

京大基研 大西 明 Akira Ohnishi (YITP, Kyoto U.)

- 1. 核力・特に非中心力や3体力(1回)
- 2. 原子核構造を記述するための種々の模型の最近の進展(2回)
- 3. 最近の中性子過剰核の物理の最近の進展 (2回)
- 4. 原子核構造における異なる状態の混合や競合 (2回) 板垣
- 5. 高温・高密度核物質概観(1回)(高エネルギー重イオン衝突、コン パクト天体現象)
 - → 前期の Sec. 3 と重なりが大きいのでスキップ
- 6. 有限温度・密度における場の理論入門 (2回)
- 7. QCD 有効模型における相転移と相図 (2回)
- 8. 有限温度・密度格子 QCD と符号問題 (1回)
- 9. 高エネルギー重イオン衝突における輸送理論(1回)

大西

- 場の理論=無限自由度
 - 解析的・厳密にとくことは一般には困難 → 数値的に解く
 - 求めたいものは非常に複雑な積分 →「区分求積」= 有限の格子上で解き、連続極限をとる。
- スカラー場
 - 連続理論 (Euclidean) の作用(φ⁴理論)

$$S_{\text{cont}} = \int d^4 x \left[\frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi + \frac{1}{2} m^2 \phi^2 + \frac{1}{4!} \lambda \phi^4 \right]$$

- ◎ 格子上の作用
 - ◆連続極限で S_{cont} に一致
 - ◆ S_{cont} とできるだけ同じ対称性を持つ

 $S_{\text{lat}} = -\frac{a^4}{2} \sum_{n \in \mathbb{N}} \phi(n) \frac{\phi(n+\hat{\mu}) + \phi(n-\hat{\mu}) - 2\phi(n)}{a^2} + a^4 \sum_{n \in \mathbb{N}} \left[\frac{1}{2} m^2 \phi^2(n) + \frac{\lambda}{4!} \phi^4(n) \right]$

Φ

格子上の作用:スカラー場理論 $S_{\text{lat}} = -\frac{a^4}{2} \sum_{n,\mu} \phi(n) \frac{\phi(n+\hat{\mu}) + \phi(n-\hat{\mu}) - 2\phi(n)}{a^2}$ $+a^4 \sum_n \left[\frac{1}{2} m^2 \phi^2(n) + \frac{\lambda}{4!} \phi^4(n) \right]$

 $n = (n_x, n_y, n_z)$: spacetime point on the lattice $\hat{\mu}$: unit vector in the positive μ direction.

•
$$\mathbf{a} \to \mathbf{0}$$
 の極限で、連続理論の作用と一致
 $S_{\text{lat}} \to a^{4} \sum_{n} \left[-\frac{1}{2} \phi(n) \sum_{\mu} \frac{\partial^{2} \phi}{\partial x_{\mu}^{2}} + \frac{m^{2}}{2} \phi(n)^{2} + \frac{\lambda}{4!} \phi(n)^{4} \right] + O(a^{6})$
 $= \int d^{4} x \left[-\frac{1}{2} \phi(x) \partial^{\mu} \partial_{\mu} \phi(x) + \frac{m^{2}}{2} \phi(x)^{2} + \frac{\lambda}{4!} \phi(x)^{4} \right]$

Gauge field

Gauge action (Euclidean)

 $S_{G} = \frac{1}{2g^{2}} \int d^{4}x \operatorname{tr} F_{\mu\nu} F^{\mu\nu}, \quad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}],$

 $A_{\mu} = A_{\mu}^{a} t^{a} ([t^{a}, t^{b}] = i f_{abc} t^{c}, \operatorname{tr}(t^{a} t^{b}) = \frac{1}{2} \delta_{ab})$

(経路積分では変数が c 数なので、 $gA \rightarrow A$ とスケール)

Gauge transformation

 $A_{\mu}(x) \to V(x)(A_{\mu}(x) - i\partial_{\mu})V^{+}(x), F_{\mu\nu}(x) \to V(x)F_{\mu\nu}V^{+}(x)$

ダージ不変性をもつ格子上の作用をどのように作るか?
→リンク変数

 $U(x, y) \equiv P \exp\left[i \int_{x}^{y} dz_{\mu} A_{\mu}(z)\right]$ (*P*: path ordered product)

リンク変数は両端の点でのゲージ変換を受ける $U(x,y) \rightarrow U'(x,y) = V(x)U(x,y)V^+(y)$

X

Appendix: Gauge transformation of U

Proof of U(x,y) \rightarrow V(x)U(x,y)V⁺(y)

$$U(x, y) = \lim_{N \to \infty} \prod_{n=0}^{N-1} \left[1 + i A_{\mu}(x_n) \Delta x_{\mu} \right] (x_n = x + n \Delta x)$$

(multiply (1+i A Δx) to the right !) By using the gauge transformation of A,

 $A_{\mu}(x) \rightarrow V(x) (A_{\mu}(x) - i \partial_{\mu}) V^{+}(x) \qquad \mathbf{x} = \mathbf{x}_{\mathbf{0}}$

and the unitarity of V, V(x) V⁺(x)=1, we get

$$\begin{split} 1 + iA'_{\mu}(x_{n})\Delta x_{\mu} \\ &= 1 + iV(x_{n})A_{\mu}(x_{n})V^{+}(x_{n})\Delta x_{\mu} + V(x_{n})\partial_{\mu}V^{+}(x_{n})\Delta x_{\mu} \\ &= V(x_{n})V^{+}(x_{n+1}) + iV(x_{n})A_{\mu}(x_{n})V^{+}(x_{n+1})\Delta x_{\mu} + O((\Delta x)^{2}) \\ &= V(x_{n})[1 + iA_{\mu}(x_{n})\Delta x_{\mu}]V^{+}(x_{n+1}) + O((\Delta x)^{2}) \\ &\to U'(x, y) = V(x)U(x, y)V^{+}(y) \end{split}$$

 \mathbf{X}_{2}

Gauge action

 $U_{n,\mu} = U(n, n + \hat{\mu})$ ■ リンク変数 $U_{n} \equiv U(n, n+\hat{\mu}) = \exp[ia A_{\mu}(n)] \in SU(N)$ $n + \hat{\mu}$ n $U_{n,\mu}^+ = U(n + \hat{\mu}, n)$ ■ リンク変数は両端の点でのゲージ変換を 受けるので、「閉じた経路」にそって積を n $n + \hat{\mu}$ とると、その trace はゲージ不変。 $\bigcup U \to V(n)(\bigcup U)V^+(n)$ $n \in C$ $n \in C$ Plaquette Lattice 上で最も小さな loop は $n+\hat{v} \quad U^+_{\mu}(n+v)$ 単位正方形 $n \rightarrow n + \hat{\mu} \rightarrow n + \hat{\mu} + \hat{\nu} \rightarrow n$ $U_{\mu\nu}(n) \equiv U_{n,\mu} U_{n+\hat{\mu},\nu} U_{n+\nu,\mu}^{\dagger} U_{n,\nu}^{\dagger}$ $U_{\mu}(n) \quad n + \hat{\mu}$ Gauge action (plaquette action) $S_{G} = \beta_{g} \sum_{plaq.} \left[1 - \frac{1}{N_{c}} \operatorname{Retr} U_{\mu\nu}(n) \right] \quad (\beta_{g} = 2 N_{c} / g^{2})$ Neutron Star Mat

Appendix: Plaquette and continuum action

 $n + \hat{v} \qquad \begin{array}{c} U_{\mu}^{+}(n + v) \\ n + \hat{\mu} + \hat{v} \\ U_{\nu}^{+}(n) \end{array} \qquad \begin{array}{c} U_{\nu}(n + \hat{\mu}) \end{array}$ ■ ゲージ場の格子作用 $S_G = \beta_g \sum_{plag.} \left| 1 - \frac{1}{N_c} \operatorname{Retr} U_{\mu\nu}(n) \right|$ $U_{\mu}(n)^{n+\hat{\mu}}$ ● U(1) (電磁場)の場合: 周積分 = rotation の面積分 → $F_{\mu\nu}F_{\mu\nu}$ $e^{A}e^{B} = e^{A+B+\frac{1}{2}[A,B]+\cdots}$ ● 非可換ゲージ場の場合: Hausdorff 公式の利用 $\operatorname{tr} U_{\mu\nu}(x) = \operatorname{tr} e^{ia\{A_{\mu}(x) + A_{\nu}(x + \hat{\mu}) + ia[A_{\mu}, A_{\nu}]/2 + \cdots\}} \times e^{-ia\{A_{\mu}(x + \hat{\nu}) + A_{\nu}(x) - ia[A_{\mu}, A_{\nu}]/2 + \cdots\}}$ $= \operatorname{tr} e^{ia[(A_{\nu}(x+\hat{\mu})-A_{\nu}(x))-(A_{\mu}(x+\hat{\nu})-A_{\mu}(x))+ia[A_{\mu},A_{\nu}]+O(a^{3})]}$ = tr $[1 + ia^2 F_{\mu\nu} + a^4 X_4 - a^4 F_{\mu\nu}^2/2 + O(a^6)]$ $\lim_{a \to 0} S_G = \sum_{n, \mu \neq \nu} \beta_g \operatorname{tr} \left[1 - \frac{a^4}{2} F_{\mu\nu}^2 \right]$ S. Aoki, Text

Link Integral

■ ゲージ場の経路積分

$$Z_G = \int \prod_{n,\mu} dU_{n,\mu} \exp(-S_G) = \int \prod_{n,\mu} dU_{n,\mu} \exp\left[\beta_g \sum_{P \in \text{plaq.}} \text{tr}\left(U_P + U_P^+\right)\right]$$

dU は群上の不変測度(Haar measure)
 → ゲージ変換

 $U_{n,\mu} \rightarrow V(n) U_{n,\mu} V^+(n+\hat{\mu})$

に対して不変な積分の測度が必要

■ リンク積分 SU(N)

• ゲージ不変性のみで、リンク変数の多項式の積分はほぼ決まる。 $\int dU 1=1$ (normalization), $\int dU U_{ab}=0$ $\int dU U_{ab} U_{ij}^{+} = \frac{1}{N} \delta_{aj} \delta_{bi}$ $\int dU U_{ai} U_{bj} U_{ck} = \frac{1}{N!} \varepsilon_{abc} \varepsilon_{ijk}$ (N=3) **Proof of the one-link integral formulae**

• LHS=T^{aj}_{bi} とおく。U, U⁺ が LU, U⁺L⁺と変換するようL, L⁺をかける。 LHS= $\int dU (LU)_{ab} (LU)^{+}_{ij} = \int d (LU) (LU)_{ab} (LU)^{+}_{ij} = T^{aj}_{bi}$ RHS= $L_{ac} T^{ck}_{bi} L^{+}_{kj} \rightarrow L T_{bi} = T_{bi} L \rightarrow T^{aj}_{bi} = S_{bi} \delta^{aj}$

任意の SU(N) の元と交換するので上添字について T は単位行列。 同様に右変換して S も単位行列に比例。 a=j とおいて和をとると、比例係数が 1/N と分かる。

Proof of the one-link integral formulae

$$\int dU U_{ai} U_{bj} U_{ck} = \frac{1}{N!} \varepsilon_{abc} \varepsilon_{ijk} \quad (N=3)$$

- 左辺を T^{abc}_{ijk} とおく。U を左変換。 「 $T^{abc}_{ijk} = L_{ad} L_{be} L_{cf} T^{aef}_{ijk}$ 任意のLに対して不変な3階のテンソルは完全反対称テンソルのみ。 右変換も同様。 $T^{abc}_{ijk} = c \varepsilon^{abc} \varepsilon_{ijk}$
- 両辺に abc をかけて和をとり、det U=1 を使うと c=1/N!

Wilson Loop

One link integral formulaeの応用として、 強結合領域でのWilson loopの期待値を求めてみます。

Wilson loop

$$W(C = L \times N_{\tau}) = \operatorname{tr}\left[\prod_{i \in C} U_{i}\right]$$

- 空間方向 L、時間方向 N₁のループにそって、 リンク変数を掛け合わせたもの。
- 意味づけ ある時刻に両端が重いクォークからなり、 しだけ伸びたストリングを作る。
 虚時間 Nr の後に同じ位置で観測する 確率。

 $\langle O_L(N_{\tau})O_L^+(0)\rangle \propto \exp(-V(L)N_{\tau})$ (for large N_{τ}) V(L)=Interquark potential

Wilson loop (cont.)

■ 強結合極限での評価

$$\langle W(C=L\times N_{\tau})\rangle = \int DUW(C) \exp\left[\frac{1}{g^2}\sum_{P} \operatorname{tr}(U_{P}+U_{P})\right]$$

- リンク変数が残っていると積分して0。
 → Wilson loop に含まれるすべての リンクを plaquette からのリンクと 組み合わせて消す必要がある。
- 結合が強いとき、できるだけ少ない数の plaq. で消すには、Wilson loop を 平面的に plaq. で埋めればよい。

$$\langle W(C)\rangle = N\left(\frac{1}{g^2 N}\right)^{LN_{\tau}} \rightarrow V(L) = L\log(g^2 N)$$

強結合極限では面積則 → クォークの閉じ込め

Strong Coupling Lattice QCD: Pure Gauge

- Quarks are confined in Strong Coupling QCD
 - Strong Coupling Limit (SCL)
 - → Fill Wilson Loop with Min. # of Plaquettes
 - $\rightarrow \text{Area Law (Wilson, 1974)} \\ S_{\text{LQCD}} = -\frac{1}{g^2} \sum_{\Box} \operatorname{tr} \left[U_{\Box} + U_{\Box}^{\dagger} \right]$
 - Smooth Transition from SCL to pQCD in MC (Creutz, 1980; Munster 1980)

K. G. Wilson, PRD10(1974),2445 M. Creutz, PRD21(1980), 2308. G. Munster, (1980, 1981)

Fermions on the Lattice

Fermion action (Euclidean)

$$S_{q,cont} = \int d^4 x \,\overline{q} \left(-i \gamma_{\mu} D_{\mu} + m\right) q, \quad D_{\mu} = \partial_{\mu} + i A_{\mu}$$

■ 格子上の action → Link 変数の利用

$$S_{F,\text{lat}} = a^4 \sum_{x} \left[\sum_{\mu} \frac{\left(\overline{q}(x) \Gamma_{\mu} U_{x,\mu} q(x+\hat{\mu}) - \overline{q}(x+\hat{\mu}) \Gamma_{\mu} U_{x,\mu}^* q(x) \right)}{2a} + m \overline{q}(x) q(x) \right]$$

■ q, U の変換性からゲージ不変

 $q(x) \to V(x)q(x), \quad U_{x,\mu} \to V(x)U_{x,\mu}V^{+}(x+\hat{\mu})$

• 連続極限で
$$S_{q, cont}$$

 $U = 1 + iA_{\mu}a, S_{F, lat} \rightarrow a^{4}\sum_{x} \bar{q}(x) \left[\Gamma_{\mu}(\frac{\partial}{\partial x_{\mu}} + iA_{\mu}q) + m\right]q(x)$
 $\Gamma_{\mu}(i) = iA_{\mu}a, S_{F, lat} \rightarrow a^{4}\sum_{x} \bar{q}(x) \left[\Gamma_{\mu}(\frac{\partial}{\partial x_{\mu}} + iA_{\mu}q) + m\right]q(x)$

 $I_{\mu} = -i \gamma_{\mu}$

これ以降、 $\Gamma e_{\gamma}, x_{a} \rightarrow x_{a}$ とします。

Fermions on the Lattice (cont.)

- 一見よさそうだが、問題点が ... → ダブラー
 - 自由場の場合、Fermion の hopping matrix を Fourier 変換すると $D=i\Gamma_{\mu}\frac{\sin(p_{\mu}a)}{a} (p_{\mu}=2\pi n_{\mu}/La, n_{\mu}=0, 1, ..., L-1)$
 - (3+1) 次元格子上で、D は 16 回 0 となる。 $(p_{\mu}=0, \pi/a)$ → 低エネルギーで現れる Fermion の種類が 16 倍増える。
- Nielsen-Ninomiya の定理

「適当な仮定(平行移動不変性、カイラル対称性、局所性、エルミー ト性、双線形性)を満たす格子 Fermion にはダブラーが存在」

- 解決方法
 - Wilson Fermion : a → 0 でダブラーが無限に重くなるように 2 階微分 に対応する項を加える。(カイラル対称性がない)
 - Domain wall Fermion, Overlap Fermion,
 - Staggered (Kogut-Susskind) Fermion

Staggered Fermion

- Staggered Fermion: Spinor 構造・ γ 行列を数因子 η で表せる。 $q = \gamma_0^{x_0} \gamma_1^{x_1} \gamma_2^{x_2} \gamma_3^{x_3} \chi$ $\Rightarrow \bar{q}(x) \gamma_{\mu} q(x+\hat{\mu}) = \bar{\chi}(x) \gamma_3^{x_3} \gamma_2^{x_2} \gamma_1^{x_1} \gamma_0^{x_0} \gamma_{\mu} \gamma_0^{x_0} \cdots \gamma_{\mu}^{x_{\mu+1}} \cdots \gamma_3^{x_3} \chi(x+\hat{\mu})$ $= \eta_{\mu}(x) \bar{\chi}(x) \gamma_3^{x_3} \cdots \gamma_{\mu+1}^{x_{\mu+1}} \gamma_{\mu}^{2x_{\mu+2}} \gamma_{\mu+1}^{x_{\mu+1}} \cdots \gamma_3^{x_3} \chi(x+\hat{\mu}) = \eta_{\mu}(x) \bar{\chi}(x) \chi(x+\hat{\mu})$ $\eta_{\mu}(x) = (-1)^{x_0 + x_1 + \dots + x_{\mu-1}}$
 - Lattice action with staggered Fermion

$$S_{F} = \frac{1}{2} \sum_{x,\mu} \eta_{\mu}(x) \Big[\bar{\chi}_{x} U_{x,\mu} \chi_{x+\hat{\mu}} - \bar{\chi}_{x+\hat{\mu}} U_{x,\mu}^{\dagger} \chi_{x} \Big] + \sum_{x} m \bar{\chi}_{x} \chi_{x}$$

Fermion の 4 成分が全て等価。1 成分のみを考えてよい。 → 16 個のダブラーが、(Dirac Fermion で)4 つのダブラーとなる。

• カイラル変換: χ, χ^{bar} について同じ、隣り合った χ で逆の位相

 $\chi_x \rightarrow \exp(i\theta \varepsilon(x))\chi_x, \quad \overline{\chi}_x \rightarrow \exp(i\theta \varepsilon(x))\overline{\chi}_x, \quad \varepsilon(x) = (-1)^{x_0 + x_1 + x_2 + x_3}$

→ 厳密なカイラル対称性をもつ

Lattice QCD with staggered Fermion

Lattice QCD action with (unrooted) staggered Fermion

$$S_{LQCD} = S_{F} + S_{G}$$

$$S_{F} = \frac{1}{2} \sum_{x,\mu} \eta_{\mu}(x) \Big[\bar{\chi}_{x} U_{x,\mu} \chi_{x+\hat{\mu}} - \bar{\chi}_{x+\hat{\mu}} U_{x,\mu}^{+} \chi_{x} \Big] + \sum_{x} m \bar{\chi}_{x} \chi_{x}$$

$$S_{G} = -\frac{1}{g^{2}} \sum_{plaq.} tr \Big[U_{P} + U_{P}^{+} \Big]$$

- Spinor 構造が simple(無い) → 解析的・数値的な計算が簡単
- *m*=0 (chiral limit) で厳密な chiral 対称性をもつ
 → カイラル相転移の議論が可能
- 連続領域 $(g \rightarrow 0, a \rightarrow 0)$ では $N_f = 4$ だが、有限の *a* ではフレーバー 対称性は破れている。
- Chiral anomaly $(U(1)_A)$ については controversial

Monte-Carlo simulation in Lattice QCD

■ 分配関数 (or 生成汎関数)

$$S = S_G(U) + \bar{q} D q, \quad Z[J] = \int DU \det D(U) \exp[-S_G(U) + J \hat{O}]$$

$$\rightarrow \langle O \rangle = \frac{\int DU \det D(U) O(U) \exp[-S_G(U)]}{\int DU \det D(U) \exp[-S_G(U)]} = \frac{\delta Z[J]}{\delta J}$$

 Monte-Carlo 法では、通常先に Fermion determinant を評価し、 リンク変数の配位を MC 法で求める。クォークを含む演算子の場合に は、propagator をあらわに評価。

Hot QCD (2009)

BMW collaboration, Sceience 322(2008)1224

格子上の場の理論 Short Summary

- 格子 QCD
 - ■リンク変数の導入により、完全なゲージ対称性を保持。
 - グルーオン作用: Plaquette (プラケット) 作用 (or its improved ver.)
 → 連続極限 (a → 0) で連続理論のゲージ作用
 - クォーク作用:リンク変数を用いてゲージ対称性を保てる。
- Monte-Carlo simulation
 - 非摂動論的 QCD を厳密に解く第一原理計算。
 - 大きな成功:カラーの閉じ込め、ハドロン質量、QCD 相転移(μ=0)
 - カイラル対称性には多少の問題あり
 - ◆ Staggered fermion: Fast, but ugly ($N_f = 4 \rightarrow$ quarter root, anomaly, ...)
 - Wilson fermion: Explicit chiral symmetry breaking at finite a.
 - DW/Overlap fermion: large numerical cost.

■ 有限密度での格子 QCD MC simulation は残された大きな問題。

◎「大学院生や postdoc に与えてはいけないテーマ」(青木さん)

Monte-Carlo Integral: Importance Sampling

Metropolis samplingOne of the typical (popular) method of importance sampling

Config. A

$$S_{eff}(A)$$
 $P_{B\to A} = 1$
Config. B
 $S_{eff}(B)$
 $S_{eff}(B)$
 $S_{eff}(A) < S_{eff}(B)$

 $P_{A\to B} = exp[S_{eff}(A) - S_{eff}(B)]$

Trial prob.: $P_{A\to B} = P_{B\to A}^{try}$ (detailed balance)

- Pickup prob.: According to S_{eff}.
- In equilibrium, P(A) $P_{A \to B} = P(B) P_{B \to A} \to P(A) \propto exp[-S_{eff}(A)]$

Lattice QCD

- Space-time discretization of fields
- Quarks = Grassmann number on sites $\chi_i \chi_j = -\chi_j \chi_i, \quad \int d\chi 1 = 0, \quad \int d\chi \chi = 1$ $\rightarrow \int d\chi_1 d\chi_2 \cdots d\bar{\chi}_1 d\bar{\chi}_2 \cdots \exp(\bar{\chi} D\chi) = det(D)$
- Gluons → Link variable

$$U_{\mu}(x) = \exp\left[ig \int_{x}^{x+\hat{\mu}} dx A(x)\right] \sim \exp(ig A_{\mu})$$
$$\int dU U_{ab} = 0, \quad \int dU U_{ab} U_{cd}^{+} = \delta_{ad} \delta_{bc} / N_{c}, \quad \int dU U_{ab} U_{cd} U_{ef} = \varepsilon_{ace} \varepsilon_{bdf} / N_{c}!$$

Gauge transf.

$$\chi(x) \rightarrow V(x)\chi(x), \quad \overline{\chi}(x) \rightarrow \overline{\chi}(x)V^{+}(x), \\ U_{\mu}(x) \rightarrow V(x)U_{\mu}(x)V(x+\hat{\mu}) \\ \overline{\chi}(x)U_{\mu}(x)\chi(x+\hat{\mu}) = \text{invariant}$$

Lattice spacing = a → Lattice unit: a=1

Lattice QCD action

Lattice QCD action (unrooted staggered fermion)

$$L = \frac{1}{2} \sum_{x} \left[\overline{\chi_{x}} U_{0}(x) e^{\mu} \chi_{x+0} - \chi_{x+0}^{-} U_{0}^{+}(x) e^{-\mu} \chi_{x} \right]$$

$$+ \frac{1}{2} \sum_{x, j} \eta_{j}(x) \left[\overline{\chi_{x}} U_{j}(x) \chi_{x+j} - \chi_{x+j}^{-} U_{j}^{+}(x) \chi_{x} \right]$$

$$+ m_{0} \sum_{x} \overline{\chi_{x}} \chi_{x} \longrightarrow \chi (\partial + \mathbf{i} g \mathbf{A}) \chi$$

$$+ \frac{2N_{c}}{g^{2}} \sum_{plaq.} \left[1 - \frac{1}{N_{c}} \operatorname{Retr} U_{\mu\nu}(x) \right] \operatorname{Stokes}_{theorem}$$

$$\rightarrow rotation$$

$$\eta_{j}(x) = (-1)^{**} (x_{0} + ... + x_{j-1})$$

$$\chi \operatorname{quark}_{(Grassmann \#)}$$

 $\chi_x \rightarrow \exp[i \theta \varepsilon(x)] \chi_x, \ \varepsilon(x) = (-1)^{**}(x_0 + x_1 + x_2 + x_3)$

eutron Star Mat

24

U link ~ exp(igA)

Sign problem in lattice QCD

Fermion determinant (= stat. weight of MC integral) becomes complex at finite μ in LQCD.

$$Z = \int D[U, q, \overline{q}] \exp(-\overline{q} D(\mu, U) q - S_G(U))$$

=
$$\int D[U] \operatorname{Det}(D(\mu, U)) \exp(-S_G(U))$$

$$\begin{bmatrix} \gamma_5 D(\mu) \gamma_5 \end{bmatrix}^+ = D(-\mu^*) \rightarrow \begin{bmatrix} \text{Det}(D(\mu)) \end{bmatrix}^* = \text{Det}(D(-\mu^*)) \\ (\gamma_5 \text{ hermiticity}) \end{bmatrix}$$

- Note: Euclidean $D = \gamma_{\mu} D_{\mu} + m \mu \gamma_0$ ($\gamma =$ Hermite, $D_{\mu} =$ anti-Hermite)
- Fermion det. (Det D) is real for zero μ (and pure imag. μ)
- Fermion det. is complex for finite real μ.
- Approximate methods:
 - Taylor expansion, Imag. μ, Canonical, Re-weighting, Fugacity expansion, Histogram method, Complex Langevin, Strong-coupling lattice QCD

Sign Problem

Monte-Carlo integral of oscillating function

$$Z = \int dx \exp(-x^2 + 2iax) = \sqrt{\pi} \exp(-a)$$
$$\langle O \rangle = \frac{1}{Z} \int dx O(x) e^{-x^2 + 2iax} \qquad 1$$

Easy problem for human is not necessarily easy for computers.

Complex phase appears from fluctuations of H and N. *de Forcrand*

 $Z = \sum \langle \psi | \exp[-(H - \mu N)/T] | \psi \rangle = \sum \prod \langle \psi_{\tau} | \exp[-(H - \mu N)/(N_{\tau}T)] | \psi_{\tau+1} \rangle$

- → Description based on "Hadronic" (color singlet) action would be helpful to reduce fluctuations.
- \rightarrow Strong coupling lattice QCD

Sign Problem (cont.)

- Generic problem in quantum many-body problems
 - Example: Euclid action of interacting Fermions

$$S = \sum_{x, y} \overline{\psi}_x D_{x, y} \psi_y + g \sum_x (\overline{\psi} \psi)_x (\overline{\psi} \psi)_x$$

• Bosonization and MC integral ($g>0 \rightarrow$ repulsive)

$$\exp(-g M_x M_x) = \int d\sigma_x \exp(-g\sigma_x^2 - 2ig\sigma_x M_x) \quad (M_x = (\bar{\psi}\psi)_x)$$

$$Z = \int D[\psi, \bar{\psi}, \sigma] \exp\left[-\bar{\psi}(D + 2ig\sigma)\psi - g\sum_x \sigma_x^2\right]$$

$$= \int D[\sigma] \operatorname{Det}(D + 2ig\sigma) \exp\left[-g\sum_x \sigma_x^2\right]$$

complex Fermion det. \rightarrow complex stat. weight \rightarrow sign problem

g

Strong Coupling Lattice QCD

Wilson ('74), Creutz ('80), Munster ('80, '81), Lottini, Philipsen, Langelage's ('11)

Kawamoto ('80), Kawamoto, Smit ('81),
Damagaard, Hochberg, Kawamoto ('85), Mutter, Karsch ('89),
Ilgenfritz, Kripfganz ('85), Bilic,
Karsch, Redlich ('92), Fukushima ('03);
de Forcrand, Fromm ('10),
Karsch, Redlich ('92), Fukushima ('03);
de Forcrand, Unger ('11),
AO, Ichihara, Nakano, Miura, AO,
Ohnuma ('07). Miura, Nakano, AO,
Kawamoto ('09), Nakano, Miura,
AO ('10)TKawamoto ('09), Nakano, Miura,
AO ('10)TTKawamoto ('09), Nakano, Miura,
AO ('14),
Hilipsen, Unger ('14)T

Area Law

Wilson ('74), Creutz ('80), Munster ('80, '81)

Wilson loop in pure Yang-Mills theory

$$\langle W(C = L \times N_{\tau}) \rangle$$

= $\frac{1}{Z} \int DUW(C) \exp\left[\frac{1}{g^2} \sum_{P} \operatorname{tr}(U_P + U_P^+)\right]$

 $=\exp(-V(L)N_{\tau}) \quad \mathbf{V(L)}=\text{heavy-qq pot.}$

One-link integral

YUKAWA INSTITUTE FOR THEORETICAL PHYSICS

$$\int dU U_{ab} U_{cd}^{+} = \frac{1}{N_c} \delta_{ad} \delta_{bc}$$

In the strong coupling limit

$$\langle W(C) \rangle = N \left(\frac{1}{g^2 N} \right)^{L N_{\tau}} \rightarrow V(L) = L \log(g^2 N)$$

Linear potential between heavy-quarks → *Confinement (Wilson, 1974)*

 $= 1/N_c g^2$

Area Law

Strong Coupling Lattice QCD

Strong coupling limit

Damgaard, Kawamoto, Shigemoto ('84)

$$S_{\text{SCL}} = S_F^{(t)} - \frac{1}{4N_c} \sum_{x,j} M_x M_{x+\hat{j}} + m_0 \sum_x M_x$$
$$(M_x = \overline{\chi}_x \chi_x)$$

Integrate out spatial links using one-link formula, and pick up diagrams with min. quark numbers.

$$\int dU U_{ab} U_{cd}^{+} = \delta_{ad} \delta_{bc} / N_{c}$$

Lattice QCD in SCL → Fermion action with nearest neighbor four Fermi interaction

Finite Coupling Effects

Effective Action with finite coupling corrections Integral of exp(-S_C) over spatial links with exp(-S_F) weight \rightarrow S_{eff}

$$S_{\text{eff}} = S_{\text{SCL}} - \log \langle \exp(-S_G) \rangle = S_{\text{SCL}} - \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \langle S_G^n \rangle_c$$

<S_cⁿ>=Cumulant (connected diagram contr.) *c.f. R.Kubo('62)*

$$S_{\text{eff}} = \frac{1}{2} \sum_{x} (V_{x}^{+} - V_{x}^{-}) - \frac{b_{\sigma}}{2d} \sum_{x,j>0} [MM]_{j,x} \qquad SCL \ (Kawamoto-Smit, '81) \\ + \frac{1}{2} \frac{\beta_{\tau}}{2d} \sum_{x,j>0} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} - \frac{1}{2} \frac{\beta_{s}}{d(d-1)} \sum_{x,j>0,k>0,k\neq j} [MMMM]_{j,k,x} \qquad NLO \ (Faldt-Petersson, '86) \\ - \frac{\beta_{\tau\tau}}{2d} \sum_{x,j>0} [W^{+}W^{-} + W^{-}W^{+}]_{j,x} - \frac{\beta_{ss}}{4d(d-1)(d-2)} \sum_{\substack{x,j>0,|k|>0,|l|>0\\|k|\neq j,|l|\neq j,|l|\neq |k|}} [MMMM]_{j,k,x} [MM]_{j,x+\hat{l}} \\ + \frac{\beta_{\tau s}}{8d(d-1)} \sum_{x,j>0,|k|\neq j} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} \left([MM]_{j,x+\hat{k}} + [MM]_{j,x+\hat{k}+\hat{0}} \right) \qquad NNLO \ (Nakano, Miura, AO, '09) \\ - \left(\frac{1}{g^{2}N_{c}} \right)^{N_{\tau}} N_{c}^{2} \sum_{x,j>0} \left(\bar{P}_{x}P_{x+\hat{j}} + h.c. \right) \qquad Polyakov \ loop \ (Gocksch, \ Ogilvie \ ('85), \ Fukushima \ ('04) \\ Nakano, \ Miua, \ AO \ ('11)) \end{cases}$$

Nakano, Miua, AO ('11))

Phase diagram in SC-LQCD (mean field)

- Standard" simple procedure in Fermion many-body problem
 - Bosonize interaction term (Hubbard-Stratonovich transformation)
 - Mean field approximation (constant auxiliary field)
 - Fermion & temporal link integral Damgaard, Kawamoto, Shigemoto ('84); Ilgenfritz, Kripfganz ('85); Faldt, Petersson ('86); Bilic, Karsch, Redlich ('92); Fukushima ('04); Nishida ('04); Miura, Nakano, AO, Kawamoto ('09); Nakano, Miura, AO ('10, '11)

SC-LQCD with Fluctuations

- Monomer-Dimer-Polymer (MDP) simulation Mutter, Karsch ('89), de Forcrand, Fromm ('10), de Forcrand, Unger ('11)
 - Integrating out all links
 → Z= weight sumof monomer,
 dimer, polymer configurations

 $Z(m,\mu) = \sum_{\{n_x,n_b,C_B\}} \prod_b \frac{(N_c - n_b)!}{N_c!n_b!} \prod_x \frac{N_c!}{n_x!} (2m)^{n_x} \prod_{C_B} w(C_B) \quad w(C_B,\pm) = \varepsilon(C_B) \exp(\pm 3\ell L_t \mu)$

- Auxiliary Field Monte-Carlo (AFMC) method Ichihara, AO, Nakano ('14)
 - Bosonize the effective action, and MC integral over aux. field.

$$S_{\text{eff}} = S_F^{(t)} + \sum_{x} m_x M_x + \frac{L^3}{4N_c} \sum_{k,\tau} f(k) \Big[|\sigma_{k,\tau}|^2 + |\pi_{k,\tau}|^2 \Big]$$
$$m_x = m_0 + \frac{1}{4N_c} \sum_{j} (\sigma + i \varepsilon \pi)_{x \pm \hat{j}}, \quad f(k) = \sum_{j} \cos k_j, \quad \varepsilon = (-1)^{x_0 + x_1 + x_2 + x_3}$$

Phase diagram

Phase diagrams in two independent methods (MDP & AFMC) agree with each other in the strong coupling limit.
SCL phase diagram is determined !

 $\nu \pi - k(3)$

- 全部で 5-7 問程度出します。3 問程度以上レポートを出してください。レポート(3)の〆切は???
 (未定、授業中、あるいは更新したメモで伝えます。)
- (Report 4) リンク積分を利用して、Wilson ループの期待値を強結 合領域で求めよ。 余裕があれば、強結合極限での結果に加えて、1/g² 補正がどのように与えられるか評価せよ。 (今回の「余裕があれば」は、割と簡単。無理しなくてよいですが、ト ライの価値はあります。)

