

京大基研 大西 明 Akira Ohnishi (YITP, Kyoto U.)

- 1. 有限温度・密度における場の理論入門
- (a) 経路積分・松原和・自由エネルギー
- (b)QCD におけるカイラル相転移、南部 ヨナラシニョ模型、強結合格子 QCD
- 2. 状態方程式を記述する理論模型
- (a) 核力と位相差、有効相互作用
- (b) 核物質の状態方程式、平均場理論
- 3. 原子核反応理論

- a) 核子 核子散乱、ハドロン 原子核反応
- (b) 流体力学、輸送理論
- (c) ハイパー核・中間子核生成反応の概観と直接反応

シラバス

- ■[授業の概要・目的]
 - 核子・ハドロン・クォークからなる多体系の性質を量子色力学 (QCD)、状態方程式、および核反応論の観点から議論する。強い相 互作用の基本理論である QCD の基本的性質、核物質の状態方程 式を記述するために必要となる核多体理論(平均場理論、有効相 互作用、有限温度・密度での場の理論、強結合格子 QCD)、ハイ パー核生成反応や重イオン反応を理解する上で必要とされる原子 核反応理論(直接反応、輸送模型等)、等の理論の枠組について解 説すると共に、これらについての最近の研究成果についても紹介す る。
- [到達目標] 次の事項を習得する。
 - 有限温度・密度の場の理論、散乱理論、有効相互作用理論の基本 を理解する。
 - 核力から有効相互作用、あるいは場の理論から状態方程式につながる理論体系を理解する。
 - 簡単な平均場理論・直接反応理論の範囲内で状態方程式・反応スペクトルを計算するための手法

Contents

- 本子・ハドロン・クォーク物質の相互作用と状態方程式について
 以下の内容で講義する。
 - 1. 有限温度・密度における場の理論入門
 - ◆ (a) 経路積分・松原和・自由エネルギー
 - ◆ (b)QCD におけるカイラル相転移、南部 ヨナラシニョ模型、強結合格 子 QCD
 - 2. 状態方程式を記述する理論模型
 - ◆ (a) 核力と位相差、有効相互作用
 - ◆ (b) 核物質の状態方程式、平均場理論
 - 3. 原子核反応理論
 - ◆ (a) 核子 核子散乱、ハドロン 原子核反応
 - ◆(b)流体力学、輸送理論
 - ◆ (c) ハイパー核・中間子核生成反応の概観と直接反応
- 講義回数は1(全体の概要講義(初回)を含めて6回),2(6回), 3(4回)を予定している。

- 核物質の物理が関わる物理
 - 原子核質量·半径、励起状態(巨大共鳴、...)
 - 原子核反応
 重イオン衝突、ストレンジンネス生成反応、中性子過剰核反応…
 - コンパクト天体現象
 中性子星、超新星爆発、連星中性子星合体、ブラックホール形成
- 核物質論の中で 相図・状態方程式 の理解を目指す。
 - クォーク物質から
 - ◎ 核子多体系から
 - ◎ 核反応から

Contents

- 本子・ハドロン・クォーク物質の相互作用と状態方程式について
 以下の内容で講義する。
 - 1. 有限温度・密度における場の理論入門
 - ◆ (a) 経路積分・松原和・自由エネルギー
 - ◆ (b)QCD におけるカイラル相転移、南部 ヨナラシニョ模型、強結合格 子 QCD
 - 2. 状態方程式を記述する理論模型
 - ◆ (a) 核力と位相差、有効相互作用
 - ◆ (b) 核物質の状態方程式、平均場理論
 - 3. 原子核反応理論
 - ◆ (a) 核子 核子散乱、ハドロン 原子核反応
 - ◆(b)流体力学、輸送理論
 - ◆ (c) ハイパー核・中間子核生成反応の概観と直接反応
- 講義回数は1(全体の概要講義(初回)を含めて6回),2(6回), 3(4回)を予定している。

Field Theory at Finite T & p - Short Course -

経路積分

- 量子力学での経路積分 (Path Integral)
 - ●時刻t_iに位置q_iにいた粒子が時刻t_fに位置q_fに到着する振幅 $S_{fi} = \langle q_f, t_f | \exp[-i\hat{H}(t_f t_i)] | q_i, t_i \rangle = \int Dq \exp(iS[q])$ $S[q] = \int_{q(t_i) = q_i, q(t_f) = q_f} dt L(q, \dot{q})$

経路 q(t) についての和→経路積分

- 特徴
 - ◆演算子の代わりに通常の数 (c-number) で表せる
 - ◆作用Sの構成時に正準交換関係を用いることにより 「量子論」の性質を取り込む
- 場の理論=各点での場の振幅φ(x,t)を座標とする量子力学

$$S_{fi} = \langle \Psi_f | \exp[-i\hat{H}(t_f - t_i)] | \Psi_i \rangle = \int D \phi \exp(iS[\phi])$$

$$S[\phi] = \int_{\Psi(t_i) = \Psi_i, \Psi(t_f) = \Psi_f} d^4 x L(\phi, \partial_\mu \phi)$$

分配関数とユークリッド化

■ 分配関数

$$Z = \sum_{n} \exp(-E_{n}/T) = \sum_{n} \langle n | \exp[-\hat{H}/T] | n \rangle$$

$$= \sum_{n} \langle n | \exp[-i\hat{H}(t_{f}-t_{i})] | n \rangle_{t_{f}-t_{i}=-i/T} = \int D\varphi \exp(-S_{E}[\varphi])$$

$$S_{E}[\varphi] = \int_{0}^{\beta} d\tau d^{3}x L_{E}(\varphi, \partial_{i}\varphi, \partial_{\tau}\varphi) |_{\varphi(x,\beta)=\varphi(x,0)}$$

$$L_{E}(\varphi, \partial_{i}\varphi, \partial_{\tau}\varphi) = -L(\varphi, \partial_{i}\varphi, i\partial_{\tau}\varphi)$$

$$t = -i\tau, \quad \partial_{\tau} = -i\partial_{t}, \beta = 1/T$$

$$iS = i \int_{0}^{-i\beta} dt \int d^{3}x L = \int_{0}^{\beta} d\tau d^{3}x L = -\int_{0}^{\beta} d\tau d^{3}x L_{E}$$

- 統計力学の分配関数は虚時間発展の振幅の和である。
- 全ての状態について和 $\rightarrow \tau=0, \beta$ で周期境界条件をつけて 任意の $\phi(\mathbf{x},t)$ について足し合わせる。

Example: Scalar Field

Lagrangian density

$$L = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - U(\phi)$$

Euler-Lagrange equation (principle of least action)

$$\partial_{\mu} \left[\frac{\partial L}{\partial (\partial_{\mu} \phi)} \right] - \frac{\partial L}{\partial \phi} = 0 \quad \rightarrow \quad \partial_{\mu} \partial^{\mu} \phi + m^{2} \phi + \frac{\partial U}{\partial \phi} = 0 \, (\text{Klein-Gordon eq.})$$

Euclidean Lagrangian

• Euclid 化のルール $t = -i\tau, x_4 = \tau, g_{\mu\nu} = (1,1,1,1), L_E = -L$ $L_E = \frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi + \frac{1}{2} m^2 \phi^2 + U(\phi)$

→ 相互作用がない場合に実際に経路積分してみましょう。

Partition Func. of Free Scalar Field

- 自由スカラー場の分配関数
 - 有限のサイズの箱 (体積 𝒱)の中で自由スカラー場 (U=0)
 - ◎ フーリエ変換

$$\phi(\tau, \boldsymbol{x}) = \frac{1}{\sqrt{V/T}} \sum_{n, \boldsymbol{k}} \exp(-i\omega_n \tau + i\boldsymbol{k} \cdot \boldsymbol{x}) \phi_n(\boldsymbol{k})$$

Periodic boudnary condition $\omega_n = 2\pi nT$, $k_i = 2\pi n_i/L$

1/7

Euclidean action
$$S_E = \frac{1}{2} \sum_{n, k} (\omega_n^2 + k^2 + m^2) \phi_n^2(k)$$

フーリエ変換はユニタリー変換だから、 積分の測度は変わらない。(高々定数倍)

$$D \Phi = N \prod_{n, k} d \Phi_n(k)$$

● ガウス積分 → 分配関数

$$Z = \int D \phi e^{-S_{E}} = N \prod_{k} \sqrt{2\pi} \left[\omega_{n}^{2} + k^{2} + m^{2} \right]^{-1/2}$$

Partition Func. of Free Scalar Field (cont.)

- 自由エネルギー $\Omega = -T \log Z = \frac{1}{2} \sum_{k} \left[T \sum_{n} \log(\omega_n^2 + \frac{k^2 + m^2}{E_k^2}) \right] + \text{const.}$ $= \frac{1}{2} \sum_{k} I(E_k, T) + \text{const.}$
- 本原和 (Matsubara Frequency summation)

$$\sum_{n} \frac{1}{a^{2} + \overline{n}^{2}} = \frac{\pi}{2a} \times \begin{cases} \coth(\pi a/2) & (\overline{n} = 2n) \\ \tanh(\pi a/2) & (\overline{n} = 2n+1) \end{cases}$$
$$\frac{\partial I(E_{k}, T)}{\partial E_{k}} = \sum_{n} \frac{2TE_{k}}{\omega_{n}^{2} + E_{k}^{2}} = \dots = \frac{1 + \exp(-E_{k}/T)}{1 - \exp(-E_{k}/T)}$$
$$I(E_{k}, T) = E_{k} + 2T\log(1 - \exp(-E_{k}/T)) + \text{const}$$

Partition Func. of Free Scalar Field (cont.)

自由エネルギー (グランド・ポテンシャル)

$$\Omega = \sum_{k} \left\{ \frac{E_{k}}{2} + T \log(1 - e^{-E_{k}/T}) \right\} + \text{const.}$$
$$= V \int \frac{d^{3}k}{(2\pi)^{3}} \left[\frac{E_{k}}{2} + T \log(1 - e^{-E_{k}/T}) \right]$$
於的励起

ゼロ点エネルギー部分を無視して部分積分すると、 通常の圧力を得る。

$$P = -\Omega/V = \int \frac{d^3k}{(2\pi)^3} \frac{\boldsymbol{k} \cdot \boldsymbol{v}}{3} \frac{e^{-E_k/T}}{1 - e^{-E_k/T}} \quad \left(\boldsymbol{v} = \frac{\partial E_k}{\partial \boldsymbol{k}}\right)$$

場の理論 → Euclid 化 + Imag. Time → 統計力学

Matsubara Frequency Summation

Fermion

Lagrangian

$$L = \bar{N} (i \gamma^{\mu} \partial_{\mu} - m) N$$

Euclidean

$$(x_{\mu})_{E} = (\tau = it, \mathbf{x}), \quad (\gamma_{\mu})_{E} = (\gamma_{4} = i\gamma^{0}, \mathbf{y})$$
$$L_{E} = \overline{N}(-i\gamma_{\mu}\partial_{\mu} + m)N$$

Grassman number
 経路積分において、フェルミオンは反可換な Grassmann 数

$$\int d\chi \cdot 1 = \text{anti-comm. constant} = 0 \quad , \quad \int d\chi \cdot \chi = \text{comm. constant} \equiv 1$$
$$\int d\chi d\bar{\chi} \exp[\bar{\chi} A\chi] = \int d\chi d\bar{\chi} \frac{1}{N!} (\bar{\chi} A\chi)^N = \dots = \det A$$
$$= \exp[-(-\log \det A)]$$

Bi-linear Fermion action leads to -log(det A) effective action

RMF

Example: Relativistic Mean Field (RMF)

$$L = \overline{\psi} (i \gamma^{\mu} \partial_{\mu} - m - \Sigma) \psi + L_{\text{meson}} (\Phi) \quad (\Phi = \sigma, \omega, \rho)$$

$$\Sigma = g_{\sigma} \sigma + \gamma^{0} (g_{\omega} \omega^{0} + g_{\rho} \rho^{0} \tau)$$

Euclid 化+化学ポテンシャルの導入

$$Z = \int D \psi D \overline{\psi} D \Phi \exp \left[-\int d^4 x (L - \mu \psi^+ \psi) \right]$$

= $\int D \psi D \overline{\psi} D \Phi \exp \left[-\int d^4 x \{ \overline{\psi} D \psi + L_{meson}(\Phi) \} \right]$
= $\int D \Phi \exp \left[-S_{eff}(\Phi; T, \mu) \right]$
 $D = -i\gamma \partial - \mu \gamma^0 + m + \Sigma$

■ 有効作用

$$S_{\text{eff}} = S_{\text{eff}}^{(F)} + S_{\text{meson}} = -\sum_{n, k} \log \det D_{n, k} + \int d^4 x L_{\text{meson}}$$

RMF (cont.)

■ 一様な場を仮定 → Fourier 変換によりDをブロック対角化

$$D_{n,k} = \gamma^{0} (-i\omega_{n} - (\mu - V^{0})) + \mathbf{y} \cdot \mathbf{k} + M + g_{\sigma}\sigma$$

$$\Rightarrow \det D = \left[(\omega_{n} + i\mu^{*})^{2} + E^{*2} \right]^{2}$$

$$\mu^{*} = \mu - g_{\omega}\omega^{0} - g_{\rho}\rho^{0}\tau, \quad E^{*} = \sqrt{\mathbf{k}^{2} + M^{*2}}, \quad M^{*} = m + g_{\sigma}\sigma$$

■ 松原振動数和を実行

$$F_{\text{eff}}^{(F)} = -\frac{d_f}{2} \int \frac{d^3 k}{(2\pi)^3} \Big[E^* + T \log \left(1 + e^{-(E^* - \mu^*)/T} \right) + T \log \left(1 + e^{-(E^* + \mu^*)/T} \right) \Big]$$

■ 温度 0 の場合 ゼロ点 粒子 (核子) 反粒子 (反核子)

$$F_{\text{eff}}^{(F)} = -\frac{d_f}{2} \int^{\Lambda} \frac{d^3 k}{(2\pi)^3} E^* + d_N \int^{k_F} \frac{d^3 k}{(2\pi)^3} E^* - \mu^* \rho_B \ (d_N = d_f/2)$$

ゼロ点エネルギーは核子のループから現れる (RMFでは通常無視)

Spontaneous Chiral Symmetry Breaking in NJL model

Chiral Symmetry in Quantum Chromodynamics

QCD Lagrangian

notation: Yagi, Hatsuda, Miake

$$L = \overline{q} \left(i \gamma^{\mu} D_{\mu} - m \right) q - \frac{1}{2} \operatorname{tr} F_{\mu\nu} F^{\mu\nu}$$

- Chiral symmetry: $SU(N_f)_L \propto SU(N_f)_R$
 - Left- and Right-handed quarks can rotate independently

$$q_{L} = (1 - \gamma_{5})q/2, \quad q_{R} = (1 + \gamma_{5})q/2 \rightarrow V_{L}q_{L}, \quad V_{R}q_{R}$$

$$L_{q} = \overline{q}_{L}(i\gamma^{\mu}D_{\mu})q_{L} + \overline{q}_{R}(i\gamma^{\mu}D_{\mu})q_{R} - m(\overline{q}_{L}q_{R} + \overline{q}_{R}q_{L})$$

invariant

small (for u, d)

Chiral transf. of hadrons

$$\sigma = \overline{q} q \quad , \quad \pi^{a} = \overline{q} i \gamma_{5} \tau^{a} q \quad \Rightarrow \quad \begin{pmatrix} \sigma' \\ \pi' \end{pmatrix} = \begin{pmatrix} 1 & -\theta \\ \theta & 1 \end{pmatrix} \begin{pmatrix} \sigma \\ \pi \end{pmatrix}$$

σ (J^π=0⁺) and π (J^π=0⁻) mix via chiral transf. but have diff. masses.
 → Spontaneous breaking of chiral symmetry.

(As in Bogoliubov shown in superconductor of electrons.)

Nambu-Jona-Lasinio (NJL) model

NJL Lagrangian

$$L = \overline{q} \left(i \, \gamma^{\mu} \partial_{\mu} - m \right) q + \frac{G^2}{2 \Lambda^2} \left[(\overline{q} \, q)^2 + (\overline{q} \, i \, \gamma_5 \tau \, q)^2 \right]$$

- Integrating out gluons and hard quarks in QCD → Effective theory of quarks
 - with the same symmetry as QCD

$$S = \overline{q} q$$
, $P = \overline{q} i \gamma_5 \tau q$
 $\Rightarrow S^2 + P^2 = \text{inv. under chiral transf.}$

Euclidean action

$$(x_{\mu})_{E} = (\tau = it, \mathbf{x}), \quad (\gamma_{\mu})_{E} = (\gamma_{4} = i\gamma^{0}, \mathbf{y})$$
$$L_{E} = \overline{q}(-i\gamma_{\mu}\partial_{\mu} + m)q - \frac{G^{2}}{2\Lambda^{2}} [(\overline{q}q)^{2} + (\overline{q}i\gamma_{5}\tau q)$$

Nambu, Jona-Lasinio ('61), Hatsuda, Kunihiro ('94)

2

Partition Function in NJL

Bosonization (Hubbard-Stratonovich transf.)

Effective Action

$$S_{\text{eff}}(\Sigma;T) = -\log \det D + \int d^4x \frac{\Lambda^2}{2} \left[\sigma^2(x) + \pi^2(x)\right]$$

Bosonization & Grassman Integral

Bosonization (Hubbard-Stratonovich transf.)

$$\exp\left[\frac{G^2 S^2}{2\Lambda^2}\right] = \int d\sigma \exp\left[-\frac{\Lambda^2}{2}\left(\sigma - \frac{GS}{\Lambda^2}\right)^2 + \frac{G^2 S^2}{2\Lambda^2}\right]$$
$$\exp\left[\frac{G^2 (P^a)^2}{2\Lambda^2}\right] = \int d\pi^a \exp\left[-\frac{\Lambda^2}{2}\left(\pi^a - \frac{GP^a}{\Lambda^2}\right)^2 + \frac{G^2 (P^a)^2}{2\Lambda^2}\right]$$

Grassman number

$$\int d\chi \cdot 1 = \text{anti-comm. constant} = 0 \quad , \quad \int d\chi \cdot \chi = \text{comm. constant} \equiv 1$$
$$\int d\chi d\bar{\chi} \exp[\bar{\chi} A\chi] = \int d\chi d\bar{\chi} \frac{1}{N!} (\bar{\chi} A\chi)^N = \dots = \det A$$
$$= \exp[-(-\log \det A)]$$

Bi-linear Fermion action leads to -log(det A) effective action

Fermion Determinant in Mean Field Approximation

■ Mean Field approx.+Fourier transf.→ Diagonal Fermion matrix

$$D = -i \mathbf{\gamma} \cdot \nabla - i \gamma_4 \partial_\tau + M \Rightarrow \begin{pmatrix} -i \omega + M & \mathbf{k} \cdot \mathbf{\sigma} \\ -\mathbf{k} \cdot \mathbf{\sigma} & i \omega + M \end{pmatrix} \quad (M = G \sigma = \text{const.})$$

$$\det D = \prod_{n, \mathbf{k}} (\omega_n^2 + \mathbf{k}^2 + M^2)^{d_f/2} \quad (d_f = 4 N_c N_f = \text{Fermion d.o.f.})$$

Effective Potential

$$F_{\text{eff}} = \Omega/V = -\frac{T}{V} \log Z = \frac{\Lambda^2}{2} \sigma^2 - \frac{T}{V} \sum_{n, k} \log(\omega_n^2 + k^2 + M^2)^{d_f/2}$$
$$= \frac{\Lambda^2}{2} \sigma^2 - d_f \int \frac{d^3 k}{(2\pi)^3} \left[\frac{E_k}{2} + \frac{k^2}{3E_k} \frac{1}{e^{E_k/T} + 1} \right] \qquad \text{Matsubara sum}$$

Fermion det. \rightarrow Zero point energy ($\hbar \omega/2$)+ Thermal pressure

Matsubara Frequency Summation

Matsubara Frequency Summation

$$I(E,T) = T \sum_{n} \log(\omega_n^2 + E^2)$$

$$\omega_n = 2n\pi T, \pi T (2n-1) \quad \text{This is it !}$$

(for bosons, fermions)

$$\frac{\partial I(E,T)}{\partial E} = \sum_{n} \frac{2TE}{\omega_n^2 + E^2} = \frac{e^{E/2T} \pm e^{-E/2T}}{e^{E/2T} \mp e^{-E/2T}}$$

$$I(E,T) = 2T \log[e^{E/2T} \mp e^{-E/2T}]$$

$$= E + 2T \log[1 \mp \exp(-E/T)] + \text{const.}$$

Contour integral technique

$$S = T \sum_{n} g(\omega_{n} = 2\pi nT, \pi(2n+1)T)$$
$$= \pm \int_{C_{1}+C_{2}} \frac{dz}{2\pi} \frac{g(z)}{e^{i\beta z} \mp 1} = \mp i \sum_{\omega_{0}} \frac{\operatorname{Res} g(\omega_{0})}{e^{i\beta \omega_{0}} \mp 1}$$

Effective potential of NJL model

Effective potential (Grand pot. density)

$$F_{\text{eff}} = \Omega/V = -d_f \int \frac{d^3 k}{(2\pi)^3} \left[\frac{E_k}{2} + T \log(1 + e^{-E_k/T}) \right] + \frac{\Lambda^2}{2} \sigma^2$$

Zero point energy + Thermal (particle) excitation + Aux. Fields Effective potential in vacuum (T=0, μ=0) in the chiral limit (m=0)

$$F_{\text{eff}} = -\frac{d_f}{2} \underbrace{\int_{\Lambda^4}^{\Lambda} \frac{d^3 k}{(2\pi)^3} E_k + \frac{\Lambda^2}{2} \sigma^2}_{\Lambda^4 I(M/\Lambda)} = A^4 \left[-\frac{d_f}{2} I(x) + \frac{x^2}{2G^2} \right] (x = M/\Lambda)$$
$$\frac{F_{\text{eff}}}{\Lambda^4} = -\frac{d_f}{16\pi^2} + \frac{x^2}{2} \left[\frac{1}{G^2} - \frac{1}{G_c^2} \right] + O(x^4 \log x) (G_c^2 = 8\pi^2/d_f)$$

 $G>G_c \rightarrow 2nd \ coef. < 0 \rightarrow Spontaneous \ Chiral \ Sym. \ Breaking$

$$I(x) = \frac{1}{16\pi^2} \left[\sqrt{1+x^2}(2+x^2) - x^4 \log \frac{1+\sqrt{1+x^2}}{x} \right] \simeq \frac{1}{8\pi^2} \left[1+x^2 + \frac{1}{8}x^4 \left(1+4\log \frac{x}{2} \right) + O(x^6) \right]$$

Spontaneous breaking of chiral symmetry

 σ is chosen to minimize F_{eff} (Gap equation)

 λC

1

J II ()

$$\frac{1}{\Lambda^4} \frac{\partial T_{\text{eff}}}{\partial x} = -\frac{a_f}{2} \frac{dI(x)}{dx} + \frac{x}{G^2} = 0$$

For G>G_c \rightarrow finite σ (~ q^{bar}q) solution gives min. energy state.

If the interaction is strong enough, $\sigma(\sim q^{bar}q)$ condensates and quark mass is generate.(Nambu, Jona-Lasinio ('61))

Chiral phase transition at finite T and µ (Chiral Limit)

NJL model with μ

NJL Lagrangian

$$L = \overline{q} \left(i \gamma^{\mu} \partial_{\mu} - m + \gamma_{0} \mu \right) q + \frac{G^{2}}{2 \Lambda^{2}} \left[(\overline{q} q)^{2} + (\overline{q} i \gamma_{5} \tau q)^{2} \right]$$
$$L_{E} = \overline{q} \left(-i \gamma_{\mu} \partial_{\mu} + m - \gamma_{0} \mu \right) q - \frac{G^{2}}{2 \Lambda^{2}} \left[(\overline{q} q)^{2} + (\overline{q} i \gamma_{5} \tau q)^{2} \right]$$

Effective Action

$$S_{\text{eff}}(\Sigma;T) = -\log \det D + \int d^4 x \frac{\Lambda^2}{2} [\sigma^2(x) + \pi^2(x)]$$

$$D = -i\gamma \partial - \gamma_0 \mu + M , \quad m + G\Sigma$$

MF+Fourier $\Rightarrow D = -\gamma_0 (i\omega + \mu) + \gamma \cdot k + M , \quad M = m + G\sigma$

Free energy density

T, µ and m dependence of thermal pressure

Thermal pressure as a function of T, μ, and m (Fermions) *Kapusta ('89), Kapusta, Gale (2006)*

$$\begin{split} P^{F}/d_{F} &= \frac{7}{8} \frac{\pi^{2}}{90} T^{4} + \frac{1}{24} \mu^{2} T^{2} + \frac{\mu^{4}}{48\pi^{2}} \quad \text{Stefan-Boltzmann (m=0)} \\ &- \frac{m^{2}}{16\pi^{2}} \left[\frac{\pi^{2}}{3} T^{2} + \mu^{2} \right] \quad \text{m}^{2} \text{ term} \rightarrow \text{phase transition} \\ &- \frac{m^{4}}{32\pi^{2}} \left[\log \left(\frac{m}{\pi T} \right) - \frac{3}{4} + \gamma_{E} \left[-H^{\nu} \left(\frac{\mu}{T} \right) \right] + \mathcal{O} \left(m^{6} \right) \right] \\ &\text{m}^{4} \text{ term} \rightarrow \text{critical point} \quad \text{New} \\ &H^{\nu}(\nu) = \frac{7}{4} \zeta(3) \left(\frac{\nu}{\pi} \right)^{2} - \frac{31}{16} \zeta(5) \left(\frac{\nu}{\pi} \right)^{4} + \frac{127}{64} \zeta(7) \left(\frac{\nu}{\pi} \right)^{6} + \cdots \end{split}$$

Mass reduces pressure (enh. Feff) \rightarrow *phase transition ?*

Chiral Transition at Finite T

Effective potential at finite T in NJL

High-Temperature Expansion (1)

Thermal pressure (Fermions)

$$P^{F} = \frac{d_{F}}{2} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{2}}{3\omega} \left[\frac{1}{e^{(\omega-\mu)/T}+1} + \frac{1}{e^{(\omega+\mu)/T}+1} \right]$$
$$\omega = \sqrt{p^{2}+m^{2}}$$

- High-Temperature Expansion = Expansion in m/T
 - Important to discuss chiral transition ($m = G\sigma$)
 - Naive expansion does not work (non-analytic term in *m*)
- Kapusta method
 - Recursion formula: simpler integral → pressure

$$P^{F} = \frac{4T^{4}d_{F}}{\pi^{2}} h_{5}^{F} \left(y = \frac{m}{T}, \nu = \frac{\mu}{T} \right) , \quad \frac{dh_{n+1}}{dy} = -\frac{y}{n}h_{n-1}$$

Replace integrand

$$\frac{1}{2\omega} \left[\frac{1}{e^{\omega - \nu} + 1} + \frac{1}{e^{\omega + \nu} + 1} \right] = \frac{1}{2\omega} - \sum_{l = -\infty}^{\infty} \frac{1}{\omega^2 + [\pi(2l - 1) - i\nu]^2}$$

High-Temperature Expansion (2)

Following identity is obtained from contour integral.

High-Temperature Expansion (3)

Recursion relation of h-functions

$$h_n^F(y,\nu) = \frac{1}{2(n-1)!} \int_0^\infty \frac{x^{n-1}dx}{\omega} \left\{ \frac{1}{e^{\omega-\nu}+1} + \frac{1}{e^{\omega+\nu}+1} \right\}$$
$$\frac{dh_{n+1}}{dy} = -\frac{y}{n} h_{n-1}$$

• From $h_1(y, v)$, $h_3(0, v)$, $h_5(0, v)$, we obtain $h_5(y, v)$ and pressure.

Key function=
$$\mathbf{h}_{1}(\mathbf{y}, \mathbf{v})$$

$$h_{1}^{F}(y, \nu) = \lim_{L \to \infty} \int_{0}^{2\pi L} dx \left[\frac{1}{2\omega} - \sum_{l=-\infty}^{\infty} \frac{1}{\omega^{2} + [\pi(2l-1) - i\nu]^{2}} \right]$$

$$= -\frac{1}{2} \log \frac{y}{\pi} - \frac{1}{2} \gamma_{E} - \frac{1}{2} \sum_{l=1}^{\infty} \left[\frac{\pi}{\omega_{l}} + \frac{\pi}{\omega_{l}^{*}} - \frac{2}{2l-1} \right]$$

$$(\omega_{l} = \sqrt{y^{2} + [\pi(2l-1) - i\nu]^{2}})$$

Chiral Transition at Finite µ

Effective potential at finite μ in NJL

 $\begin{aligned} F_{\text{eff}}(m;T,\mu) = &F_{\text{eff}}(0;T,\mu) + \frac{c_2(T,\mu)}{2}m^2 + \frac{c_4(T,\mu)}{24}m^4 + \mathcal{O}(m^6) \\ c_2(T,\mu) = &-\frac{d_F}{24} \left[\frac{3}{\pi^2} \Lambda^2 \left(1 - \frac{8\pi^2}{d_F G^2} \right) - \left(T^2 + \frac{3}{\pi^2} \mu^2 \right) \right] \\ & \mathbf{T}_c^{\ 2}(\mu = \mathbf{0}) \end{aligned}$

2nd order phase boundary

$$T^{2} + \frac{3}{\pi^{2}}\mu^{2} = T_{c}^{2}(\mu=0)$$

Roughly matches

chem. freeze-out line.

(Tri)Critical Point

- Do we expect the existence of (Tri)Critical Point in NJL ?
 - Yes, as first shown by Asakawa, Yazaki ('89)
 - TCP in the chiral limit \rightarrow CP at finite bare quark mass
- Estimate from high-temperature expansion
 - TCP: $c_2 = 0$ and $c_4 = 0$ simultaneously.
 - c₄ decreases as μ/T increases.
 - Existence is probable, Position is sensitive to parameters and treatment.

Chiral Transition at Finite µ

Effective potential at finite μ **in NJL**

$$\begin{split} F_{\text{eff}}(m;T,\mu) = & F_{\text{eff}}(0;T,\mu) + \frac{c_2(T,\mu)}{2} m^2 + \frac{c_4(T,\mu)}{24} m^4 + \mathcal{O}(m^6 + c_2(T,\mu)) = & -\frac{d_F}{24} \left[\frac{3}{\pi^2} \Lambda^2 \left(1 - \frac{8\pi^2}{d_F G^2} \right) - \left(T^2 + \frac{3}{\pi^2} \mu^2 \right) \right] \\ & c_4(T,\mu) = & \frac{3d_F}{4\pi^2} \left[\gamma_E - 1 - \log \left(\frac{\pi T}{2\Lambda} \right) - H^\nu(\mu/T) \right] \\ & \mu = 0 \\ \bullet \ c_2 = 0 \text{ and } c_4 > 0 \to 2 \text{nd order} \\ \bullet \ c_2 = 0 \text{ and } c_4 < 0 \to 1 \text{st order} \\ \bullet \ c_2 = 0 \text{ and } c_4 = 0 \to \text{tricritical point} \end{split}$$

Short Summary

- We expect the existence of QCD phase transition and the critical point from chiral effective model studies. This point is discussed based on the Nambu-Jona-Lasinio model
 - When qq interaction is strong enough, chiral symmetry is spontaneously broken in vacuum.
 - Chiral symmetry should be restored at high temperature.
 - Density effect reduces the 4-th coeff. in m (or σ), and we can expect the first order transition at high density.
 - Technical part
 Matsubara sum, Hubbard-Stratonovich transformation, High-temperature expansion, ...
- Since the first principle calculation of QCD has difficulties at finite densities, we need studies using effective models, approximate treatment of QCD, and of course, experiments.

QCD Symmetries

QCD Lagangian

$$\mathcal{L} = \bar{q}(i\gamma^{\mu}D_{\mu} - m)q - \frac{1}{2}\mathrm{tr}F_{\mu\nu}F^{\mu\nu}$$

 $D_{\mu} = \partial_{\mu} \pm igA_{\mu} , \quad F^a_{\mu\nu} = \partial_{\mu}A^a_{\nu} - \partial_{\nu}A^a_{\mu} \mp gf^{abc}A^b_{\mu}A^c_{\nu}$

- Classical Symmetry = Symmetry of Action (Lagrangian) $SU(N_c) \otimes U(N_f)_L \otimes U(N_f)_R$
- Quantum theory \rightarrow Action + Measure (path integral) Chiral anomaly breaks U(1)_A $SU(N_c) \otimes U(1)_B \otimes SU(N_f)_L \otimes SU(N_f)_R$
- Spontaneous + Explicit breaking of chiral sym. $SU(N_c) \otimes U(1)_B \otimes SU(N_f)_V$
 - \rightarrow (N_f²-1) Goldstone bosons

格子上の場の理論

- 場の理論=無限自由度
 - 解析的・厳密にとくことは一般には困難 → 数値的に解く
 - 求めたいものは非常に複雑な積分 →「区分求積」= 有限の格子上で解き、連続極限をとる。
- スカラー場
 - ●連続理論 (Euclidean)の作用(φ⁴理論)

$$S_{\text{cont}} = \int d^4 x \left[\frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi + \frac{1}{2} m^2 \phi^2 + \frac{1}{4!} \lambda \phi^4 \right]$$

- ◎ 格子上の作用
 - ◆連続極限で S_{cont} に一致
 - ◆ S_{cont} とできるだけ同じ対称性を持つ

 $S_{\text{lat}} = -\frac{a^4}{2} \sum_{n=1}^{\infty} \phi(n) \frac{\phi(n+\hat{\mu}) + \phi(n-\hat{\mu}) - 2\phi(n)}{a^2} + a^4 \sum_{n=1}^{\infty} \left[\frac{1}{2} m^2 \phi^2(n) + \frac{\lambda}{4!} \phi^4(n) \right]$

Φ

格子上の作用:スカラー場理論 $S_{\text{lat}} = -\frac{a^4}{2} \sum_{n,\mu} \phi(n) \frac{\phi(n+\hat{\mu}) + \phi(n-\hat{\mu}) - 2\phi(n)}{a^2}$ $+a^4 \sum_n \left[\frac{1}{2} m^2 \phi^2(n) + \frac{\lambda}{4!} \phi^4(n) \right]$

 $n = (n_x, n_y, n_z)$: spacetime point on the lattice $\hat{\mu}$: unit vector in the positive μ direction.

a → 0 の極限で、連続理論の作用と一致 S_{lat}→a⁴∑_n [-1/2 φ(n)∑_µ ∂²φ/∂x²_µ + m²/2 φ(n)² + λ/4! φ(n)⁴]+O(a⁶) = ∫ d⁴x [-1/2 φ(x)∂^µ∂_µφ(x) + m²/2 φ(x)² + λ/4! φ(x)⁴]

Gauge field

Gauge action (Euclidean)

 $S_{G} = \frac{1}{2g^{2}} \int d^{4}x \operatorname{tr} F_{\mu\nu} F^{\mu\nu}, \quad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}],$

 $A_{\mu} = A^{a}_{\mu} t^{a} ([t^{a}, t^{b}] = i f_{abc} t^{c}, \operatorname{tr}(t^{a} t^{b}) = \frac{1}{2} \delta_{ab})$

(経路積分では変数が c 数なので、 $gA \rightarrow A$ とスケール)

Gauge transformation

 $A_{\mu}(x) \to V(x)(A_{\mu}(x) - i\partial_{\mu})V^{+}(x), F_{\mu\nu}(x) \to V(x)F_{\mu\nu}V^{+}(x)$

ゲージ不変性をもつ格子上の作用をどのように作るか?
 →リンク変数

 $U(x, y) \equiv P \exp\left[i \int_{x}^{y} dz_{\mu} A_{\mu}(z)\right]$ (*P*: path ordered product)

リンク変数は両端の点でのゲージ変換を受ける $U(x, y) \rightarrow U'(x, y) = V(x)U(x, y)V^+(y)$

X

Appendix: Gauge transformation of U

Proof of U(x,y) \rightarrow V(x)U(x,y)V⁺(y)

$$U(x, y) = \lim_{N \to \infty} \prod_{n=0}^{N-1} \left[1 + i A_{\mu}(x_n) \Delta x_{\mu} \right] (x_n = x + n \Delta x)$$

(multiply (1+i A Δx) to the right !) By using the gauge transformation of A,

 $A_{\mu}(x) \rightarrow V(x) (A_{\mu}(x) - i \partial_{\mu}) V^{+}(x) \qquad \mathbf{x} = \mathbf{x}_{\mathbf{0}}$

and the unitarity of V, V(x) V⁺(x)=1, we get

$$\begin{split} 1 + iA'_{\mu}(x_{n})\Delta x_{\mu} \\ &= 1 + iV(x_{n})A_{\mu}(x_{n})V^{+}(x_{n})\Delta x_{\mu} + V(x_{n})\partial_{\mu}V^{+}(x_{n})\Delta x_{\mu} \\ &= V(x_{n})V^{+}(x_{n+1}) + iV(x_{n})A_{\mu}(x_{n})V^{+}(x_{n+1})\Delta x_{\mu} + O((\Delta x)^{2}) \\ &= V(x_{n})[1 + iA_{\mu}(x_{n})\Delta x_{\mu}]V^{+}(x_{n+1}) + O((\Delta x)^{2}) \\ &\to U'(x, y) = V(x)U(x, y)V^{+}(y) \end{split}$$

 \mathbf{X}_{2}

Gauge action

■ リンク変数

 $U_{n,\mu} \equiv U(n, n+\hat{\mu}) = \exp[ia A_{\mu}(n)] \in SU(N)$

- リンク変数は両端の点でのゲージ変換を 受けるので、「閉じた経路」にそって積を とると、その trace はゲージ不変。 $\prod_{n \in C} U \rightarrow V(n) (\prod_{n \in C} U) V^+(n)$
- Plaquette
 Lattice 上で最も小さな loop は
 単位正方形

$$n \to n + \hat{\mu} \to n + \hat{\mu} + \hat{\nu} \to n$$
$$U_{\mu\nu}(n) \equiv U_{n,\mu} U_{n+\hat{\mu},\nu} U_{n+\nu,\mu}^{\dagger} U_{n,\nu}^{\dagger}$$

Gauge action (plaquette action) $S_G = \beta_g \sum_{plaq.} \left[1 - \frac{1}{N_c} \operatorname{Re} \operatorname{tr} U_{\mu\nu}(n) \right] \quad (\beta_g = 2N_c/g^2)$

Veutron Star Mat

Appendix: Plaquette and continuum action

-ジ場の格子作用 $n + \hat{\nu} \quad U^+_{\mu}(n + \nu)$ $n + \hat{\mu} + \hat{\nu}$ $S_G = \beta_g \sum_{plaq.} \left[1 - \frac{1}{N_c} \operatorname{Retr} U_{\mu\nu}(n) \right] \quad U^+_{\nu}(n)$ ■ ゲージ場の格子作用 $U_{\mu}(n) n + \hat{\mu}$ • U(1)(電磁場)の場合:周積分 =rotation の面積分 → F_{uv}F_{uv} $\rho^{A} \rho^{B} = \rho^{A+B+\frac{1}{2}[A,B]+\cdots}$ ■非可換ゲージ場の場合:Hausdorff 公式の利用 $\operatorname{tr} U_{\mu\nu}(x) = \operatorname{tr} e^{ia\{A_{\mu}(x) + A_{\nu}(x+\hat{\mu}) + ia[A_{\mu}, A_{\nu}]/2 + \cdots\}} \times e^{-ia\{A_{\mu}(x+\hat{\nu}) + A_{\nu}(x) - ia[A_{\mu}, A_{\nu}]/2 + \cdots\}}$ $= \operatorname{tr} e^{ia[(A_{\nu}(x+\hat{\mu})-A_{\nu}(x))-(A_{\mu}(x+\hat{\nu})-A_{\mu}(x))+ia[A_{\mu},A_{\nu}]+O(a^{3})]}$ = tr $[1 + ia^2 F_{\mu\nu} + a^4 X_4 - a^4 F_{\mu\nu}^2/2 + O(a^6)]$ $\lim_{a \to 0} S_G = \sum_{n, \mu \neq \nu} \beta_g \operatorname{tr} \left[1 - \frac{a^4}{2} F_{\mu\nu}^2 \right]$ S. Aoki, Text

44

Link Integral

■ ゲージ場の経路積分

$$Z_G = \int \prod_{n,\mu} dU_{n,\mu} \exp(-S_G) = \int \prod_{n,\mu} dU_{n,\mu} \exp\left[\beta_g \sum_{P \in \text{plaq.}} \text{tr}\left(U_P + U_P^+\right)\right]$$

dU は群上の不変測度(Haar measure)
 → ゲージ変換

 $U_{n,\mu} \rightarrow V(n) U_{n,\mu} V^+(n+\hat{\mu})$

に対して不変な積分の測度が必要

■ リンク積分 SU(N)

• ゲージ不変性のみで、リンク変数の多項式の積分はほぼ決まる。 $\int dU 1=1$ (normalization), $\int dU U_{ab}=0$ $\int dU U_{ab} U_{ij}^{+} = \frac{1}{N} \delta_{aj} \delta_{bi}$ $\int dU U_{ai} U_{bj} U_{ck} = \frac{1}{N!} \varepsilon_{abc} \varepsilon_{ijk}$ (N=3)

Proof of the one-link integral formulae

• LHS=T^{aj}_{bi} とおく。U, U⁺ が LU, U⁺L⁺と変換するよう L, L⁺をかける。 LHS= $\int dU (LU)_{ab} (LU)_{ij}^{+} = \int d (LU) (LU)_{ab} (LU)_{ij}^{+} = T_{bi}^{aj}$ RHS= $L_{ac} T_{bi}^{ck} L_{kj}^{+} \rightarrow L T_{bi} = T_{bi} L \rightarrow T_{bi}^{aj} = S_{bi} \delta^{aj}$

任意の SU(N) の元と交換するので上添字について T は単位行列。 同様に右変換して S も単位行列に比例。 a=j とおいて和をとると、比例係数が 1/N と分かる。

Proof of the one-link integral formulae

$$\int dU U_{ai} U_{bj} U_{ck} = \frac{1}{N!} \varepsilon_{abc} \varepsilon_{ijk} \quad (N=3)$$

- 左辺を T^{abc}_{ijk} とおく。U を左変換。 $T^{abc}_{ijk} = L_{ad} L_{be} L_{cf} T^{def}_{ijk}$ 任意のLに対して不変な3階のテンソルは完全反対称テンソルのみ。 右変換も同様。 $T^{abc}_{ijk} = c \varepsilon^{abc} \varepsilon_{ijk}$
- 両辺に abc をかけて和をとり、det U=1 を使うと c=1/N!

Wilson Loop

- One link integral formulae の応用として、 強結合領域での Wilson loop の期待値を求めてみます。
- Wilson loop

$$W(C = L \times N_{\tau}) = \operatorname{tr}\left[\prod_{i \in C} U_{i}\right]$$

- 空間方向 L、時間方向 N₁のループにそって、 リンク変数を掛け合わせたもの。
- 意味づけ ある時刻に両端が重いクォークからなり、 しだけ伸びたストリングを作る。
 虚時間 Nr の後に同じ位置で観測する 確率。

 $\langle O_L(N_{\tau})O_L^+(0)\rangle \propto \exp(-V(L)N_{\tau})$ (for large N_{τ}) V(L)=Interquark potential

Wilson loop (cont.)

■ 強結合極限での評価

$$\langle W(C=L\times N_{\tau})\rangle = \int DUW(C) \exp\left[\frac{1}{g^2}\sum_{P} \operatorname{tr}(U_{P}+U_{P}^{+})\right]$$

- リンク変数が残っていると積分して0。
 → Wilson loop に含まれるすべての リンクを plaquette からのリンクと 組み合わせて消す必要がある。
- 結合が強いとき、できるだけ少ない数の N plaq. で消すには、Wilson loop を 平面的に plaq. で埋めればよい。

$$\langle W(C) \rangle = N \left(\frac{1}{g^2 N} \right)^{L N_{\tau}} \rightarrow V(L) = L \log(g^2 N)$$

強結合極限では面積則 → クォークの閉じ込め

K.G.Wilson, PRD10('74),2445

Strong Coupling Lattice QCD: Pure Gauge

- Quarks are confined in Strong Coupling QCD
 - Strong Coupling Limit (SCL)
 - → Fill Wilson Loop with Min. # of Plaquettes
 - $\rightarrow \text{Area Law (Wilson, 1974)} \\ S_{\text{LQCD}} = -\frac{1}{g^2} \sum_{\Box} \text{tr} \left[U_{\Box} + U_{\Box}^{\dagger} \right]$
 - Smooth Transition from SCL to pQCD in MC (Creutz, 1980; Munster 1980)

K. G. Wilson, PRD10(1974),2445 M. Creutz, PRD21(1980), 2308. G. Munster, (1980, 1981)

Fermions on the Lattice

Fermion action (Euclidean)

$$S_{q,cont} = \int d^4 x \,\overline{q} \left(-i \gamma_{\mu} D_{\mu} + m\right) q, \quad D_{\mu} = \partial_{\mu} + i A_{\mu}$$

■ 格子上の action → Link 変数の利用 $S_{F, \text{lat}} = a^4 \sum_{x} \left[\sum_{\mu} \frac{\left(\bar{q}(x) \Gamma_{\mu} U_{x,\mu} q(x+\hat{\mu}) - \bar{q}(x+\hat{\mu}) \Gamma_{\mu} U_{x,\mu}^{\dagger} q(x) \right)}{2a} + m \bar{q}(x) q(x) \right]$

• q, U の変換性からゲージ不変 $q(x) \rightarrow V(x)q(x), U_{x,\mu} \rightarrow V(x)U_{x,\mu}V^+(x+\hat{\mu})$

• 連続極限で
$$S_{q, cont}$$

 $U=1+iA_{\mu}a, S_{F, lat} \rightarrow a^{4}\sum_{x} \bar{q}(x) \left[\Gamma_{\mu}(\frac{\partial}{\partial x_{\mu}}+iA_{\mu}q)+m\right]q(x)$
 $\Gamma_{\mu}=-i\gamma_{\mu}$
こわい際 下た エーンド

これ以降、 Γ を γ , $x_{a} \rightarrow x_{a}$ とします。

Fermions on the Lattice (cont.)

- 一見よさそうだが、問題点が ... → ダブラー
 - 自由場の場合、Fermion の hopping matrix を Fourier 変換すると $D=i\Gamma_{\mu}\frac{\sin(p_{\mu}a)}{a} (p_{\mu}=2\pi n_{\mu}/La, n_{\mu}=0, 1, ..., L-1)$
 - (3+1) 次元格子上で、D は 16 回 0 となる。(p_µ=0, π/a)
 → 低エネルギーで現れる Fermion の種類が 16 倍増える。
- Nielsen-Ninomiya の定理

「適当な仮定(平行移動不変性、カイラル対称性、局所性、エル ミート性、双線形性)を満たす格子 Fermion にはダブラーが存 在」

- 解決方法
 - Wilson Fermion : a → 0 でダブラーが無限に重くなるように 2 階微 分に対応する項を加える。(カイラル対称性がない)
 - Domain wall Fermion, Overlap Fermion,
 - Staggered (Kogut-Susskind) Fermion

Staggered Fermion

- Staggered Fermion: Spinor 構造、 γ 行列を数因子 η で表せる。 $q = \gamma_0^{x_0} \gamma_1^{x_1} \gamma_2^{x_2} \gamma_3^{x_3} \chi$ $\Rightarrow \bar{q}(x) \gamma_{\mu} q(x+\hat{\mu}) = \bar{\chi}(x) \gamma_3^{x_3} \gamma_2^{x_2} \gamma_1^{x_1} \gamma_0^{x_0} \gamma_{\mu} \gamma_0^{x_0} \cdots \gamma_{\mu}^{x_{\mu+1}} \cdots \gamma_3^{x_3} \chi(x+\hat{\mu})$ $= \eta_{\mu}(x) \bar{\chi}(x) \gamma_3^{x_3} \cdots \gamma_{\mu+1}^{x_{\mu+1}} \gamma_{\mu}^{2x_{\mu+2}} \gamma_{\mu+1}^{x_{\mu+1}} \cdots \gamma_3^{x_3} \chi(x+\hat{\mu}) = \eta_{\mu}(x) \bar{\chi}(x) \chi(x+\hat{\mu})$ $\eta_{\mu}(x) = (-1)^{x_0+x_1+\dots+x_{\mu-1}}$
 - Lattice action with staggered Fermion

$$S_{F} = \frac{1}{2} \sum_{x,\mu} \eta_{\mu}(x) \Big[\bar{\chi}_{x} U_{x,\mu} \chi_{x+\hat{\mu}} - \bar{\chi}_{x+\hat{\mu}} U_{x,\mu}^{\dagger} \chi_{x} \Big] + \sum_{x} m \bar{\chi}_{x} \chi_{x}$$

Fermion の 4 成分が全て等価。1 成分のみを考えてよい。 → 16 個のダブラーが、(Dirac Fermion で)4 つのダブラーとなる。

- カイラル変換: χ, χ^{bar} について同じ、隣り合った χ で逆の位相 $\chi_x \rightarrow \exp(i\theta \varepsilon(x))\chi_x, \ \overline{\chi}_x \rightarrow \exp(i\theta \varepsilon(x))\overline{\chi}_x, \ \varepsilon(x) = (-1)^{x_0 + x_1 + x_2 + x_3}$
 - → 厳密なカイラル対称性をもつ

Lattice QCD with staggered Fermion

Lattice QCD action with (unrooted) staggered Fermion

$$S_{LQCD} = S_{F} + S_{G}$$

$$S_{F} = \frac{1}{2} \sum_{x,\mu} \eta_{\mu}(x) \Big[\bar{\chi}_{x} U_{x,\mu} \chi_{x+\hat{\mu}} - \bar{\chi}_{x+\hat{\mu}} U_{x,\mu}^{+} \chi_{x} \Big] + \sum_{x} m \bar{\chi}_{x} \chi_{x}$$

$$S_{G} = -\frac{1}{g^{2}} \sum_{plaq.} tr \Big[U_{P} + U_{P}^{+} \Big]$$

- Spinor 構造が simple(無い)→ 解析的・数値的な計算が簡単
- *m*=0 (chiral limit) で厳密な chiral 対称性をもつ
 → カイラル相転移の議論が可能
- 連続領域 $(g \rightarrow 0, a \rightarrow 0)$ では $N_f=4$ だが、有限の a ではフレー バー対称性は破れている。
- Chiral anomaly $(U(1)_A)$ については controversial

Monte-Carlo simulation in Lattice QCD

■ 分配関数 (or 生成汎関数)

$$S = S_G(U) + \overline{q} D q, \quad Z[J] = \int DU \det D(U) \exp[-S_G(U) + J \hat{O}]$$

$$\rightarrow \langle O \rangle = \frac{\int DU \det D(U) O(U) \exp[-S_G(U)]}{\int DU \det D(U) \exp[-S_G(U)]} = \frac{\delta Z[J]}{\delta J}$$

 Monte-Carlo 法では、通常先に Fermion determinant を評価し、 リンク変数の配位を MC 法で求める。クォークを含む演算子の場合 には、propagator をあらわに評価。

Hot QCD (2009)

BMW collaboration, Sceience 322(2008)1224

格子上の場の理論 Short Summary

- 格子 QCD
 - リンク変数の導入により、完全なゲージ対称性を保持。
 - グルーオン作用: Plaquette (プラケット)作用 (or its improved ver.)
 → 連続極限 (a → 0) で連続理論のゲージ作用
 - クォーク作用:リンク変数を用いてゲージ対称性を保てる。
- Monte-Carlo simulation
 - 非摂動論的 QCD を厳密に解く第一原理計算。
 - 大きな成功:カラーの閉じ込め、ハドロン質量、QCD 相転移 (μ=0)
 - カイラル対称性には多少の問題あり
 - Staggered fermion: Fast, but ugly ($N_f = 4 \rightarrow$ quarter root, anomaly, ...)
 - Wilson fermion: Explicit chiral symmetry breaking at finite a.
 - DW/Overlap fermion: large numerical cost.

■ 有限密度での格子 QCD MC simulation は残された大きな問題。

●「大学院生や postdoc に与えてはいけないテーマ」(青木さん)

Monte-Carlo Integral: Importance Sampling

Metropolis sampling
 One of the typical (popular) method of importance sampling

$$\begin{array}{c} Config. A \\ S_{eff}(A) \end{array} \xrightarrow{P_{B \to A} = 1} Config. B \\ S_{eff}(B) \end{array} \qquad S_{eff}(B) \qquad S_{eff}(A) < S_{eff}(B) \\ P_{A \to B} = exp[S_{eff}(A) - S_{eff}(B)] \\ Trial prob.: P_{A \to B}^{try} = P_{B \to A}^{try} (detailed balance) \end{array}$$

- Pickup prob.: According to S_{eff}.
- In equilibrium, P(A) $P_{A \to B} = P(B) P_{B \to A} \to P(A) \propto exp[-S_{eff}(A)]$

Lattice QCD

- Space-time discretization of fields
- Quarks = Grassmann number on sites $\chi_i \chi_j = -\chi_j \chi_i, \quad \int d\chi 1 = 0, \quad \int d\chi \chi = 1$ $\rightarrow \int d\chi_1 d\chi_2 \cdots d\bar{\chi}_1 d\bar{\chi}_2 \cdots \exp(\bar{\chi} D\chi) = det(D)$
- **Gluons** \rightarrow Link variable

$$U_{\mu}(x) = \exp\left[ig \int_{x}^{x+\hat{\mu}} dx A(x)\right] \sim \exp(ig A_{\mu})$$
$$\int dU U_{ab} = 0, \quad \int dU U_{ab} U_{cd}^{+} = \delta_{ad} \delta_{bc} / N_{c}, \quad \int dU U_{ab} U_{cd} U_{ef} = \varepsilon_{ace} \varepsilon_{bdf} / N_{c}!$$

Gauge transf.

$$\chi(x) \rightarrow V(x) \chi(x), \quad \bar{\chi}(x) \rightarrow \bar{\chi}(x) V^{+}(x), \\ U_{\mu}(x) \rightarrow V(x) U_{\mu}(x) V(x+\hat{\mu}) \\ \bar{\chi}(x) U_{\mu}(x) \chi(x+\hat{\mu}) = \text{invariant}$$

Lattice spacing = a → Lattice unit: a=1

Lattice QCD action

Lattice QCD action (unrooted staggered fermion)

$$L = \frac{1}{2} \sum_{x} \left[\bar{\chi}_{x} U_{0}(x) e^{\mu} \chi_{x+\hat{0}} - \chi_{x+\hat{0}}^{-} U_{0}^{+}(x) e^{-\mu} \chi_{x} \right]$$

$$+ \frac{1}{2} \sum_{x, j} \eta_{j}(x) \left[\bar{\chi}_{x} U_{j}(x) \chi_{x+\hat{j}} - \chi_{x+\hat{j}}^{-} U_{j}^{+}(x) \chi_{x} \right]$$

$$+ m_{0} \sum_{x} \bar{\chi}_{x} \chi_{x} \longrightarrow \chi (\partial + \mathbf{i} g \mathbf{A}) \chi$$

$$+ \frac{2N_{c}}{g^{2}} \sum_{plaq.} \left[1 - \frac{1}{N_{c}} \operatorname{Retr} U_{\mu\nu}(x) \right] \operatorname{Stokes}_{\text{theorem}}$$

$$\rightarrow \text{rotation}$$

$$\frac{\chi}{\eta_{j}(x) = (-1)^{**}(x_{0} + ... + x_{j-1})} \chi quark$$

$$\chi quark$$
(Grassmann #)

 $\chi_x \rightarrow \exp[i \theta \varepsilon(x)] \chi_x, \ \varepsilon(x) = (-1)^{**} (x_0 + x_1 + x_2 + x_3)$

χ quark (Grassmann #) U link ~ exp(igA)

Sign problem in lattice QCD

Fermion determinant (= stat. weight of MC integral) becomes complex at finite μ in LQCD.

$$Z = \int D[U, q, \overline{q}] \exp(-\overline{q} D(\mu, U) q - S_G(U))$$

=
$$\int D[U] \operatorname{Det}(D(\mu, U)) \exp(-S_G(U))$$

$$\begin{bmatrix} \gamma_5 D(\mu) \gamma_5 \end{bmatrix}^* = D(-\mu^*) \rightarrow \begin{bmatrix} \text{Det}(D(\mu)) \end{bmatrix}^* = \text{Det}(D(-\mu^*)) \\ (\gamma_5 \text{ hermiticity}) \end{bmatrix}$$

- Note: Euclidean $D = \gamma_{\mu} D_{\mu} + m \mu \gamma_0$ ($\gamma =$ Hermite, $D_{\mu} =$ anti-Hermite)
- Fermion det. (Det D) is real for zero μ (and pure imag. μ)
- Fermion det. is complex for finite real μ.
- Approximate methods:
 - Taylor expansion, Imag. μ, Canonical, Re-weighting, Fugacity expansion, Histogram method, Complex Langevin, Strong-coupling lattice QCD

Sign Problem

Monte-Carlo integral of oscillating function

$$Z = \int dx \exp(-x^2 + 2iax) = \sqrt{\pi} \exp(-a^2)$$
$$\langle O \rangle = \frac{1}{Z} \int dx O(x) e^{-x^2 + 2iax} \qquad 1$$

Easy problem for human is not necessarily easy for computers.

 Complex phase appears from fluctuations of H and N.
 de Forcrand

 $Z = \sum \langle \psi | \exp[-(H - \mu N)/T] | \psi \rangle = \sum \prod \langle \psi_{\tau} | \exp[-(H - \mu N)/(N_{\tau}T)] | \psi_{\tau+1} \rangle$

- → Description based on "Hadronic" (color singlet) action would be helpful to reduce fluctuations.
- \rightarrow Strong coupling lattice QCD

Sign Problem (cont.)

- Generic problem in quantum many-body problems
 - Example: Euclid action of interacting Fermions

$$S = \sum_{x, y} \overline{\psi}_x D_{x, y} \psi_y + g \sum_x (\overline{\psi} \psi)_x (\overline{\psi} \psi)_x$$

• Bosonization and MC integral ($g>0 \rightarrow$ repulsive)

$$\exp(-g M_x M_x) = \int d\sigma_x \exp(-g\sigma_x^2 - 2ig\sigma_x M_x) \quad (M_x = (\bar{\psi}\psi)_x)$$

$$Z = \int D[\psi, \bar{\psi}, \sigma] \exp\left[-\bar{\psi}(D + 2ig\sigma)\psi - g\sum_x \sigma_x^2\right]$$

$$= \int D[\sigma] \operatorname{Det}(D + 2ig\sigma) \exp\left[-g\sum_x \sigma_x^2\right]$$

complex Fermion det. \rightarrow complex stat. weight \rightarrow sign problem

g

Strong Coupling Lattice QCD

Wilson ('74), Creutz ('80), Munster ('80, '81), Lottini, Philipsen, Langelage's ('11)

Kawamoto ('80), Kawamoto, Smit ('81),
Damagaard, Hochberg, Kawamoto ('85),
Ilgenfritz, Kripfganz ('85), Bilic,
Karsch, Redlich ('92), Fukushima ('03);
Karsch, Redlich ('92), Fukushima ('03);
de Forcrand, Unger ('11),
AO, Ichihara, Nakano, Miura, AO,
Ohnuma ('07). Miura, Nakano, AO,
Kawamoto ('09), Nakano, Miura,
AO ('10)Top of the formula ('89),
de Forcrand, Fromm ('10),
de Forcrand, Unger ('11),
AO, Ichihara, Nakano, ('12),
Ichihara, Nakano, AO ('14),
de Forcrand, Langelage,
Philipsen, Unger ('14)

Area Law

Wilson ('74), Creutz ('80), Munster ('80, '81)

Wilson loop in pure Yang-Mills theory

$$\langle W(C = L \times N_{\tau}) \rangle$$

= $\frac{1}{Z} \int DUW(C) \exp\left[\frac{1}{g^2} \sum_{P} \operatorname{tr}(U_P + U_P^+)\right]$

 $= \exp(-V(L)N_{\tau}) \quad \mathbf{V(L)} = \mathbf{heavy-qq pot.}$

One-link integral

YUKAWA INSTITUTE FOR THEORETICAL PHYSICS VITP Kyolo

$$\int dU U_{ab} U_{cd}^{+} = \frac{1}{N_c} \delta_{ad} \delta_{bc}$$

In the strong coupling limit

$$\langle W(C) \rangle = N \left(\frac{1}{g^2 N} \right)^{L N_{\tau}} \rightarrow V(L) = L \log(g^2 N)$$

Linear potential between heavy-quarks → *Confinement (Wilson, 1974)*

 $= 1/N_c g^2$

Area Law

Strong Coupling Lattice QCD

Strong coupling limit

Damgaard, Kawamoto, Shigemoto ('84)

$$S_{\text{SCL}} = S_F^{(t)} - \frac{1}{4N_c} \sum_{x,j} M_x M_{x+\hat{j}} + m_0 \sum_x M_x$$
$$(M_x = \overline{\chi}_x \chi_x)$$

Integrate out spatial links using one-link formula, and pick up diagrams with min. quark numbers.

$$\int dU U_{ab} U_{cd}^{+} = \delta_{ad} \delta_{bc} / N_{c}$$

Lattice QCD in SCL → Fermion action with nearest neighbor four Fermi interaction

Finite Coupling Effects

Effective Action with finite coupling corrections Integral of exp(-S_C) over spatial links with exp(-S_F) weight \rightarrow S_{eff}

$$S_{\text{eff}} = S_{\text{SCL}} - \log \langle \exp(-S_G) \rangle = S_{\text{SCL}} - \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \langle S_G^n \rangle_c$$

<S_cⁿ>=Cumulant (connected diagram contr.) *c.f. R.Kubo('62)*

$$S_{\text{eff}} = \frac{1}{2} \sum_{x} (V_{x}^{+} - V_{x}^{-}) - \frac{b_{\sigma}}{2d} \sum_{x,j>0} [MM]_{jx}$$

$$SCL (Kawamoto-Smit, '81)$$

$$+ \frac{1}{2} \frac{\beta_{\tau}}{2d} \sum_{x,j>0} [V^{+}V^{-} + V^{-}V^{+}]_{jx} - \frac{1}{2} \frac{\beta_{s}}{d(d-1)} \sum_{x,j>0,k>0,k\neq j} [MMMM]_{jk,x}$$

$$NLO (Faldt-Petersson, '86)$$

$$- \frac{\beta_{\tau\tau}}{2d} \sum_{x,j>0} [W^{+}W^{-} + W^{-}W^{+}]_{j,x} - \frac{\beta_{ss}}{4d(d-1)(d-2)} \sum_{\substack{x,j>0,|k|>0,|l|>0\\|k|\neq j,|l|\neq j,|l|\neq |k|}} [MMMM]_{jk,x} [MM]_{j,x+\hat{l}}$$

$$+ \frac{\beta_{\tau s}}{8d(d-1)} \sum_{x,j>0,|k|\neq j} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} ([MM]_{j,x+\hat{k}} + [MM]_{j,x+\hat{k}+\hat{0}})$$

$$NNLO (Nakano, Miura, AO, '09)$$

$$- (\frac{1}{g^{2}N_{c}})^{N_{\tau}} N_{c}^{2} \sum_{x,j>0} (\bar{P}_{x}P_{x+\hat{j}} + h.c.)$$

$$Polyakov loop (Gocksch, Ogilvie ('85), Fukushima ('04))$$

$$Nakano, Miua, AO ('11))$$

Nakano, Miua, AO ('11))

Phase diagram in SC-LQCD (mean field)

- Standard" simple procedure in Fermion many-body problem
 - Bosonize interaction term (Hubbard-Stratonovich transformation)
 - Mean field approximation (constant auxiliary field)
 - Fermion & temporal link integral Damgaard, Kawamoto, Shigemoto ('84); Ilgenfritz, Kripfganz ('85); Faldt, Petersson ('86); Bilic, Karsch, Redlich ('92); Fukushima ('04); Nishida ('04); Miura, Nakano, AO, Kawamoto ('09); Nakano, Miura, AO ('10, '11)

SC-LQCD with Fluctuations

- Monomer-Dimer-Polymer (MDP) simulation Mutter, Karsch ('89), de Forcrand, Fromm ('10), de Forcrand, Unger ('11)
 - Integrating out all links
 → Z= weight sumof monomer,
 dimer, polymer configurations

 $Z(m,\mu) = \sum_{\{n_x,n_b,C_B\}} \prod_b \frac{(N_c - n_b)!}{N_c!n_b!} \prod_x \frac{N_c!}{n_x!} (2m)^{n_x} \prod_{C_B} w(C_B) \quad w(C_B,\pm) = \varepsilon(C_B) \exp(\pm 3\ell L_t \mu)$

- Auxiliary Field Monte-Carlo (AFMC) method Ichihara, AO, Nakano ('14)
 - Bosonize the effective action, and MC integral over aux. field.

$$S_{\text{eff}} = S_F^{(t)} + \sum_{x} m_x M_x + \frac{L^3}{4N_c} \sum_{k,\tau} f(k) \Big[|\sigma_{k,\tau}|^2 + |\pi_{k,\tau}|^2 \Big]$$
$$m_x = m_0 + \frac{1}{4N_c} \sum_{j} (\sigma + i \varepsilon \pi)_{x \pm \hat{j}}, \quad f(k) = \sum_{j} \cos k_j, \quad \varepsilon = (-1)^{x_0 + x_1 + x_2 + x_3}$$

Phase diagram

Phase diagrams in two independent methods (MDP & AFMC) agree with each other in the strong coupling limit.
SCL phase diagram is determined !

- あと2問だします。4問中、2問以上解いて提出。〆切は1月末。
 - ボソン化した NJL 模型の作用から出発して、ゼロ温度(T=0)での有効ポテンシャルを求めよ。
 余裕があれば、有限温度・有限密度(有限化学ポテンシャル)での有効ポテンシャルを構成子クォーク質量で2次まで展開し、カイラル極限で2次相転移線が T²+μ_B²/3π² = T_c² で与えられることを示せ。
 - リンク積分を利用して、Wilson ループの期待値を強結合領域で求めよ。 余裕があれば、強結合極限での結果に加えて、1/g²補正がどのように与えられる か評価せよ。

