高密度物質と中性子星の物理 Physics of Neutron Star Matter

京大基研 大西 明 Akira Ohnishi (YITP, Kyoto Univ.)

- 1. 中性子星の基本的性質
- 2. 状態方程式を記述する理論模型
- 3. 対称エネルギーと非対称核物質の状態方程式
- 4. ハイパー核物理と高密度核物質の状態方程式
- 中性子星におけるエキゾチック自由度
 → YYN3 体力:重イオン衝突とハイパー核から中性子星へ

九州大学集中講義 7/8-10

Ohnishi @ Kyushu U., 2014

Neutron Star Matter

- Cold, dense, charge neutral
- Constituents
 - n, p, e, μ, Y, π, K, q, di-quark, ...

Can we determine int. btw constituents ?

Massive Neutron Stars

- M_{NS}=1.97±0.04 Msun measured using Shapiro delay (GR effect).
- EOSs w/ strange hadrons are "ruled out", while Lab. exp. suggest their existence in NS.

Ohnishi @ Kyushu U., 2014 3

NS matter EOS with hyperons

- "Ruled-out" hyperonic EOS = Naive RMF Glendenning, Moszkowski ('91)
 - SU(6) coupling (~ quark counting) $g_{\sigma\Lambda} = 2/3 g_{\sigma N}$
 - No ss mesons
- Proposed prescription after 2 Msun NS
 - Modify coupling constant from SU(6) value Weisenborn et al., ('11); Tsubakihara, AO, Harada ('13)
 - Introducing three-body repulsion Bednarek, et al.('11); Miyatsu, Yamamuro, Nakazato ('13)
 - Crossover transition to quark matter *Masuda, Hatsuda, Takatsuka (*12)*

Three Baryon Repulsion

Nishizaki, Takatsuka, Yamamoto ('02)

Ohnishi @ Kyushu U., 2014 5

NS matter EOS with hyperons

Ohnishi @ Kyushu U., 2014 6

NS matter EOS with hyperons

Calculated Neutron Star Mass

Tsubakihara, AO, Harada, arXiv:14020979

Ch-EFT EOS

Phen. models need inputs from Experimental Data and/or Microscopic (Ab initio) Calc.

Recent Ch-EFT EOS is promising ! NN (N3LO)+3NF(N2LO) Kohno ('13)

WA INSTITUTE FO

M. Kohno, PRC 88 ('13) 064005

"Universal" mechanism of "Three-body" repulsion

- "Universal" 3-body repulsion is necessary to support NS. Nishizaki, Takatsuka, Yamamoto ('02)
- Mechanism of "Universal" Three-Baryon Repulsion.
 - "σ"-exchange ~ two pion exch. w/ res.
 - Large attraction from two pion exchange is suppressed by the Pauli blocking in the intermediate stage. Kohno ('13)

Physical Picture

"Universal" TBR

- Coupling to Res. (hidden DOF)
- Reduced " σ " exch. pot. ?

How about YNN or YYN ?

AA interaction in vacuum and in nuclear medium

- Vacuum ΛΛ interaction may be theoretically accessible Lattice QCD calc. HAL QCD ('11) & NPLQCD ('11)
- In-medium ΛΛ interaction may be experimentally accessible
 - Bond energy of ${}^{6}_{\Lambda\Lambda}$ He $\Delta B_{\Lambda\Lambda}$ =1.0 MeV \rightarrow 0.6 MeV
 - a_0 (Nagara fit) = 0.575 fm ($\Delta B_{\Lambda\Lambda}$ =1.0 MeV) Hiyama et al. ('02)
- Difference of vacuum & in-medium ΛΛ int. would inform us ΛΛN int. effects.
 - ΛΛ-ΞΝ couples in vacuum
 - Coupling is suppressed in ${}^{6}_{\Lambda\Lambda}$ He

Is there Any way to access vacuum AA int. experimentally ?

Interactions btw short-lived hadrons

Scattering, Nuclear bound state, Atomic shift

- Exotic hadron spectroscopy
- Correlations from heavy-ion collisions
 - STAR data of ΛΛ correlation

This Lecture

Contents

- Introduction
 - Massive NS and NS matter EOS
 - Strangeness in NS matter
 - "Universal" Three-Baryon Repulsion
- **Constraint on ΛΛ interaction from HIC**
 - ΛΛ correlation in heavy-ion collisions
 - Constraint on $\Lambda\Lambda$ interaction from HIC data
- Discussion
 - Can we see the difference btw vacuum and in-medium ΛΛ interaction ?
 - Do we see H in ΛΛ correlation ?
- Summary

Where is the S=-2 dibaryon (uuddss) "H"?

RHIC & LHC = Hadron Factory including Exotics

 "H" would be formed as frequently as stat. model predicts. Cho, Furumoto, Hyodo, Jido, Ko, Lee, Nielsen, AO, Sekihara, Yasui, Yazaki
 Y FPHC Collab.), PRL('11)212001; arXiv:t:1107.1302 Ohnishi @ Kyushu U, 2

Nagara event

⁶He hypernuclei

Takahashi et al., PRL87('01)212502 (KEK-E373 experiment) Lambpha

 $m({}_{AA}^{6}He) = 5951.82 \pm 0.54 \text{MeV}$ $B_{AA} = 7.25 \pm 0.19^{+0.18}_{-0.11} \text{MeV}$ $\Delta B_{AA} = 1.01 \pm 0.20^{+0.18}_{-0.11} \text{MeV}$ (assumed $B_{\Xi}^{-} = 0.13 \text{ MeV}$)

 \rightarrow B_{AA} = 6.91 MeV (PDG modified(updated) Ξ^{-} mass)

$$\overline{Z}^{-} + {}^{12}C \longrightarrow {}^{6}_{\Lambda\Lambda}He + {}^{4}He + t$$
$${}^{6}_{\Lambda\Lambda}He \longrightarrow {}^{5}_{\Lambda}He + p + \pi^{-}$$

Lattice QCD predicts bound "H"

• "H" bounds with heavy π (M_{π} > 400 MeV)

NPLQCD Collab., PRL 106 (2011) 162001; HAL QCD Collab., PRL 106 (2011) 162002

Ohnishi **(a)** *Kyushu U.*, *2014* **15**

Hadron-Hadron correlation in HIC

Hanbury-Brown and Twiss Effects for free bosons

$$C(q) = \int dx \frac{\exp(-x^{2}/4R^{2})}{(4\pi R^{2})^{-3/2}} \frac{|\sqrt{2}\cos q \cdot x|^{2}}{|\sqrt{2}\cos q \cdot x|^{2}} + \exp(-4q^{2}R^{2})$$
Source
$$|\Psi|^{2}$$

- **Correlation func.** $\sim \int$ Source x $|\Psi|^2$
 - → If source is known, corr. fn. tells us w.f. or interaction. Bauer, Gelbke, Pratt ('92); Lednicky ('09).
- ΛΛ correlation is measured in (K-,K+) reaction C.J. Yoon et al. (KEK-E522)('07); J.K.Ahn et al. (KEK-E224)
- STAR measured ΛΛ correlation at RHIC N. Shah et al.('12)

Let's try to constrain A interaction !

$\Lambda\Lambda$ correlation from (K⁻,K⁺ $\Lambda\Lambda$) reaction

Enhancement at ~ 2 M(Λ)+ 10 MeV,

IKAWA INSTITUTE FOI

Ohnishi @ Kyushu U., 2014 17

AA Invariant Mass Spectrum

AWA INSTITUTE FO

Ohnishi @ Kyushu U., 2014 18

AA correlation in HIC

- Merit of HIC to measure ΛΛ correlation
 - Source is "Simple and Clean" ! T, μ , flow, size, ... are well-analyzed.
 - Nearly Stat. prod. \rightarrow Many exotics will be produced. Cho et al.(ExHIC Collab.) ('11)

UKAWA INSTITUTE FO

Discovery of "H" and/or Constraint on ΛΛ int.

AA correlation at RHIC

Data (STAR prelim.): N. Shah et al.('12), Cal.: AO for ExHIC ('13)

AA interaction models

- Boson exchange potentials
 - Nijmegen potentials: various versions *Rijken et al., ('77-'10)* Hard core: Nijmegen model D & F (ND, NF) Soft core: Nijmegen soft core '89 & '97 (NSC89, NSC97) Extended soft core: ESC08
 - Ehime potential: would be too attractive. Ehime fits old double Λ hypernucl. data, $\Delta B_{\Lambda\Lambda} = 4$ MeV

Quark cluster model

- fss2 *Fujiwara, Kohno, Nakamoto, Suzuki ('01)* Short range repulsion from quark Pauli blocking & OGE
 Core is softer due to non-locality
- Modified Nijmegen potentials fitting Nagara data. Filikhin, Gal ('02), Hiyama et al.('02)
 - Potential Fitting Nagara data $\Delta B_{\Lambda\Lambda} = 1.0 \text{ MeV}$

AA interaction models

Low energy scattering parameters, (a₀, r_{eff})

$$k \cot \delta = -\frac{1}{a_0} + \frac{1}{2} r_{\text{eff}} k^2 + O(k^4)$$

• $a_0 > 0$ (bound region), $a_0 < 0$ (no bound region)

- Potential parameters
 - Hard core radius (ND, NF), cutoff mass (NSC89), spin dependence (NSC97a-f).

Ohnishi **(a)** *Kyushu U.*, *2014* **22**

ΛΛ correlation function

Two particle correlation function

Koonin ('77)

$$C_2(\boldsymbol{Q},\boldsymbol{K}) = \frac{W_2(\boldsymbol{k_1},\boldsymbol{k_2})}{W_1(\boldsymbol{k_1})W_1(\boldsymbol{k_2})} = \frac{\int d^4x_1 d^4x_2 S(x_1,\boldsymbol{K}) S(x_2,\boldsymbol{K}) |\Psi_{12}(\boldsymbol{Q},x_1-x_2-(t_2-t_1)\boldsymbol{K}/\boldsymbol{m})|^2}{\int d^4x_1 d^4x_2 S(x_1,\boldsymbol{k_1}) S(x_1,\boldsymbol{k_2})}$$

- W₁(k), W₂(k₁,k₂): 1 & 2 partcl. dist., S(x, k): phase spc. dist. Q=(k₁-k₂), K=(k₁+k₂)/2
- Wave fn. Ψ (assumption: only the s-wave partial wave is modified.)

$$\begin{split} \Psi_{s} &= \sqrt{2} \left[\cos \mathbf{Q} \cdot \mathbf{r}/2 + \chi_{Q}(\mathbf{r}) - j_{0}(\mathbf{Q}\mathbf{r}/2) \right] \\ \Psi_{t} &= \sqrt{2} i \sin \mathbf{Q} \cdot \mathbf{r}/2 \\ |\Psi_{12}|^{2} &= 1 - \frac{1}{2} \cos \mathbf{Q} \cdot \mathbf{r} + \cos \left(\mathbf{Q} \cdot \mathbf{r}/2 \right) \Delta \chi_{Q}(\mathbf{r}) + \left[\Delta \chi_{Q}(\mathbf{r}) \right]^{2} \\ \Delta \chi_{Q}(\mathbf{r}) &= \chi_{Q}(\mathbf{r}) - j_{0}(\mathbf{Q}\mathbf{r}/2) \end{split}$$

Static Spherical Source

Correlation fn. with static, spherical gaussian source

$$C_{\Lambda\Lambda}(Q) \simeq 1 - \frac{1}{2} \exp(-Q^2 R^2) + \frac{1}{2} \int dr S_{12}(r) \left(|\chi_Q(r)|^2 - |j_0(Qr/2)|^2 \right)$$

Morita, Furumoto, AO (to be submitted)

Geometry & Flow Effects

Boost invariant source with flow effects S. Chapman, P. Scotto, U. Heinz, Heavy Ion Phys. 1, 1 (1995).

$$S(x, k) = \frac{m_T \cosh(y - Y_L)}{(2\pi)^3 \sqrt{2\pi (\Delta \tau)^2}} n_f(u \cdot k, T) \exp\left[-\frac{(\tau - \tau_0)}{2(\Delta \tau)^2} - \frac{x^2 + y^2}{2R^2}\right]$$

AA correlation with flow effects

- Results with flow effects
 - Optimal transverse source size R ~ (0.8-1.1) fm
 - HBT source size is interpreted as the "homogeneity length", but it is still too small compared with the proton source size, R_p ~ (2-4) fm.

Cylindrical

Morita, Furumoto, AO (to be submitted)

Preferred AA interactions

Contents

- Introduction
 - Massive NS and NS matter EOS
 - Strangeness in NS matter
 - "Universal" Three-Baryon Repulsion
- **Constraint on ΛΛ interaction from HIC**
 - ΛΛ correlation in heavy-ion collisions
 - Constraint on $\Lambda\Lambda$ interaction from HIC data
- Discussion
 - Can we see the difference btw vacuum and in-medium ΛΛ interaction ?
 - Do we see H in ΛΛ correlation ?
- Summary

Comparison with In-medium interaction.

- $\Lambda\Lambda$ interactions from Nagara event ($\Delta B_{\Lambda\Lambda} = 1.0$ MeV)
 - Hiyama, Kamimura, Motoba, Yamada, Yamamoto ('02)
 (a₀, r_{eff}) = (-0.575 fm, 6.45 fm)
 - Filikhin, Gal ('02)
 (a₀, r_{eff}) = (-0.77 fm, 6.59 fm)
- $\blacksquare \Xi^-$ mass is updated by PDG
 - Bond energy is updated $\Delta B_{\Lambda\Lambda} = 0.67 \text{ MeV}$ $\rightarrow a_0 \text{ will be reduced}$ by 10-20 % $a_0 \sim -(0.5-0.65) \text{ fm} \equiv$

Do we see H as a resonance ?

- **Deeply bound H is ruled out by double** Λ hypernuclear mass. M_H > 2 M_{Λ} - 6.91 MeV
- Existence of H as a resonance is not ruled out. → Let's try to find it !
- Procedure
 - Assume the bump comes from H, and give (E_H, Γ_H) .
 - Compare the bump height with statistical model yield.
 - If H exists at low E (E=(1-2) MeV), we can find the signal by reducing the error by a factor of two.

Morita, Furumoto, AO (to be submitted)

Other source of correlation ?

- ΛΛ correlation would be modified by
 - Feed down effects from Ξ and Σ^0 decay,

 $\Xi^{-} \rightarrow \pi^{-} \Lambda$ (detectable)

 $\Sigma^0 \rightarrow \gamma \Lambda$ (will be detectable at LHC (Kwon et al.)) Σ^0 effects can be taken are of by multiplying 0.41 to (C-1), and preferred V($\Lambda\Lambda$) are similar to the present result.

If feed down Λ is included, the correlation is affected by the parent pair interaction.

E.g. pp correlation is significantly affected by V($p\Lambda$).

 $(\Lambda \rightarrow \pi^{-} p and no Coulomb suppression in p\Lambda channel.)$

Since there is no Coulomb suppression in $\Lambda\Lambda$ pair, parent pair interaction effects may be less serious than in pp correlation.

Further investigation is necessary to pin down ΛΛ interaction more precisely.

Summary of Lecture(?) 5

- We need additional repulsion to solve massive neutron star puzzle related to strangeness hadrons.
 - Need exp. data and ab initio calc. J-PARC exp. / Lattice BB and BBB int. / Ch-EFT
- We have constrained ΛΛ low energy scattering parameters using ΛΛ correlation data from STAR collaboration.
 - Optimal source size & flow parameter are fixed by using correlation and pT spectrum.
 - Preferred scattering parameters are found to be in the range,
 -1.8 fm⁻¹ < 1/a₀ < -0.8 fm⁻¹, 3.5 fm < r_{eff} < 7 fm
 - Other mechanisms may need to be taken care of.
- **Information on ΛΛΝ may be accessible via correlation in HIC**
 - In-medium ΛΛ interaction seems to be weaker than vacuum interaction.

Report 問題

中性子、陽子、電子のみからなる中性子星物質を考える。電子の 質量を無視すると、核子あたりのエネルギーは、Lecture 1 で示し たように

 $E_{\rm NSM}(\rho) = E_{\rm SNM}(\rho) + S(\rho)\delta^{2} + \frac{\Delta M}{2}\delta + \frac{3}{8}\hbar k_{F}(1-\delta)^{4/3}$

と与えられる。ここで ΔM=M_p-M_p、k_p は同じ密度での対称核物質 のフェルミ波数である。非対称度 δ は、核子あたりのエネルギー が最小になるように選ばれる。

- 上の表式を導け。
- 核子あたりのエネルギーが最小となる非対称度 δ を求めよ。 (3次方程式を解くこととなる。S(ρ), k_F, ΔM は与えられているとして よい。)
- 今回の講義において、中性子物質の物理の課題の中で各自が興味を持った項目をあげ、その理由を述べよ。

単位認定について

- 次の条件で単位を出します。
 - 6コマの講義中、4コマ以上出席。
 - 6コマの講義中、1コマ以上出席し、レポートを提出。
- レポート問題は Lec.2 後にお知らせしたものです。 1つ目の問題を次の問題に置き換えてもよい。
 - SU(3) 不変な相互作用
- $\mathcal{L}_{\rm BV} = \sqrt{2} \{ g_s \operatorname{tr} (M_v) \operatorname{tr} (\bar{B}B) + g_D \operatorname{tr} (\bar{B} \{M_v, B\}) + g_F \operatorname{tr} (\bar{B} [M_v, B]) \}$ $= \sqrt{2} \{ g_s \operatorname{tr} (M_v) \operatorname{tr} (\bar{B}B) + g_1 \operatorname{tr} (\bar{B}M_vB) + g_2 \operatorname{tr} (BBM_v) \}$

において、バリオン・メソンの結合定数を g_D, g_F, g_s を用いて表せ。

Thank you

AA interaction and correlation

- AA int.
 - Nijmegen models Rijken et al.
 - quark model (fss2) Fujiwara et al. ('01)
 - Nagara fit
 Filikhin, Gal ('02);
 Hiyama et al.('02)
- Source models
 - sph. static source
 - cylindrical source w/ flow

K. Morita, AO, T. Furumoto (in prep.)

Ohnishi **a** *Kyushu U.*, *2014* **36**

AA correlation in HIC and AA interaction

Two particle correlation from chaotic source

c.f. Bauer, Gelbke, Pratt, Annu. Rev. Nucl. Part. Sci. 42('92)77.

$$C_{\Lambda\Lambda}(q) = \frac{\int dx_1 dx_2 S(x_1, p+q) S(x_2, p-q) |\psi^{(-)}(x_{12}, q)|^2}{\int dx_1 dx_2 S(x_1, p+q) S(x_2, p-q)}$$

$$\simeq 1 - \frac{1}{2} \exp(-4q^2 R^2) + \frac{1}{2} \int dr S_{12}(r) (|\chi_0(r)|^2 - |j_0(qr)|^2)$$

 $(\chi_0 : \text{s-wave wave func.}, S_{12}(x) = (2R\sqrt{\pi})^{-3} \exp(-r^2/4R^2))$

Baryon Source size R = (2-4.5) fm

Smaller than π , K source.

Ohnishi @ SNP 2012, Aug.27-29, 2012, OECU, Neyagawa, Japan 37

AA interaction

- **Type of ΛΛ interactoin**
 - Meson exchange models: Nijmegen model D, F, Soft Core (89, 97) Nagels, Rijken, de Swart ('77, '79), Maessen, Rijken, de Swart ('89), Rijken, Stoks, Yamamoto ('99)
 - Quark cluster model interaction: fss2 Fujiwara, Fujita, Kohno, Nakamoto, Suzuki ('00)
 - Phenomenological model: Ehime
- Two (or three) range gaussian fit results are used in the analysis.

