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I give some exercise problems related to my Ist lecture. We also show the high temperature expansion
formulae for fermions with finite chemical potential, as an extension of the results by Kapusta and Gale.

I. EXERCISE

During and after the 1st lecture, you asked me several questions. These questions may be interesting also to others.

1. Q: How do ¢ and 7 mass behave with/without spontaneous symmetry breaking ?
2. Q: How can we connect the partition function and pressure ?

3. Q: Does the kink in the pp — T curve in binary black hole mergers signals some kind of phase transition ?
A: No, I do not think so. The calculation is done with nucleon matter EOS, and does not contain the QCD phase transition
information. Higher temperature at medium density (pp ~ (3 — 4) x 104 g/ cm®) comes from the shock wave heating.
Dynamical time scale is too short to heat up the higher density region.

4. Q: What does CP(Asym.) show on p 29 ?
A: These points show CP in isospin asymmetric matter, where the chemical potentials of u and d quarks are different. We
choose the isospin chemical potential §y = (pg — p1y,)/2 = 50 MeV, then the CP temperature is found to go down. Thus
the phase transition can be crossover in neutron stars, even if the phase transition is the first order in symmetric matter as
realized in HICs.

5. Q: CP(Asym.) temperature goes down, but CP(Asym.) baryon chemical potential can increase and decrease. Why ?
A: I'm sorry, I do not know the reason.

Q1 and Q2 are given in the form of following exercises.

1. We assume that particle masses are given by the curvature mass,
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Calculate the mass of o and 7 in the following cases.

(a) Fog = V (Vo2 + 72), and V() has only one minimum at x = 0.
(b) For = V(02 + m2), and V (z) has only one minimum at z = go > 0.
(¢) Fer =V (V02 + 72) — ho, and V() has only one minimum at z = oy > 0.

You can assume that the equilibrium configuration is always in the ¢ direction, i.e. (o, 7) = (¢ > 0,0).

2. Rewrite the form of the partition function into the form of pressure. Specifically, show the following relation,
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If we have time, I will explain some on the high-temperature expansion.
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II. INTRODUCTION OF HIGH-TEMPERATURE EXPANSION

High-temperature expansion in terms of normalized mass m/T of pressure P or equivalently the grand potential density

Fer = Q/V = —P is useful, for example, to discuss the chiral phase transition.
Pressure of free bosons and fermions is given as
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where T, m and p are the temperature, mass and chemical potential, respectively, and dg r represents the degrees of freedom;
for example dp = 3 for pions (7%%) and dp = 4NN + for quarks with N, colors and N flavors.

High-temperature expansion in terms of m /T is not just a Taylor expansion of the functions in the pressure integral. Since
the mass as well as T and u provide scales of p, we have non-analytic term proportional to m* log m in pressure. In order to
systematically study the small mass region, Kapusta developed a method which enables us to include the singularity. We can
find the explicit expression for the high-temperature expansion to (1m/7")* for bosons and fermions at zero chemical potential in
Ref. [[I], less number of terms are shown for fermions with finite chemical potential.

In this note, we explain how to obtain the high-temperature expansion for fermions at finite chemical potential. The fermion
pressure to (m/T)% is found to be,
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where vg = 0.5772156649--- is the Euler’s constant and ((n) is the zeta function; ((2) = =2/6, ((4) = =*/90,
¢(3) = 1.2020569031595942854 - - -, ¢(5) = 1.036927755143369926331 - - -, ((7) = 1.00834927738192282684 - - -, ((9) =
1.002008392826082214418 - - - . The first three terms show the massless results (Stefan-Boltzmann limit), and the terms propor-
tional to m? and m* show the modification of pressure by finite mass.

III. HIGH-TEMPERATURE EXPANSION
A. h functions

Following Ref. [[], we introduce h functions. Pressure is represented by the function hs,
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where hZF are given by the following integral [II],
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These functions are found to satisfy the following recursion formulae,
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This recursion is derived by using the relation df /dy = y/x df /dx for a function of w = /22 + y2. Thus if we know massless
integrals, h3(y = 0) and h5(y = 0), and the n = 1 function, hq(y, v), hs is obtained by using the recursion formulae.

Yy
m@wﬁam—fézmym@m (12)

y 2 1 /Y y'
() =hs(0) ~ § [ wdy'ha(y) = hs0) = @)+ 5 [y [y dy ). (13)
0 0 0
B. Massless integrals

At zero chemical potentials, massless integrals are obtained by using the expansion of the boson and fermion distribution
functions,
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Explicit values for n = 3, 5 are given as
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hE(0,0) = ¢(2)/4 = 72/24, hE(0,0) =7¢(4)/32 = Tn* /2880 . (17)
Massless fermion integrals at finite  contains several terms.
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This relation is obtained by using the property of the Fermi distribution function,
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For f(z) = x®"~!, the second term vanishes and we get Eq. (IX).

C. High-temperature expansion for bosons

n = 1 integrals requires special care, since it is divergent at small z. Following Ref. [1], we use the following identities for
bosons to separate the singular contribution,
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We can obtain this identity by considering the contour integral,
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where C represents the contour integral around the poles of the first term, z = 27l with integer [. By evaluating the residues at
z = 2ml, we get Y, 1/[w? + (271)?]. The integral can be evaluated in a different way. By replacing the integral on the upper
and lower contours, we get
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where two poles of the second function, z = Fiw, contribute the integral.
We substitute the identity Eq. (23) into h, in Eq. B, then we get
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We have introduced the UV cutoff 27 L, and take the limit L — co. The sum over [ is divided into two parts, [ < Land [ > L,
and the relation 7/2 — arctan = arctan (1/x). The last line in Eq. (Z8) is found to vanish.
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We have replaced the sum by the integral over § = [/L = limp,_, o, w;/27 L. The function h¥(y) is found to be
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By using massless integrals, hZ(0) and hZ(0), and k% (y), the high-temperature expansion of h¥ (y) and hZ (y) are found to
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D. High-temperature expansion for fermions at finite chemical potential

Fermion integrals are obtained in a similar but a little more complicated manner. We use the following identities for fermions,
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We can obtain this identity by considering the contour integral,
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where C represents the contour integral surrounding the poles of the first term, z = 7(2] — 1) — iv with integer . The integral
can be evaluated in a different way. By replacing the integral to that on the upper and lower contours, we get
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where two poles of the second function, z = Fiw, contribute the integral.
We substitute the identity Eq. (B3) into h; in Eq. (), and we get
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By using massless integrals, 2% (0,7) and hf(0,v), and n = 1 integral h"(y, v), the high-temperature expansion of k% (y, /)
and hf (y,v) are found to be
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Fermion pressure is obtained via the relation P¥" = 4dp T* h¥ (m/T, 1/ T) /72, and we obtain Eq. (8).

IV. EXPECTED PHASE BOUNDARY

We shall now apply the high-temperature expansion formula Eq. (E1) to guess the phase boundary in the Nambu-Jona-Lasinio
(NJL) model [2]. We follow the notation in Ref. [B]. In the mean field treatment of the NJL. model, the grand potential density



(effective potential) is given as
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where Fy, is the vacuum effective potential, and E(k) = \/k2 + (mo + Go)? is the quark energy. The first term in Eq. B3
comes from the bosonization, and the second term shows the zero-point energy, which is negative for fermions. The constituent
quark mass is given as m = mg + Go.

We consider the chiral limit (m = 0), then Feg is found to be
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In vacuum, the chiral symmetry is broken due to negative co. This is achieved in the case where the coupling is strong, G2 >
G? =872 /dp. At i = 0, ¢y increases with increasing 7" and becomes zero at
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At finite p, co is expected to be zero at [4]
T2 32 T2 49)
Tk =1 (

As long as cq4 is positive, zero co implies the second order phase transition. If we extrapolated the results to 7' = 0 (it is too
much..), we get the transition chemical potential at ' = 0 as u. = 77,/ V3 ~ 290 MeV. This is close to the one third of the
nucleon mass, and the present estimate may not be too crazy.

At around the empirical values, e.g. T. = 160 MeV and A = 600 MeV, ¢, is positive at (T, u) = (T¢,0), suggesting
that the phase transition is the second order in the present setup. Since H" is a increasing function of v = /T, ¢4 decreases
with increasing v. In the leading order approximation of H", c4 becomes zero at around v = 2 on the phase boundary. The
simultaneous disappearance of co and c4 implies the tricritical point.

To say the truth, ¢4 does not vanish on the phase boundary in the conversion radius, v < m, when we use numerically obtained
HY. Even though, the results of high-temperature expansion clearly suggest the existence of the tricritical point.

V. SUMMARY

We have shown the high-temperature expansion formulae for fermions with finite chemical potential, as an extension of the
results by Kapusta and Gale [[]. The suggested phase boundary from the expansion seems to catch some of the characteristic
features of the QCD phase transition. It also suggest the existence of the tricritical point in the chiral limit (critical point with
small finite quark mass); the fourth order coefficient decreases with increasing 1/
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FIG. 1: Contributions to c4. Solid line shows ¢} = vg — 1 —log(7T/2A) at T = T./+/1 + 3u2/w2T2 where c2 vanishes. Other lines show
HY(p/T). The fourth order coefficient vanishes when two lines cross.
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