nucleon superfluid (³S₁, ³P₂), Pion condensation, Kaon condensation, Baryon Rich QGP, Color SuperConductor (CSC), Quarkyonic Matter,

Hyperons

Tsuruta, Cameron (66); Langer, Rosen (70); Pandharipande (71); Itoh(75); Glendenning; Weber, Weigel; Sugahara, Toki; Schaffner, Mishustin; Balberg, Gal; Baldo et al.; Vidana et al.; Nishizaki,Yamamoto, Takatsuka; Kohno,Fujiwara et al.; Sahu,Ohnishi; Ishizuka, Ohnishi, Sumiyoshi, Yamada; ...

Nobody says "Hyperons cannot appear in neutron star core" ! Y appears when $\mu_B = E_F(n) + U(n) \ge M(Y) + U(Y) + Q_Y \mu_e$

A. Ohnishi @ JAEA, June 2, 2015 111