高密度物質と中性子星の物理: 講義の内容

- 1. 中性子星の基本的性質
 - ・
 ・
 半径測定の概論など
- 2. 状態方程式を記述する理論模型
 - 平均場理論、第一原理計算手法、場の理論によるアプローチ
- 3. 対称エネルギーと非対称核物質の状態方程式
 - 対称エネルギーを決める実験手法、現在の制限
- 4. QCD 有効模型と高密度核物質の性質
 - 有限温度・密度の場の理論入門(松原和・摂動論など)
 - NJL 模型による相転移と状態方程式の記述
- 5. ハイパー核物理と中性子星でのハイペロンパズル
 - ハイパー核実験の現状、ハイペロンパズルの解決に向けて
- 談話会

Symmetry Parameter Constraints

from a Lower Bound on the Neutron-Matter Energy

Lec. 5 ハイパー核物理と中性子星でのハイペロンパズル

- Hypernuclear Physics: Implications from Experiments
- ハイペロン・パズルとは
- ハイペロン・パズルの解決に向けて
- 🛚 まとめ

Hyperons (Baryons with Strangeness)

Ground state baryon SU(3)_f octet ($J^{\pi}=1/2+$)

Baryon	M(Mev)	S	Comp.
n	940	0	udd
р	938	0	uud
Λ	1116	-1	(uds-dus)/√2
Σ^+	1189	-1	uus
Σ^0	1193	-1	(uds+dus)/√2
Σ^{-}	1197	-1	dds
Ξ^0	1315	-2	uss
Ξ^-	1321	-2	dss

 $SU(3)_{f}$ transformation

- Fundamental triplet $(u,d,s)^T = q \rightarrow q'=U q$ (SU(3) transf.)
- Anti-quark $\overline{q} \rightarrow \overline{q}' = \overline{q} U^+$
- Meson octet $M_{ij} = \overline{q}_j q_i \rightarrow M' = UMU^+$

$$\begin{pmatrix} \overline{u} u & \overline{d} u & \overline{s} u \\ \overline{u} d & \overline{d} d & \overline{s} d \\ \overline{u} s & \overline{d} s & \overline{s} s \end{pmatrix} = \begin{pmatrix} \frac{\eta}{\sqrt{6}} + \frac{\pi^0}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{\eta}{\sqrt{6}} - \frac{\pi^0}{\sqrt{2}} & K^0 \\ K^- & \overline{K}^0 & -\frac{2\eta}{\sqrt{6}} \end{pmatrix} = P$$

$$S = \begin{pmatrix} \frac{\sigma}{\sqrt{2}} + \frac{a_0}{\sqrt{2}} & a_0^+ & \kappa^+ \\ a_0^- & \frac{\sigma}{\sqrt{2}} - \frac{a_0}{\sqrt{2}} & \kappa^0 \\ \kappa^- & \overline{\kappa}^0 & \zeta \end{pmatrix} \qquad \qquad V = \begin{pmatrix} \frac{\omega}{\sqrt{2}} + \frac{\rho^0}{\sqrt{2}} & \rho^+ & K^{*+} \\ \rho^- & \frac{\omega}{\sqrt{2}} - \frac{\rho^0}{\sqrt{2}} & K^{*0} \\ K^{*-} & \overline{K}^{*0} & \phi \end{pmatrix}$$

 $SU(3)_{f}$ transformation

- Fundamental triplet $(u,d,s)^T = q \rightarrow q'=U q$ (SU(3) transf.)
- **Diquark** $\mathbf{D}_{i} = \varepsilon_{ijk} \mathbf{q}_{j} \mathbf{q}_{k} \rightarrow \mathbf{D'} = \mathbf{D} \mathbf{U}^{+}$
- **Baryon octet** $\mathbf{B}_{ij} = \mathbf{D}_j \mathbf{q}_i \rightarrow \mathbf{B'} = \mathbf{U}\mathbf{B}\mathbf{U}^+$

$$\begin{bmatrix} ds \\ u \\ [ds] \\ u \\ [ds] \\ d \\ [ds] \\ s \\ [su] \\ s \\ [su] \\ s \\ [ud] \\ s \end{bmatrix} = \begin{bmatrix} \frac{\Lambda}{\sqrt{6}} + \frac{\Sigma^0}{\sqrt{2}} & \Sigma^+ & p \\ \Sigma^- & \frac{\Lambda}{\sqrt{6}} - \frac{\Sigma^0}{\sqrt{2}} & n \\ \Xi^- & \frac{\Sigma^0}{\sqrt{6}} - \frac{\Sigma^0}{\sqrt{2}} & n \\ \Xi^- & \Xi^0 & -\frac{2\Lambda}{\sqrt{6}} \end{bmatrix}$$

SU(3), invariant coupling

- Baryon-Meson coupling
 - $\mathcal{L}_{\rm BV} = \sqrt{2} \{ g_s \operatorname{tr} (M_v) \operatorname{tr} (\bar{B}B) + g_D \operatorname{tr} (\bar{B} \{M_v, B\}) + g_F \operatorname{tr} (\bar{B} [M_v, B]) \}$ $= \sqrt{2} \{ g_s \operatorname{tr} (M_v) \operatorname{tr} (\bar{B}B) + g_1 \operatorname{tr} (\bar{B}M_vB) + g_2 \operatorname{tr} (BBM_v) \}$
- Assumption
 - BM coupling is SU(3) invariant
 - N does not couple with s vector meson

$$g_{\omega\Lambda} = \frac{5}{6}g_{\omega N} - \frac{1}{2}g_{\rho N}, \ g_{\phi\Lambda} = \frac{\sqrt{2}}{6}(g_{\omega N} + 3g_{\rho N})$$

Further simplification: $g_{\rho N} = g_{\omega N}/3$ (quark counting)

$$g_{\omega N} = g_{\nu}, g_{\rho N} = g_{\nu}/3, g_{\omega \Lambda} = 2g_{\nu}/3, g_{\phi \Lambda} = \sqrt{2}g_{\nu}/3$$

Hypernuclear formation

■ (K⁻, π), (π , K⁺), and (K⁻,K⁺) reactions on nuclei \rightarrow Hypernuclei

Reaction	Elementary Processes		
	Main Process	Other Processes	
(K^{-},π^{-})	$K^-n \to \pi^-\Lambda,$	$K^-n \to \pi^- \Sigma^0, \ K^-p \to \pi^- \Sigma^+$	
(K^-,π^+)	$K^- p \to \pi^+ \Sigma^-,$	$K^- pp \rightarrow \pi^+ \Lambda n$ (n-rich hypernuclear formation)	
(π^+, K^+)	$\pi^+ n \to K^+ \Lambda,$	$\pi^+n \to K^+\Sigma^0, \pi^+p \to K^+\Sigma^+$	
(π^{-}, K^{+})	$\pi^- p \to K^+ \Sigma^-,$	$\pi^- pp \to K^+ \Lambda n$ (n-rich hypernuclear formation)	
(K^{-}, K^{+})	$K^- p \to K^+ \Xi^-,$	$K^- pp \to K^+ \Lambda \Lambda$	

Hypernuclear formation

Hypernuclear formation

- (K⁻, π -): Q>0, Small momentum transfer \rightarrow substitutional reaction
- (π , K⁺): Q<0, Momentum transfer ~ 300 MeV/c ~ k_F

A hypernuclear formation

- **(** π^+ , K⁺) reactions on nuclei
 - $q \sim k_F \rightarrow various s.p.$ states of Λ are populated

Single particles states of A in nuclei

- Single particle potential depth of Λ is around -30 MeV
 - s, p, d, f, ... states are clearly seen

```
• A_{core}^{-2/3} \propto R^{-2} \propto K.E. of \Lambda
```


Σ production in nuclei

- Only one bound state ${}^{4}_{\Sigma}$ He (Too light !)
 - \rightarrow Continuum (Quasi-Free) Spectroscopy is necessary
- Cont. Spec. Theory = Distorted Wave Impulse Approx. (DWIA)

$$\frac{d^2 \sigma}{dE_K d \Omega_K} = \beta \left[\frac{d \sigma}{d \Omega} \right]_{N \pi \to KY}^{Elem.} S(E, q) --Strength Func.$$
Kinematical Factor Elem. Cross Sec.

- Large (ω , q) range \rightarrow Important to respect On-Shell Kinematics
- Another way: Σ⁻ atomic shift
 - Atomic shift of Σ^- with O, Mg, Al, S, Si, W, Pb core are measured
- Σ potential in nuclei
 - Isoscalar part: 15-35 MeV repulsion
 - Isovector part: 20-30 % of SU(3) value

Σ production in nuclei

Σ- atomic shift

A. Ohnishi @ Nagoya U., Dec.4-6, 2018 15

Ξ hypernuclear formation

- Missing mass spectroscopy BNL E885 ¹²C(K⁻,K⁺) Fukuda et al. PRC58('98),1306; Khaustov et al. PRC61('00), 054603.
 - No clear bound states found
- Twin hypernuclear formation *Aoki et al. PLB355('95),45.*
- Potential depth U_± ~ -14 MeV

Hyperon Potential Depth (A la Michelin)

- $U_{\Lambda}(\rho_0) \sim -30 \text{ MeV} \quad \text{E3 E3 E3}$
 - Bound State Spectroscopy + Continuum Spectroscopy
- $U_{\Sigma}(\rho_0) > +15 \text{ MeV}$
 - Continuum (Quasi-Free) spectroscopy
 - Atomic shift data (attractive at surface) should be respected.
- **U**_E(ρ_0) ~ 14 MeV c_{23}
 - No confirmed bound state, No atomic data, High mom. transf., → Small Potential Deps.
 - Continuum low-res. spectrum shape $\rightarrow -14$ MeV
- $V_{\Lambda\Lambda}$: Weakly attractive. \mathcal{C}

Hyperons in Dense Matter

- What appears at high density ?
 - Nucleon superfluid (³S₁, ³P₂), Pion condensation, Kaon condensation, Baryon Rich QGP, Color SuperConductor (CSC), Quarkyonic Matter,

Hyperons

Tsuruta, Cameron (66); Langer, Rosen (70); Pandharipande (71); Itoh(75); Glendenning; Weber, Weigel; Sugahara, Toki; Schaffner, Mishustin; Balberg, Gal; Baldo et al.; Vidana et al.; Nishizaki,Yamamoto, Takatsuka; Kohno,Fujiwara et al.; Sahu,Ohnishi; Ishizuka, Ohnishi, Sumiyoshi, Yamada; ...

Nobody says "Hyperons cannot appear in neutron star core" before 2010 !

Y appears when $\mu_B = E_F(n) + U(n) \ge M(Y) + U(Y) + Q_Y \mu_e$

Bruckner-Hartree-Fock theory with Hyperons

- Microscopic G-matrix calculation with realistic NN, YN potential and microscopic (or phen.) 3N force (or 3B force).
 - Interaction dep. (V18, N93, ...) is large → Need finite nuclear info. E.Hiyama, T.Motoba, Y.Yamamoto, M.Kamimura / M.Tamura et al.
 - NS collapses with hyperons w/o 3BF.

Z.H.Li, H.-J.Schulze, PRC78('08), 028801.

中性子星 with Hyperons (before 2010)

- 実験データに基づくハイペロン・ポテンシャルの深さを考慮した RMF による中性子星最大質量の推定 → M_{max} < 1.7 M_☉
- 推測 (before 2010)
 - ハイペロンは (2-4)ρ₀で現れる
 - 1.7 M_{\odot} を大きく超える中性子星は存在しない。

Judgement day came ..

Hyperon Puzzle

Demorest et al., Nature 467 (2010) 1081 (Oct.28, 2010).

Glendenning & Moszkowski (1991)

- RMF with hyperons
 - n, p, Y, σ, ω, ρ / σ³, σ⁴
 - Give $x_{\sigma} = g_{\sigma Y}/g_{\sigma N}$ and fix $x_{\omega} = g_{\omega Y}/g_{\omega N}$ to fit A separation energy.
 - $x_{\sigma} = 0.6 \rightarrow m^*/m = 0.7, x_{\omega} = 0.653$ (similar to quark number counting result, x=2/3)

TABLE I. Values of the hyperon-to-nucleon scalar and vector coupling that are compatible with the binding of -28 MeV for Λ hyperons in nuclear matter for two values of the nucleon (Dirac) effective mass at saturation density.

Xσ	$m^*/m = 0.7$	$m^*/m = 0.78$	
0.2	0.131	0.091	
0.3	0.261	0.233	
0.4	0.392	0.375	
0.5	0.522	0.517	
0.6	0.653	0.568	
0.7	0.783	0.800	
0.8	0.913	0.942	
0.9	1.04	1.08	
1	1.17	1.23	

A. Ohnishi @ Nagoya U., Dec.4-6, 2018 24

Hyperon Puzzle

- ハイペロンや反 K 中間子を含む状態方程式、純粋なクォーク物質 状態方程式では質量が 2 M_☉の中性子星を支えられない。
- 一方でハイパー核実験データから示唆される A 粒子のポテンシャル (U_A(p₀)~-30 MeV) を考慮した理論は、(2-4)p₀ においてハイペロンが現れることを予言する。
 - (反K中間子、クォークは不定性が大きく、パズル(矛盾)とまでは 言えない)
 - → 我々は何を見落としているのか?
- 解決方法・可能性
 - ポテンシャル (e.g. $U_{\Lambda}(\rho_0) \sim -30$ MeV) が間違っている、
 - 高密度におけるポテンシャルが素直な予測と異なる、
 - クォーク物質がハイペロンより低密度で現れる、
 - 一般相対性理論が間違っている、

Σ or Ξ potential in nuclei?

- New analysis of Σ production reaction: ⁶Li (π^- , K⁺) Σ^{-5} He $\rightarrow U_{\Sigma} \sim +30$ MeV (Harada, consistent with previous estimate)
- New Ξ hypernuclei ? → B.E. = MeV & 1 MeV → Deeper than previous estimate !

<u>Matsumiya, Tsubakihara, Kimura, Dote, AO</u> ('11) A. Ohnishi @ Nagoya U., Dec.4-6, 2018 26

Anti-Kaon potential in Nuclear Matter ?

- K⁻pp binding energy (Outa, Dote)
 - E15: One state at B.E.~ (15-30) MeV, Strength at B.E. ~ 100 MeV E27: B.E.~100 MeV ?
 - Dote: Higher pole B.E.~ 27 MeV, Lower pole B.E.~ 79 MeV (?) Akaishi: B.E. ~ 100 MeV (DISTO, FINUDA) S.Ohnishi: Saturating B.E. in heavier kaonic nuclei

A. Ohnishi @ Nagoya U., Dec.4-6, 2018 27

Strongly Repulsive AA potential ?

■ Nagara fit $\rightarrow a_0(\Lambda\Lambda) = -0.575$ fm or -0.77 fm

Hiyama, Kamimura, Motoba, Yamada, Yamamoto ('02), Filikhin, Gal ('02)

New approach: $\Lambda\Lambda$ correlation from HIC (Morita) \rightarrow -1.25 fm < $a_0(\Lambda\Lambda)$ < 0 (Consistent with Nagara)

Exp: Adamczyk et al. (STAR Collaboration), PRL 114 ('15) 022301. Theor.:Morita, T.Furumoto, AO, PRC91('15)024916.

EOS from lattice NN force

■ 格子 QCD 核力を用いた高密度状態方程式 (LQCD+BHF) NN force: ¹S₀, ³S₁, ³D₁ only

A. Ohnishi @ Nagoya U., Dec.4-6, 2018 29

2010 年以降のデータも、 ハイペロン・パズルを解決する方向への変更はない。 (むしろ Ξ, K^- については、引力が大きそう。) $U_A \sim -30 MeV, U_{\Sigma} \sim +30 MeV, U_{\Xi} < -14 MeV$

解決方法は?

A. Ohnishi @ Nagoya U., Dec.4-6, 2018 30

- Three-baryon (3B) interaction ?
 - "Universal" 3B repulsion Nishizaki, Takatsuka, Yamamoto ('02), Tamagaki ('08), Yamamoto, Furumoto, Yasutake, Rijken ('13)
 - Repulsive ANN potential (or density dep. AN pot.) Lonardoni, Lovato, Gandolfi, Pederiva ('15), Togashi, Hiyama, Yamamoto, Takano ('16), Tsubakihara, Harada, AO ('16)
 - Medium modification of baryons (Quark Meson Coupling model) J.Rikovska-Stone, P.A.M.Guichon, H.H.Matevosyan, A.W.Thomas ('07), Miyatsu, Yamamuro, Nakazato ('13)
- Quark matter NS core ?
 - First order phase transition

L. Bonanno, A. Sedrakian, Astron. Astrophys. 539 (2012) A16; M. Bejger, D. Blaschke, P. Haensel, J. L. Zdunik, M. Fortin, arXiv:1608.07049.

- Crossover transition to quark matter Masuda, Hatsuda, Takatsuka ('12)
- Modified Gravity Astashenok et al. ('14), M.-K. Cheoun et al.

Possible Solution of Hyperon Puzzle

Lonardoni, Lovato, Gandolfi, Pederiva ('15),

QMC, Miyatsu, Yamamuro, Nakazato ('13)

Yamamoto, Furumoto, Yasutake, Rijken ('13)

Tsubakihara, AO ('13)

Togashi, Hiyama, Takano, Yamamoto ('16).

A. Ohnishi @ Nagoya U., Dec.4-6, 2018 33

A. Ohnishi @ Nagoya U., Dec.4-6, 2018 34

Neutron Chemical Potential in NS

- A appears in neutron stars if E_{Λ} (p=0) = $M_{\Lambda}+U_{\Lambda} < \mu_n$
- **U**_{Λ} in χ EFT (2+3 body) is stiff.
- **But** μ_n is larger with TLOK+2M_{\odot} constraints

Neutron Chemical Potential in NS

Neutron Chemical Potential

$$\mu_n + M_N = \frac{\partial(nE)}{\partial n_n} = E + u\frac{\partial E}{\partial u} + 2\alpha(1-\alpha)S(u)$$

Single particle potential

Model calculations of neutron star matter within NJL model

NJL Lagrangian
$$\mathcal{L} = \bar{q}(i\gamma_{\mu}\partial^{\mu} - m_{q} + \mu\gamma_{0})q + \mathcal{L}^{(4)} + \mathcal{L}^{(6)}$$

$$\mathcal{L}_{\chi}^{(4)} = G \sum_{a=0}^{8} [(\bar{q}\tau_{a}q)^{2} + (\bar{q}i\gamma_{5}\tau_{a}q)^{2}] \quad \text{chiral interactions}$$

$$\mathcal{L}_{d}^{(4)} = H \sum_{A,A'=2,5,7} [(\bar{q}i\gamma_{5}\tau_{A}\lambda_{A'}C\bar{q}^{T})(q^{T}Ci\gamma_{5}\tau_{A}\lambda_{A'}q) \quad \text{BCS pairing interactions}$$

$$\mathcal{L}_{d}^{(6)} = \text{Kobayashi-Maskawa-'t Hooft six quark axial anomaly}$$

plus universal repulsive quark-quark vector coupling $\mathcal{L}_{V}^{(4)} = -g_{V} \left(\overline{q}\gamma^{\mu}q\right)^{2} \quad T. \text{ Kunihiro}$

Include u,d, and s quarks

K. Masuda, T. Hatsuda, & T. Takatsuka, Ap. J.764, 12 (2013)

GB, T. Kojo, T. Hatsuda, T. Takatsuka, & Y. Song ROPP 81, 056902 (2018)

G. Baym

QHC18 (quark-hadron crossover) equation of state:

Maximum mass vs. parameters g_v , H

T. Kojo, T. Hatsuda, GB, et al.

Neutron star radius vs. mass

■ NJL でのベクトル結合 → クォーク物質での対称エネルギー

R.C.Pereira, P. Costa, C. Providencia, PRD94('16)094001 X.Wu, AO, H. Shen, PRC98 ('18)065801

$$\mathcal{L}_{v} = -G_{0}(\bar{q}\gamma_{\mu}q)^{2} - G_{V}\sum_{\alpha} \left[(\bar{q}\gamma_{\mu}\lambda_{\alpha}q)^{2} + (\bar{q}i\gamma_{\mu}\gamma_{5}\lambda_{\alpha}q)^{2} \right]$$

- G_v=0, G_v=1.5 G₀ (λ₀=√2/3) の場合にはクォーク物質の対称エネル
 ギーは核物質より非常に小さい。G_v=10 G₀ 程度でほぼ同様。
- **RMF での L 値の抑制** $\Lambda_{v}\left(g_{\omega}^{2}\omega_{\mu}\omega^{\mu}\right)\left(g_{\rho}^{2}\rho_{\mu}^{a}\rho^{a\mu}\right)$

Lec. 5 **のまとめ**

- strangeness を考えることにより、原子核物理はより豊富に!
 - ●様々な相互作用の形が現れ、原子核の種類も豊富に!
- ハイペロンパズルはいまだに大きな問題として残っている
 - ハイペロン・ポテンシャル、反 K 中間子の ρ₀ 近辺での深さは、
 これまでの結果と同程度、あるいはより引力的。

 $U_{\Lambda} \sim -30$ MeV, $U_{\Sigma} \sim +30$ MeV, $U_{\Xi} < -14$ MeV

- → Hyperon puzzle の解決にはならず、さらに深刻に。
- 提案されている解決方法
 - ハイペロンを含む3体斥力(YNN, YYN, YYY) or 密度依存性
 - 比較的早い段階でのクォーク物質への転移(弱い1次 or crossover)
 - 強い磁場による EOS の硬化、修正重力、…

実験的検証方法は??? → To be continued

まとめ

- 高密度物質と中性子星の物理:講義の内容
 - 1. 中性子星の基本的性質
 - 2. 状態方程式を記述する理論模型
 - 3. 対称エネルギーと非対称核物質の状態方程式
 - 4. QCD 有効模型と高密度核物質の性質
 - 5. ハイパー核物理と中性子星でのハイペロンパズル
 - 診話会 Symmetry Parameter Constraints from a Lower Bound on the Neutron-Matter Energy
- 中性子星は低密度から高密度にわたる核物質の情報を必要とする 興味深い対象。重力波観測も行われ、宇宙物理からの興味も増し ている。今後も研究していきましょう。

