物理学特論I(中性子星と原子核物理)

- 1. 序論:中性子星とは
- 2. 中性子星の質量と半径
- 3. 中性子星に関連する原子核・ハドロン物理学1 - 原子核の大きさと散乱の量子力学
- 4. 中性子星に関連する原子核・ハドロン物理学2
 原子核の質量と核物質状態方程式
- 5. 中性子星に関連する原子核・ハドロン物理学3 - クォークとハドロン
- 6. 中性子星核物質の状態方程式

7. 中性子星の最近の話題と課題 - 中性子星の最大質量とハイペロンパズル

・ セミナー: 最適化問題としての符号問題

中性子星コアの組成

- 中性子星コアでは様々な粒子・相が現れると期待される!
 - **Strange Hadrons** d d proton **Λ** hyperon • Meson condensate (K, π) d u 🌔 anti kaon π **Quark matter** Quark pair condensate (Color superconductor)

高密度物質におけるハイペロン

- 高密度→大きな中性子フェルミエネルギー →様々な粒子・状態
 - 核子超流動 (³S₁, ³P₂), π 中間子凝縮, K 中間子凝縮, クォーク・グ ルーオン・プラズマ, カラー超伝導, ハイペロン混合,...
 - 特に負電荷をもつバリオンは現れやすい $\mu_h = \mu_n B_h - \mu_e Q_h$

Chemical potential overtakes Λ energy at p=0 \rightarrow appearance of Λ

重い中性子星 (M~2M。)

- 一般相対論効果による Time delay
 - Einstein delay: パルサーの運動による遅れ
 - Shapiro delay: 伴星の重力場による遅れ
- 重い中性子星の発見 (J1614-2230)
 - Shapiro delay による質量の評価 M = 1.97 ± 0.04 M_{\odot} Demorest et al. (2010)

ハイペロン・パズル

Glendenning & Moszkowski (1991)

- RMF with hyperons
 - n, p, Y, σ, ω, ρ / σ³, σ⁴
 - Give $x_{\sigma} = g_{\sigma Y}/g_{\sigma N}$ and fix $x_{\omega} = g_{\omega Y}/g_{\omega N}$ to fit A separation energy.
 - $x_{\sigma} = 0.6 \rightarrow m^*/m = 0.7, x_{\omega} = 0.653$ (similar to quark number counting result,

TABLE I. Values of the hyperon-to-nucleon scalar and vector coupling that are compatible with the binding of -28 MeV for Λ hyperons in nuclear matter for two values of the nucleon (Dirac) effective mass at saturation density.

xσ	$m^*/m = 0.7$	$m^*/m = 0.78$
0.2	0.131	0.091
0.3	0.261	0.233
0.4	0.392	0.375
0.5	0.522	0.517
0.6	0.653	0.568
0.7	0.783	0.800
0.8	0.913	0.942
0.9	1.04	1.08
1	1.17	1.23

Relativistic Mean Field

- Mean Field treatment of meson field operator
 - = Meson ield operator is replaced with its expectation value $\varphi(r) \rightarrow \langle \varphi(r) \rangle$

Ignoring fluctuations compared with the expectation value may be a good approximation at strong condensate.

- Which Hadrons should be included in RMF ?
 - Baryons (1/2+) p, n, Λ , Σ , Ξ , Δ ,
 - Scalar Mesons (0+) $\sigma(600)$, $f_0(980)$, $a_0(980)$, ...
 - Vector Mesons (1-) ω(783), ρ(770), φ(1020),
 - Pseuso Scalar (0-) π, K, η, η',
 - Axial Vector (1+) a_1, \dots

We require that the meson field can have uniform expectation values in nuclear matter.

 \rightarrow Scalar and Time-Component of Vector Mesons (σ , ω , ρ ,)

σω Model

Serot, Walecka, Adv.Nucl.Phys.16 (1986),1

- **Consider only σ and ω mesons**
- Lagrangian

$$L = \overline{\Psi} (i \gamma^{\mu} \partial_{\mu} - M + g_{s} \sigma - g_{\nu} \gamma^{\mu} \omega_{\mu}) \Psi$$

+ $\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{1}{2} m_{s}^{2} \sigma^{2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_{\nu}^{2} \omega_{\mu} \omega^{\mu}$
 $(F_{\mu\nu} = \partial_{\mu} \omega_{\nu} - \partial_{\nu} \omega_{\mu})$

Equation of Motion

$$\frac{\partial}{\partial x^{\mu}} \left[\frac{\partial L}{\partial (\partial_{\mu} \phi_i)} \right] - \frac{\partial L}{\partial \phi_i} = 0$$

Euler-Lagrange Equation
$$\partial x [O(O_{\mu} \Psi_{i})] O \Psi_{i}$$

 $\sigma: [\partial_{\mu} \partial^{\mu} + m_{s}^{2}] \sigma = g_{s} \overline{\Psi} \Psi$
 $\omega: \partial_{\mu} F^{\mu\nu} + m_{\nu}^{2} \omega^{\nu} = g_{\nu} \overline{\Psi} \gamma^{\nu} \Psi \rightarrow [\partial_{\mu} \partial^{\mu} + m_{\nu}^{2}] \omega^{\nu} = g_{\nu} \overline{\Psi} \gamma^{\nu} \Psi$
 $\Psi: [\gamma^{\mu} (i \partial_{\mu} - g_{\nu} V_{\mu}) - (M - g_{s} \sigma)] \Psi = 0$

EOM of ω (for beginners)

Euler-Lagrange Eq.

$$\partial_{\mu}F^{\mu\nu}+m_{\nu}^{2}\omega^{\nu}=g_{\nu}\overline{\Psi}\gamma^{\nu}\Psi$$

Divergence of LHS and RHS

$$\partial_{\nu}\partial_{\mu}F^{\mu\nu}+m_{\nu}^{2}(\partial_{\nu}\omega^{\nu})=m_{\nu}^{2}(\partial_{\nu}\omega^{\nu})=g_{\nu}(\partial_{\nu}\overline{\psi}\gamma^{\nu}\psi)=0$$

LHS: derivatives are sym. and $F_{\mu\nu}$ is anti-sym. RHS: Baryon Current = Conserved Current

Put it in the Euler-Lagrange Eq.

$$\partial_{\mu}F^{\mu\nu}=\partial_{\mu}(\partial^{\mu}\omega^{\nu}-\partial^{\nu}\omega^{\mu})=\partial_{\mu}\partial^{\mu}\omega^{\nu}-\partial^{\nu}(\partial_{\mu}\omega^{\mu})=\partial_{\mu}\partial^{\mu}\omega^{\nu}$$

Schroedinger Eq. for Upper Component

Dirac Equation for Nucleons

$$(i\gamma\partial -\gamma^0 U_v - M - U_s)\psi = 0$$
, $U_v = g_\omega \omega$, $U_s = -g_\sigma \sigma$

Decompose 4 spinor into Upper and Lower Components

$$\begin{pmatrix} E - U_v - M - U_s & i \sigma \cdot \nabla \\ -i \sigma \cdot \nabla & -E + U_v - M - U_s \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix} = 0 \qquad \begin{cases} g = \frac{-i}{E + M + U_s - U_v} (\sigma \cdot \nabla) f \\ (E - M - U_v - U_s) f = -i (\sigma \cdot \nabla) g \end{cases}$$

 $= \text{Erase Lower Component (assuming spherical sym.)} \\ -i(\sigma \cdot \nabla)g = -(\sigma \cdot \nabla)\frac{1}{X}(\sigma \cdot \nabla)f = -\frac{1}{X}\nabla^2 f - \frac{1}{r}\left[\frac{d}{dr}\frac{1}{X}\right](\sigma \cdot r)(\sigma \cdot \nabla)f = -\nabla\frac{1}{X}\nabla f + \frac{1}{r}\left[\frac{d}{dr}\frac{1}{X}\right](\sigma \cdot l)f \\ (\sigma \cdot r)(\sigma \cdot \nabla) = (r \cdot \nabla) + i\sigma \cdot (r \times \nabla) = r \cdot \nabla - \sigma \cdot l$

Schroedinger-like" Eq. for Upper Component

$$-\nabla \frac{1}{E+M+U_s-U_v} \nabla f + (U_s+U_v+U_{LS}(\sigma \cdot l)) f = (E-M) f$$

 $U_{LS} = \frac{1}{r} \left[\frac{d}{dr} \frac{1}{E + M + U_s - U_v} \right] < 0 \quad \text{on surface}$

(Us,Uv)~ (-350 MeV,280 MeV)

entral(Us+Uv), Large LS (Us-UN)@ Niigata U., Dec. 11-13, 2017 10

Nuclear Matter in σω Model

Serot, Walecka, Adv.Nucl.Phys.16 (1986),1

$\sigma \omega$ model --- pros and cons

- Pros (merit)
 - Foundation is clear: based on the success of Dirac phen. and DBHF.
 - Simple description of scalar and vector potential in σ and ω mesons.
 - Saturation is well described in two parameters.
 - Natural explanation of large LS potential in nuclei.
- Cons (shortcomings)
 - Relation with the bare NN interaction is not clear.
 - Especially, pion effects are not included.
 - Symmetry energy is too small.
 - Incompressibility is too large (K ~ 600-700 MeV) (c.f. Empirical value K ~ (200-300) MeV)
 - Chiral symmetry is not respected.

High Quality RMF models

- Variety of the RMF models
 - → MB couplings, meson masses, meson self-energies
 - σN , ωN , ρN couplings are well determined \rightarrow almost no model deps. in Sym. N.M. at low ρ
 - ω⁴ term is introduced to simulate DBHF results of vector pot. *TM: Y. Sugahara, H. Toki, NPA579('94)557; R. Brockmann, H. Toki, PRL68('92)3408.*
 - σ^3 and σ^4 terms are introduced to soften EOS at ρ_0 .

J. Boguta, A.R.Bodmer NPA292('77)413, NL1:P.-G.Reinhardt, M.Rufa, J.Maruhn, W.Greiner, J.Friedrich, ZPA323('86)13. NL3: G.A.Lalazissis, J.Konig, P.Ring, PRC55('97)540.

 \rightarrow Large differences are found at high ρ

K. Tsubakihara, H. Maekawa, H. Matsumiya, AO, PRC81('10)065206.

How to determine Non-Linear terms ?

- Method 1: Fit as many as known observables
 - EOS, Nuclear B.E., High density EOS from HIC, Vector potential in DBHF, Neutron Star, ...

これまでに見落としがあったのか?

- 核物質中のハイペロン・ポテンシャル?
 - $U_{\Lambda}(\rho_0) \sim -30$ MeV, $U_{\Sigma}(\rho_0) > +20$ MeV, $U_{\Xi}(\rho_0) \sim -14$ MeV
- ハイペロン・ハイペロン相互作用?
 - Nagara event $\rightarrow \Lambda\Lambda$ ポテンシャルは弱い引力。
 - 高密度で斥力的となる?
- 反 K 中間子と原子核のポテンシャル?
- Three-baryon (3B) interaction ?
- Quark matter core ?
- Modified gravity ?

 $核内での \Sigma$ 、 Ξ のポテンシャル?

- 新しい Σ 生成実験 : ⁶Li (π^- , K⁺) Σ^{-5} He と理論分析 (A02, Harada) → U_{Σ} ~ +30 MeV (consistent)
- Ξ ハイパー核生成実験 → B.E. = 9 MeV & (4 or 1) MeV → これまで想定されていたポテンシャル (U~-14 MeV) よりも深い

ΛΛ ポテンシャル?

■ Nagara Event $\rightarrow a_0(\Lambda\Lambda) = -0.575$ fm or -0.77 fm

Hiyama, Kamimura, Motoba, Yamada, Yamamoto ('02), Filikhin, Gal ('02)

■ 新しい観測量: $\Lambda\Lambda$ correlation from HIC (Morita) → -1.25 fm < $a_0(\Lambda\Lambda)$ < 0 (Consistent with Nagara)

Exp: Adamczyk et al. (STAR Collaboration), PRL 114 ('15) 022301. Theor.:Morita et al., T.Furumoto, AO, PRC91('15)024916.

これまでに見落としがあったのか?

- 核物質中のハイペロン・ポテンシャル?_{(U}~+30 MeV)
 - $U_{\Lambda}(\rho_0) \sim -30 \text{ MeV}, U_{\Sigma}(\rho_0) > +20 \text{ MeV}, U_{\Xi}(\rho_0) \sim -14 \text{ MeV}$
- ハイペロン・ハイペロン相互作用?
 - Nagara event $\rightarrow \Lambda\Lambda$ ポテンシャルは弱い引力。 OK
 - 高密度で斥力的となる?
- 反 K 中間子と原子核のポテンシャル?
- Three-baryon (3B) interaction ?
- Quark matter core ?
- Modified gravity ?

(U < -14 MeV)

- Three-baryon (3B) interaction ?
 - "Universal" 3B repulsion Nishizaki, Takatsuka, Yamamoto ('02), Tamagaki ('08), Yamamoto, Furumoto, Yasutake, Rijken ('13)
 - Repulsive ANN potential (or density dep. AN pot.) Lonardoni, Lovato, Gandolfi, Pederiva ('15), Togashi, Hiyama, Yamamoto, Takano ('16), Tsubakihara, Harada, AO ('16)
 - Medium modification of baryons (Quark Meson Coupling model) J.Rikovska-Stone, P.A.M.Guichon, H.H.Matevosyan, A.W.Thomas ('07), Miyatsu, Yamamuro, Nakazato ('13)
- Quark matter NS core ?
 - First order phase transition

L. Bonanno, A. Sedrakian, Astron. Astrophys. 539 (2012) A16; M. Bejger, D. Blaschke, P. Haensel, J. L. Zdunik, M. Fortin, arXiv:1608.07049.

- Crossover transition to quark matter Masuda, Hatsuda, Takatsuka ('12)
- Modified Gravity Astashenok et al. ('14), M.-K. Cheoun's talk

Hyperon Puzzle

Lonardoni, Lovato, Gandolfi, Pederiva ('15),

*QMC, Miyatsu, Yamamuro, Nakazato (*13)*

Yamamoto, Furumoto, Yasutake, Rijken ('13)

第一原理計算からの示唆

- 第一原理計算(核力から出発した近似のない計算)
 - 2 核子間の核力だけでは原子核は支えられない
 - 3 核子間にまたがる力が必要
- パズルを解くにはハイペロンを含む3体力を考えることが必要

Akmal, Pandharipande, Ravenhall ('98)

- 生の (bare) 短距離3体力 → クォーク・グルーオン自由度?
- ▲ 経由3体力 (藤田・宮沢3体力)
- 2π 交換中間状態におけるパウリ排他率
 → 引力の減少による斥力効果

THEORETICAL PHYSICS

ハイペロンは現れるか?

- 新学術研究の成果 → ハイペロンパズルはより深刻に。
 - Ξ 核は束縛 (B.E. > 1 MeV (emulsion), B.E. > 10 MeV? (E07))
 - ◎ K核(K-pp) も束縛 (B.E.~40 MeV (E15))
 - Σ-核相互作用は斥力 (UΣ~+30 MeV)

ハイペロンを含む EOS での MR 曲線

まとめ

- 中性子星の核物質研究
 - 核物理・天体物理・物性物理研究者の連携
 → 原子核と物性(量子多体問題)
 & 原子核と天体物理(地上と天上)
- 中性子過剰物質の EOS
 - 5年間で対称エネルギーパラメータは強く制限された
 - しかし「外挿」、そして中性子星観測量にはまだ大きな不定性
 → to be continued
- ハイペロン・パズル
 - 3 体力?クォーク物質?修正重力?
 - YN, KN 相互作用に基づく厳密計算によりデータを 定量的 (~(1-10) MeV の精度) に説明可
 - ハイペロンの発現は対称エネルギーが決定、 中性子星の最大質量は3体力に依存
 - \rightarrow to be continued

- 対称エネルギーパラメータ Skin thickness 測定が鍵 (右下がり)→ RIBF 実験
- 高密度での対称エネルギー = 中性子星半径に直接的に重要
 → RIBF 実験
- 分野をまたいで多体問題を解く手法の開発

展望(2): ハイペロンパズル

- 提案されている解決方法:3体力、クォーク物質、修正重力 →「実験と観測」で決めるには?
- 3 体力効果: A 粒子ポテンシャルの「深さ」から「密度依存性」へ → 数 100 keV の精度でのハイパー核束縛エネルギー測定

Kohno ('17), Petschauer, Haidenbauer, Meissner, Kaiser, Weise ('16) Isaka, Yamamoto, Rijken('17); Yamamoto, Furumoto, Yasutake, Rijken('17)

$$U_{\Lambda}(n) = U_{\Lambda}(n_0) + \frac{L_{\Lambda}}{3} \frac{n - n_0}{n_0} + \frac{K_{\Lambda}}{18} \left(\frac{n - n_0}{n_0}\right)^2 + \cdots$$

Chiral EFT, 格子核力(含む3体力)(+ 重イオン)に期待

展望(3): 観測的中性子星物理

- 中性子星半径観測が本格化 Observational NS physics
 - NICER 稼働中, 2018.09 くらいからデータ公表?
 - XARM (ひとみ後継機)
- Binary Neutron Star Mergers (GW170817 by LIGO/Virgo)
 - 原子核密度の 10 倍程度の高密度物質生成
 - 中性子星の最大質量 ~ (2.15-2.25) M_☉ (Shibata et al., 1710.07579)

Thank you !

A little on NS cooling & Magnetic Field

Neutron Star Cooling

- Direct URCA process Casino de Urca @ Rio n → p + e⁻ + ν
 _e , e⁻ + p → n + ν_e

 Dominant at high T (T>10⁹ K)
 - Suppressed at low T (T < 10⁹ K)
- Modified URCA process

 $n+n \rightarrow n+p+e^- + \bar{\nu}_e \ , \ \ n+p+e^- \rightarrow n+n+\nu_e$

- Standard" cooling process of young NS (t < 10⁴ yrs, T > 10⁸ K)
- Non-standard cooling processes
 - Y-URCA $Y \rightarrow N + e^- + \bar{\nu}_e \ , \ e^- + Y \rightarrow N + \nu_e$
 - $\pi \operatorname{cooling}_{\pi^- + n \to n + e^- + \bar{\nu}_e}, \quad n + e^- \to n + \pi^- + \nu_e$
 - quark beta decay $d \to u + e^- + \bar{\nu}_e$, $u + e^- \to d + \nu_e$

Direct URCA suppression

- **D-URCA is suppressed at Y**_p < 0.11
 - Equilibrium condition: $\mu_n = \mu_p + \mu_e$ $\frac{P_F^2(n)}{2M_n} + M_n + U_n = \frac{P_F^2(p)}{2M_p} + M_p + U_p + P_F(e)$
 - Charge neutrality: P_F(p)=P_F(e)
 - Momentum conservation for zero momentum v emission

$$P_F(n) = 2P_F(p) \rightarrow Y_p = Z/(N+Z) = 1/9 = 0.12$$

• Y-DURCA and q-DURCA is free from suppression M-URCA is slow

$$\Gamma = \frac{(2\pi)^4}{\hbar V} \int \delta(E_f - E_i) \delta^3(\mathbf{p}_f - \mathbf{p}_i) |H_{fi}|^2 f_1 f_2 (1 - f_1') (1 - f_p) (1 - f_e) \prod_i V \frac{d^3 p_i}{(2\pi)^3}$$
$$L_{\nu}^{\text{mURCA}} = C \frac{M}{M_{\odot}} \left(\frac{\rho_0}{\rho}\right)^{1/3} \left(\frac{T}{10^9 \text{ K}}\right)^8 \quad (C \simeq (0.8 - 5) \times 10^{39} \text{erg/s})$$
Shapiro texbook

A. Ohnishi @ YONUPA, Aug.17, 2015 33

n

 $Y_{\rm D} < 1/9$

P(p) P(e)

P(p) P(e)

P(n)

P(n)

Neutron Star Cooling (cont.)

- Many of neutron star temperature observations are consistent with "standard" modified URCA cooling (with some heating).
- Some require faster cooling. Need some exotics.
- Exotic cooling is too fast if there is no suppression mechanism. Superfluidity is a promising candidate.

S. Tsuruta, Grossmann Medalist, 2015

Nuclear Superfluidity and Cooling Curve

- Surface T measurement and Cooling curve
 - Stable superfluid \rightarrow Gap \rightarrow Suppression of v emission

 - Precise T and Cooling rate measurement in Cas A Heinke, Ho, ApJ 719('10) L167 [arXiv:1007.4719] Page et al., PRL 106 ('11) 081101 [arXiv:1011.6142]

Magnetic Field

- Magnetic Dipole Model (cf. Shapiro, Teukolsky)
 - Magnetic Dipole Moment

$$|\mathbf{m}| = \frac{1}{2} B_p R^3 ,$$

$$\dot{E} = -\frac{2}{3c^3} |\ddot{\mathbf{m}}|^2 = -\frac{B_p^2 R^6 \Omega^4 \sin^2 \alpha}{6c^3}$$

• Rotation Energy of NS $E = \frac{1}{2}I\Omega^2$, $\dot{E} = I\Omega\dot{\Omega}$, $T \equiv -\left(\frac{\Omega}{\dot{\Omega}}\right)_0 = \frac{6Ic^3}{B_p^2 R^6 \sin^2 \alpha \Omega_0^2}$, age : $t \simeq T/2$

From P and dP/dt, we can guess B and t (age) of NS

Ho, Klus, Coe, Andersson ('13)

Origin of Strong Magnetic Field

- How can we make strong B ? cf. H. C. Spruit, AIP Conf.Proc.983('08)391.
 - Fossil field hypothesis (化石磁場) (flux conservation)
 - Dynamo process in progenitor star evolution
 - Ferromagnetism
 e.g. Yoshiike, Nishiyama, Tatsumi ('15)
- How can we keep strong B ?
 - Dipole magnetic field is not stable Flowers, Ruderman ('77)
 - Finite magnetic helicity $\mathcal{H} = \int dx A \cdot B$

Flowers, Ruderman ('77)

makes magnetic field stable.

Prendergast ('56); AO, N. Yamamoto, arXiv:1402.4760; D. Grabowska, D. B. Kaplan, S. Reddy, PRD('15)085035.

Chiral Plasma Instability ?

Chiral Plasma Instability

AO, N. Yamamoto, arXiv:1402.4760

■ Left-handed electrons are eaten in electron capture → chiral chem. pot.

$$p + e_L^- \rightarrow n + \nu_{L^+}^e$$

 Chiral plasma instability: N₅ is converted to magnetic helicity Akamatsu, Yamamoto ('13, '14)

$$j_z = \frac{2\alpha}{\pi} \mu_5 B_{z_5} \qquad \frac{d}{dt} \left(N_5 + \frac{\alpha}{\pi} \mathcal{H} \right) = 0, \quad N_5 = \int d\boldsymbol{x} \, n_5$$

Finite magnetic helicity makes magnetic field stable.

$$\mathcal{H} = \int dx A \cdot B$$

Electron Mass may kill the instability.

D. Grabowska, D. B. Kaplan, S. Reddy, PRD('15)085035

(b)

(c)

(a)