強結合領域の格子 QCD とクォーク物質の相図

大西 明 (京都大学·基礎物理学研究所)

シラバス(1)

■ 授業の目的と概要

核物質の相図と状態方程式の理解は原子核物理学の主要課題の一つで あるとともに、コンパクト天体現象や高エネルギー重イオン衝突の理解にも 欠かせない。これらを強い相互作用の基本理論である量子色力学(QCD) から理解する上で、格子 QCD の強結合展開は強力な手法となりうる。 本講義では、強結合格子 QCD の基本的な概念の理解を目的とする。ま た、多彩な現象における QCD 相図と状態方程式の役割について概観す る。

- 1. QCD 相図研究の概観
- 2. 格子上の場の理論 格子 QCD の強結合極限
- ◎ 3. 格子 QCD の強結合展開
- 4. 高密度核物質の有効模型

■ キーワード

格子 QCD、強結合展開、状態方程式、核物質の相図

シラバス(2)

- 教科書及び参考書
 - Quark Gluon Plasma, K.Yagi, T.Hatsuda, Y.Miake (CAMBRIDGE).
 - 格子上の場の理論、青木慎也(シュプリンガー・ジャパン)
- 成績評価方法:レポート提出による
- 学習の到達目標

強結合領域の格子 QCD の基礎を理解し、クォーク・反クォーク間ポテン シャル (Wilson loop)、有効ポテンシャル (自由エネルギー密度)の導出 を行う。

■ 授業の内容・方法と進度予定

スライドによる講義と板書を併用し、修士の学生向けにゆっくり進める。

アウトライン

- 講義(6コマ)
 - ◎ 有限温度の場の理論入門(1コマ目)

◆ 経路積分表示、ユークリッド時空、松原和、自由場の分配関数

- カイラル相転移とNJL 模型(2コマ目)
 - ◆ カイラル対称性、Nambu-Jona-Lasinio (NJL) 模型、カイラル相転移
- 格子上の場の理論入門(3コマ目)
 - ◆格子 QCD、Plaquette 作用、格子 Fermion、リンク積分、
- 強結合格子 QCD(4,5コマ目)
 - ◆ 強結合極限での string tension と有効ポテンシャル、 強結合展開、ポリアコフ・ループ
- 高密度物質のQCD有効模型(6コマ目)
 - ◆ Bag 模型、Quark-Meson 模型、Polyakov loop extended Quark-Meson (PQM) 模型、Polyakov loop extended NJL (PNJL) 模型
- セミナー (1.5 h, 4 コマ目と5コマ目の間)

_ 強結合格子 QCD から物質の相図と状態方程式へ--現状と展望 -

QCD Phase diagram

- Phase transition at high T
 - Lattice MC & RHIC
- High μ transition has rich physics
 - Various phases, CEP, Astrophysical applications, ...
 - Models & Approximations are necessary !
 - Lattice MC works only for small μ (Tayler, AC, DOS, Canonical, ...) or in the Strong Coupling Limit(SCL) (MDP) Karsch, Mutter ('89), de Forcrand, Fromm ('09)
 - Eff. Models: NJL, PNJL, PLSM,
 - Approximations: Large Nc, Strong Coupling, ...

Field Theory at Finite T

経路積分

- 量子力学での経路積分 (Path integral)
 - 時刻 t_i で位置 q_i にいた粒子が時刻 t_f で位置 q_f に到着する振幅 $S_{fi} = \langle q_f, t_f | \exp[-i\hat{H}(t_f t_i)] | q_i, t_i \rangle = \int Dq \exp(iS[q])$ $S[q] = \int_{q(t_i) = q_i, q(t_f) = q_f} dt L(q, \dot{q})$

経路 q(t) についての和 \rightarrow 経路積分

● 特徴

◆ 演算子の代わりに通常の数(c-数)で表せる。

◆ 作用 S の構成時に正準交換関係を用いることにより「量子論」の性質を取り込 む。

場の理論=各点での場の振幅 φ(x,t) を座標とする量子力学

$$S_{fi} = \langle \Psi_f | \exp[-i\hat{H}(t_f - t_i)] | \Psi_i \rangle = \int D\phi \exp(iS[\phi])$$

$$S[\phi] = \int_{\Psi(t_i) = \Psi_i, \Psi(t_f) = \Psi_f} d^4 x L(\phi, \partial_\mu \phi)$$

分配関数とユークリッド化

■ 分配関数

$$Z = \sum_{n} \exp(-E_{n}/T) = \sum_{n} \langle n | \exp[-\hat{H}/T] | n \rangle$$

$$= \sum_{n} \langle n | \exp[-i\hat{H}(t_{f}-t_{i})] | n \rangle_{t_{f}-t_{i}=-i/T} = \int D\phi \exp(-S_{E}[\phi])$$

$$S_{E}[\phi] = \int_{0}^{\beta} d\tau d^{3}x L_{E}(\phi, \partial_{i}\phi, \partial_{\tau}\phi) |_{\phi(x,\beta)=\phi(x,0)}$$

$$L_{E}(\phi, \partial_{i}\phi, \partial_{\tau}\phi) = -L(\phi, \partial_{i}\phi, i\partial_{\tau}\phi)$$

$$t = -i\tau, \quad \partial_{\tau} = -i\partial_{t}, \beta = 1/T$$

$$iS = i \int_{0}^{-i\beta} dt \int d^{3}x L = \int_{0}^{\beta} d\tau d^{3}x L = -\int_{0}^{\beta} d\tau d^{3}x L_{E}$$

- 統計力学の分配関数は虚時間発展の振幅の和である。
- 全ての状態について和をとるので、 τ=0, β で周期境界条件をつけて
 任意の φ(x,t) について足し合わせる。

Example: Scalar Field

Lagrangian density

$$L = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - U(\phi)$$

Euler-Lagrange equation (principle of least action)

$$\partial_{\mu} \left[\frac{\partial L}{\partial (\partial_{\mu} \phi)} \right] - \frac{\partial L}{\partial \phi} = 0 \quad \rightarrow \quad \partial_{\mu} \partial^{\mu} \phi + m^{2} \phi + \frac{\partial U}{\partial \phi} = 0 \, (\text{Klein-Gordon eq.})$$

Euclidean Lagrangian

• Euclid 化のルール
$$t = -i\tau, x_4 = \tau, g_{\mu\nu} = (1,1,1,1), L_E = -L$$

 $L_E = \frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi + \frac{1}{2} m^2 \phi^2 + U(\phi)$

→ 相互作用がない場合に実際に経路積分してみましょう。

Partition Func. of Free Scalar Field

- 自由スカラー場の分配関数
 - 有限のサイズの箱(体積 V)の中で自由スカラー場(U=0)を考える

● フーリエ変換

$$\phi(\tau, \mathbf{x}) = \frac{1}{\sqrt{V/T}} \sum_{n, \mathbf{k}} \exp(-i\omega_n \tau + i\mathbf{k} \cdot \mathbf{x}) \phi_n(\mathbf{k})$$

Periodic boudnary condition $\omega_n = 2\pi nT$, $k_i = 2\pi n_i/L$

Euclidean action
$$S_E = \frac{1}{2} \sum_{n, k} (\omega_n^2 + k^2 + m^2) \phi_n^2(k)$$

 フーリエ変換はユニタリー変換だから、 積分の測度は変わらない。(高々定数倍)

$$D\phi = N \prod_{n, k} d\phi_n(k)$$

● ガウス積分 → 分配関数

$$Z = \int D\phi e^{-S_E} = N \prod_{n, k} \sqrt{2\pi} \left[\omega_n^2 + k^2 + m^2 \right]$$

強結合領域の格子 QCD とクォーク物質の相図(大西)

1/T

-1/2

Partition Func. of Free Scalar Field (cont.)

- 自由エネルギー $\Omega = -T \log Z = \frac{1}{2} \sum_{k} \left[T \sum_{n} \log(\omega_{n}^{2} + \frac{k^{2} + m^{2}}{E_{k}^{2}}) \right] + \text{const.}$ $= \frac{1}{2} \sum_{k} I(E_{k}, T) + \text{const.}$
- 本原和 (Matsubara Frequency summation)

$$\sum_{n} \frac{1}{a^{2} + \overline{n}^{2}} = \frac{\pi}{2a} \times \begin{cases} \coth(\pi a/2) & (\overline{n} = 2n) \\ \tanh(\pi a/2) & (\overline{n} = 2n+1) \end{cases}$$
$$\frac{\partial I(E_{k}, T)}{\partial E_{k}} = \sum_{n} \frac{2E_{k}}{\omega_{n}^{2} + E_{k}^{2}} = \cdots = \frac{1 + \exp(-E_{k}/T)}{1 - \exp(-E_{k}/T)}$$
$$I(E_{k}, T) = E_{k} + 2T \log(1 - \exp(-E_{k}/T)) + \text{const.}$$

Partition Func. of Free Scalar Field (cont.)

熱的励起

自由エネルギー(グランド・ポテンシャル)

$$\Omega = \sum_{k} \left\{ \frac{E_{k}}{2} + T \log(1 - e^{-E_{k}/T}) \right\} + \text{const.}$$
$$= V \int \frac{d^{3}k}{(2\pi)^{3}} \left[\frac{E_{k}}{2} + T \log(1 - e^{-E_{k}/T}) \right]$$

ゼロ点エネルギー (ħω/2)

ゼロ点エネルギー部分を無視して部分積分すると、 通常の圧力を得る。

 $P = -\Omega/V = \int \frac{d^3k}{(2\pi)^3} \frac{k \cdot v}{3} \frac{e^{-E_k/T}}{1 - e^{-E_k/T}} \quad \left(v = \frac{\partial E_k}{\partial k}\right)$

場の理論 \rightarrow *Euclid* 化 + *Imag. Time* \rightarrow 統計力学

Appendix: Matsubara Frequency Summation

• Contour integral technique

$$S = T \sum_{n} g(\omega_{n} = 2\pi n T, \pi(2n+1)T)$$

$$= \pm \int_{C_{1}+C_{2}} \frac{dz}{2\pi} \frac{g(z)}{e^{i\beta z} \mp 1} = \mp i \sum_{\omega_{0}} \frac{\operatorname{Res} g(\omega_{0})}{e^{i\beta\omega_{0}} \mp 1}$$
(g: meromorphic (有理型),
no pole on real axis,
decreases faster than 1/\omega at $\omega \to \infty$)
• Applicable to more general cases !
• Anti-periodic condition \to Fermi-Dirac dist.
• Example: $g(\omega)=1/(\omega^{2}+E^{2})$
 $\to \omega_{0}=\pm iE$, Res $g=\pm 1/2iE$
 $S=\frac{1}{2E} \frac{e^{\beta E}\pm 1}{e^{\beta E}\mp 1}$

ORETICAL PHYSICS

有限温度の場の理論 Short Summary

- 量子力学・場の理論
 - 経路積分によって通常の数(c-数)による記述が可能。
 - ただし、全ての経路の足し合わせが必要。
- 統計力学·分配関数
 - 虚時間による定式化により、分配関数が経路積分で表現できる。
 - ユークリッド化することにより、時間と空間を同様に扱える。
 ただし、(虚)時間 τ(=it)の範囲には制限がつく。(0 ≤ τ ≤ β)
 - 今 記 関 数 は す べ て の 状態 で の 期待値 の 和 → $\tau=0, \beta$ で 周 期 境 界 条 件 → 松 原 振 動 数 $\omega_n = 2 \pi n T$ (フェルミオンの 場合には 反 周 期 境 界 条 件、 $\omega_n = 2 \pi (n + 1/2) T$)
- 自由スカラー場の分配関数

◎ 松原振動数についての和 → ゼロ点のエネルギー + 熱的部分

- 勉強すべきこと
 - グリーン関数、摂動論、Hard Thermal Loop、Debye 遮蔽、...

アウトライン

- 講義(6コマ)
 - 有限温度の場の理論入門(1コマ目)
 - ◆ 経路積分表示、ユークリッド時空、松原和、自由場の分配関数
 - カイラル相転移とNJL 模型(2コマ目)
 - ◆ カイラル対称性、Nambu-Jona-Lasinio (NJL) 模型、カイラル相転移
 - 格子上の場の理論入門(3コマ目)
 - ◆格子 QCD、Plaquette 作用、格子 Fermion、リンク積分、
 - 強結合格子 QCD(4,5コマ目)
 - ◆ 強結合極限での string tension と有効ポテンシャル、 強結合展開、ポリアコフ・ループ
 - 高密度物質のQCD有効模型(6コマ目)
 - ◆ Bag 模型、Quark-Meson 模型、Polyakov loop extended Quark-Meson (PQM) 模型、Polyakov loop extended NJL (PNJL) 模型
- セミナー (1.5 h, 4 コマ目と5コマ目の間)

・ 強結合格子 QCD から物質の相図と状態方程式へ-- 現状と展望 -

Quantum Chromodynamics (QCD)

notation: Yagi, Hatsuda, Miake

$$L = \overline{q} (i \gamma^{\mu} D_{\mu} - m) q - \frac{1}{2} \operatorname{tr} F_{\mu\nu} F^{\mu\nu}$$

$$D_{\mu} = \partial_{\mu} + i g A_{\mu} \quad \text{(Covariant derivative)}$$

$$F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - i g [A_{\mu}, A_{\nu}] = \frac{-i}{g} [D_{\mu}, D_{\nu}] \quad \text{(Field strength)}$$

$$A_{\mu} = A_{\mu}^{a} t^{a} \quad (t^{a} = \operatorname{SU}(3) \operatorname{generator}, [t^{a}, t^{b}] = i f_{abc} t^{c}, \operatorname{tr}(t^{a} t^{b}) = \frac{1}{2} \delta_{ab})$$

Gauge transformation

QCD Lagrangian

$$q(x) \to V(x)q(x), \quad g A_{\mu}(x) \to V(x)(g A_{\mu}(x) - i \partial_{\mu})V^{+}(x)$$

$$F_{\mu\nu}(x) \to V(x)F_{\mu\nu}V^{+}(x), \quad D_{\mu}(x) \to V(x)D_{\mu}(x)V^{+}(x)$$

Chiral Symmetry

Chiral transformation = indep. rotation of left- and right-handed quarks

$$q_{L} = \frac{1}{2} (1 - \gamma_{5}) q \rightarrow q'_{L} = V_{L} q_{L}, \quad q_{R} = \frac{1}{2} (1 + \gamma_{5}) q \rightarrow q'_{R} = V_{R} q_{R}$$

$${}^{t} q = (u, d, s, ...), \quad V_{L,R} \in SU(N_{f})$$

axial-vector transformation

$$q \rightarrow \exp\left(-\frac{i}{2}\lambda^{j}\theta^{j}\gamma_{5}\right)q = V_{A}q$$

QCD Lagrangian is invariant under chiral transformation when quarks are massless.

$$L_{q} = \overline{q} (i \gamma^{\mu} D_{\mu} - m) q$$

$$\rightarrow q^{+} V_{A}^{+} \gamma^{0} (i \gamma^{\mu} D_{\mu} - m) V_{A} q = \overline{q} (i \gamma^{\mu} D_{\mu} - V_{A} m V_{A}) q$$

$$\delta L_{q} \simeq \frac{1}{2} \overline{q} i \gamma_{5} \{\lambda^{j} \theta^{j}, m\} q \rightarrow 0 \quad (m \rightarrow 0)$$

Chiral Symmetry (cont.)

Chiral transformation of hadrons (SU(2),)

$$S = \overline{q} q \quad (\text{Scalar}), \quad P^{a} = \overline{q} i \gamma_{5} \tau^{a} q \quad (\text{Pseudo scalar})$$

$$\delta q = -\frac{i}{2} \theta^{j} \lambda^{j} \gamma_{5} q, \quad \delta \overline{q} = -\frac{i}{2} \overline{q} \theta^{j} \lambda^{j} \gamma_{5} \quad (\text{infinitesimal transf.})$$

$$S \rightarrow S' = S - \theta^{a} P^{a}, \quad P^{a} \rightarrow P'^{a} = P^{a} + \theta^{a} S$$

- \rightarrow Scalar and Pseudo scalar mixes under chiral transf.
- P^a の θ^{a} 方向の成分を P、 θ^{a} ベクトルの大きさを θ とすると、 chiral transf. は (S, P) 空間での回転 $\begin{pmatrix} S' \\ P' \end{pmatrix} = \begin{pmatrix} 1 & -\theta \\ \theta & 1 \end{pmatrix} \begin{pmatrix} S \\ P \end{pmatrix} \rightarrow S^{2} + P^{2} = \text{const. (chiral circle)}$
- ■「演算子」~「粒子」と考えると、σ(J^π=0⁺)とπ(J^π=0⁻)の質量は縮退 するはずだが、軽いスカラー中間子は存在しない。 →対称性の自発的破れ

sigma model

Gell-Mann, Levy ('60) Chiral symmetric Lagrangian $L = \frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \boldsymbol{\pi} \cdot \partial^{\mu} \boldsymbol{\pi} \right) - U(\sigma, \boldsymbol{\pi})$ Wigner $U(\sigma, \boldsymbol{\pi}) = \frac{\lambda}{4} (\sigma^2 + \boldsymbol{\pi}^2 - f^2)^2$ In Nuclei(?) Nambu Invariant under chiral transf. 3 $\delta \sigma = -\theta \cdot \pi$. $\delta \pi = \theta \sigma$ π \bullet σ and π masses σ $f^2 < 0 \rightarrow m_{\sigma}^2 = m_{\pi}^2 = -\lambda f^2$ $f^2 > 0 \rightarrow \langle \sigma \rangle = f$ $U(\sigma, \pi) = \frac{1}{2} m_{\sigma}^{2} \varphi^{2} + \frac{1}{2} \times 0 \times \pi^{2} + O((\varphi, \pi)^{4}) \quad (\varphi = \sigma - f)$

→ When a member condensates, their masses split, and massless modes appear !

Nambu-Jona-Lasinio (NJL) model

NJL Lagrangian $L = \overline{q} (i \gamma^{\mu} \partial_{\mu} - m) q + \frac{G^{2}}{2 \Lambda^{2}} [(\overline{q} q)^{2} + (\overline{q} i \gamma_{5} \tau q)^{2}]$

- QCD において quark の高運動量成分、 gluon を積分
- → QCD の対称性を保った quark の有効理論 (m=0 で chiral sym. をもつ)
 S=qq, P=qiy5τq
 - $\rightarrow S^2 + \mathbf{P}^2 = \text{invariant under chiral transf.}$

Euclidean

$$(x_{\mu})_{E} = (\tau = it, \mathbf{x}), \quad (\gamma_{\mu})_{E} = (\gamma_{4} = i\gamma^{0}, \mathbf{y})$$
$$L_{E} = \overline{q} (-i\gamma_{\mu}\partial_{\mu} + m)q - \frac{G^{2}}{2\Lambda^{2}} \left[(\overline{q}q)^{2} + (\overline{q}i\gamma_{5}\tau q)^{2} \right]$$

Nambu, Jona-Lasinio ('61), Hatsuda, Kunihiro ('94)

NJL model: Partition Function

- Bosonization (Hubbard-Stratonovich transf.) $-\frac{G^{2}}{2\Lambda^{2}} \Big[(\bar{q}q)^{2} + (\bar{q}i\gamma_{5}\tau q)^{2} \Big] \rightarrow \frac{\Lambda^{2}}{2} (\sigma^{2} + \pi^{2}) + G \bar{q} (\underbrace{\sigma + i\gamma_{5}\tau \cdot \pi}_{\Sigma}) q$
- Effective Action

$$S_{\text{eff}}(\Sigma;T) = -\log\det D + \int d^4x \frac{\Lambda^2}{2} \left[\sigma^2(x) + \boldsymbol{\pi}^2(x)\right]$$

経路積分において、フェルミオンは反可換な Grassmann 数

Appendix: Bosonization & Grassman Integral

Bosonization (Hubbard-Stratonovich transf.)

$$\exp\left[\frac{G^2 S^2}{2\Lambda^2}\right] = \int d\sigma \exp\left[-\frac{\Lambda^2}{2}\left(\sigma - \frac{GS}{\Lambda^2}\right)^2 + \frac{G^2 S^2}{2\Lambda^2}\right]$$
$$\exp\left[\frac{G^2 (P^a)^2}{2\Lambda^2}\right] = \int d\pi^a \exp\left[-\frac{\Lambda^2}{2}\left(\pi^a - \frac{GP^a}{\Lambda^2}\right)^2 + \frac{G^2 (P^a)^2}{2\Lambda^2}\right]$$

Grassman number

$$\int dX \cdot 1 = \text{anti-comm. constant} = 0 \quad , \quad \int dX \cdot X = \text{comm. constant} \equiv 1$$
$$\int dX d\bar{X} \exp[\bar{X}AX] = \int dX d\bar{X} \frac{1}{N!} (\bar{X}AX)^N = \dots = \det A$$
$$= \exp[-(-\log \det A)]$$

Bi-linear Fermion action leads to -log(det A) effective action

Fermion Determinant with Mean Field Approximation

■ Fermion determinant をいかに計算するか?
→ 平均場近似 +Fourier 変換により、解析的な計算が可能

Mean field approx. $\Sigma(x) = \sigma = \text{const.}$

Fourier transf.

$$q(x) = \frac{1}{\sqrt{V/T}} \sum_{n, k} \exp(-i\omega_n \tau + i k \cdot x) q_n(k)$$

Fermion matrix は対角的となる。

$$D = -i \mathbf{y} \cdot \nabla -i \gamma_4 \partial_\tau + M = \mathbf{y} \cdot \mathbf{k} - \gamma_4 \omega + M = \mathbf{y} \cdot \mathbf{k} - i \gamma_0 \omega + M$$
$$= \begin{pmatrix} -i \omega + M & \mathbf{k} \cdot \boldsymbol{\sigma} \\ -\mathbf{k} \cdot \boldsymbol{\sigma} & i \omega + M \end{pmatrix}$$
$$\det D = \prod_{n, \mathbf{k}} (\omega_n^2 + \mathbf{k}^2 + M^2)^{d_f/2} \quad (d_f = 4N_c N_f = \text{Fermion d.o.f.})$$

$$\to F_{\rm eff} = -\Omega/V = -\frac{T}{V} \log Z = -\frac{T}{V} \sum_{n, k} \log (\omega_n^2 + k^2 + M^2)^{d_f/2} + \frac{\Lambda^2}{2} \sigma^2$$

Effective potential of NJL model

■ 松原振動和 → 有効ポテンシャル

$$F_{\rm eff} = \Omega/V = -d_f \int \frac{d^3k}{(2\pi)^3} \left[\frac{E_k}{2} + T \log(1 + e^{-E_k/T}) \right] + \frac{\Lambda^2}{2} \sigma^2$$

ゼロ点エネルギー + クォークの熱励起部分 + 補助場

■ 真空 (T=0, µ=0) での有効ポテンシャル (chiral limit, m=0)

$$F_{\text{eff}} = -\frac{d_f}{2} \underbrace{\int_{\Lambda}^{\Lambda} \frac{d^3 k}{(2\pi)^3} E_k}_{\Lambda^4 I(M/\Lambda)} + \frac{\Lambda^2}{2} \sigma^2 = \Lambda^4 \left[-\frac{d_f}{2} I(x) + \frac{x^2}{2G^2} \right] (x = M/\Lambda)$$

$$\frac{F_{\text{eff}}}{\Lambda^4} = -\frac{d_f}{16\pi^2} + \frac{x^2}{2} \left[\frac{1}{G^2} - \frac{1}{G_c^2} \right] + O(x^4 \log x) (G_c^2 = 8\pi^2/d_f)$$

$$G > G_c \text{ Observed States} 2 \chi O (F_c^2) = 4 \log \frac{1 + \sqrt{1 + x^2}}{x} = \frac{1}{8\pi^2} \left[\frac{1 + x^2 + \frac{1}{8}x^4 \left(1 + 4\log \frac{x}{2}\right) + O(x^6)}{x} \right]$$

Spontaneous breaking of chiral symmetry

F_{eff} が最小になる σ が実現される (Gap equation) $\frac{1}{\Lambda^4} \frac{\partial F_{eff}}{\partial x} = -\frac{d_f}{2} \frac{dI(x)}{dx} + \frac{x}{G^2} = 0$

 $G>G_{c}$ のとき有限の $\sigma(\sim q^{bar}q)$ の解がエネルギー最小状態を与える

quark間の引力が十分に強ければ、 $\sigma(\sim q^{bar}q)$ が凝縮し、 構成子クォークの質量を生み出す。(Nambu, Jona-Lasinio ('61))

Chiral Transition at Finite T

Effective potential at finite *T* **in NJL**

$$\frac{F_{\text{eff}}}{\Lambda^{4}} = -\frac{d_{f}}{2}I(x) - \frac{d_{f}}{\Lambda^{4}}P(M;T) + \frac{x^{2}}{2G^{2}}$$

$$= -\frac{d_{f}}{16\pi^{2}} - \frac{d_{f}\pi^{2}}{90}\frac{7}{8}\left(\frac{T}{\Lambda}\right)^{4} + \frac{x^{2}}{2}\left[\frac{1}{G^{2}} - \frac{1}{G_{c}^{2}}\left(1 - \frac{\pi^{2}}{3}\left(\frac{T}{\Lambda}\right)^{2}\right)\right] + O(x^{4}\log x)$$
Stefan-Boltzmann
$$P(M;T) = \int \frac{d^{3}k}{(2\pi)^{3}}\frac{k^{2}}{3E}\frac{1}{\exp(E/T) + 1}$$

$$\Rightarrow \mathbf{T} < 3^{1/2}\Lambda/\pi \text{ O}$$
範囲で、
カイラル相転移が起こるはず

有限温度での
カイラル相転移を示唆

$$\mathbf{F}_{cff}$$

カイラル相転移とNJL 模型 Short Summary

- カイラル対称性
 - クォーク質量が小さいときに QCD がもつ対称性
 - 自発的なカイラル対称性の破れがハドロン質量を生み出す。
- 南部 ヨナラシニョ模型 (NJL)
 - クォーク・反クォークの引力が強い場合には、クォーク・反クォーク対 (q^{bar}q) が真空で凝縮(カイラル凝縮)して、構成子クォークの質量を 生み出す。
 - 有限温度ではクォークの熱励起効果により凝縮が弱められ、ある温度で凝縮が消える(カイラル対称性の回復)。
- 技術的な部分
 - 経路積分において Fermion は反可換な Grassman 数で表す。
 (Fermion determinant,反周期境界条件)
 - クォーク間の相互作用のボソン化による取扱い (Hubbard-Stratonovich transf.)

Appendix: Finite µ

- 有限密度の場合に、分配関数はどう変わるか?
- Example: Relativistic Mean Field (RMF)

$$L = \overline{\psi} (i \gamma^{\mu} \partial_{\mu} - m - \Sigma) \psi + L_{\text{meson}} (\Phi) \quad (\Phi = \sigma, \omega, \rho)$$

$$\Sigma = g_{\sigma} \sigma + \gamma^{0} (g_{\omega} \omega^{0} + g_{\rho} \rho^{0} \tau)$$

Euclid 化+化学ポテンシャルの導入
$$Z = \int D\psi D\bar{\psi} D\Phi \exp\left[-\int d^{4}x(L-\mu\psi^{+}\psi)\right]$$

$$= \int D\psi D\bar{\psi} D\Phi \exp\left[-\int d^{4}x\{\bar{\psi} D\psi + L_{meson}(\Phi)\}\right]$$

$$= \int D\Phi \exp\left[-S_{eff}(\Phi;T,\mu)\right]$$

$$D = -i\gamma\partial - \mu\gamma^{0} + M + \Sigma$$

┛ 有効作用

$$S_{\text{eff}} = S_{\text{eff}}^{(F)} + S_{\text{meson}} = -\sum_{n, k} \log \det D_{n, k} + \int d^4 x L_{\text{meson}}$$

Appendix: Finite µ (cont.)

■ 一様な場を仮定 → Fourier 変換によりDをブロック対角化

$$D_{n,k} = \gamma^{0} (-i \omega_{n} - (\mu - V^{0})) + \gamma \cdot k + M + g_{\sigma} \sigma$$

$$\rightarrow \det D = \left[(\omega_{n} + i \mu^{*})^{2} + E^{*2} \right]^{2}$$

$$\mu^{*} = \mu - g_{\omega} \omega^{0} - g_{\rho} \rho^{0} \tau, \quad E^{*} = \sqrt{k^{2} + M^{*2}}, \quad M^{*} = M + g_{\sigma} \sigma$$

■ 松原振動数和を実行

$$F_{\text{eff}}^{(F)} = -\frac{d_f}{2} \int \frac{d^3 k}{(2\pi)^3} \Big[E^* + T \log \left(1 + e^{-(E^* - \mu^*)/T} \right) + T \log \left(1 + e^{-(E^* + \mu^*)/T} \right) \Big]$$

■ 温度0の場合
 ゼロ点 粒子(核子)
 反粒子(反核子)

$$F_{\text{eff}}^{(F)} = -\frac{d_f}{2} \int^{\Lambda} \frac{d^3 k}{(2\pi)^3} E^* + d_N \int^{k_F} \frac{d^3 k}{(2\pi)^3} E^* - \mu^* \rho_B \quad (d_N = d_f/2)$$

ゼロ点エネルギーは核子のループから現れる →通常 RMF では無視

アウトライン

- 講義(6コマ)
 - 有限温度の場の理論入門(1コマ目)
 - ◆ 経路積分表示、ユークリッド時空、松原和、自由場の分配関数
 - カイラル相転移とNJL 模型(2コマ目)
 - ◆ カイラル対称性、Nambu-Jona-Lasinio (NJL) 模型、カイラル相転移

● 格子上の場の理論入門(3コマ目)

- ◆格子 QCD、Plaquette 作用、リンク積分、格子 Fermion
- 強結合格子 QCD(4,5コマ目)
 - ◆ 強結合極限での string tension と有効ポテンシャル、 強結合展開、ポリアコフ・ループ
- 高密度物質のQCD有効模型(6コマ目)
 - ◆ Bag 模型、Quark-Meson 模型、Polyakov loop extended Quark-Meson (PQM) 模型、Polyakov loop extended NJL (PNJL) 模型
- セミナー (1.5 h, 4 コマ目と5コマ目の間)

・ 強結合格子 QCD から物質の相図と状態方程式へ-- 現状と展望 -

格子上の場の理論

- 場の理論=無限自由度
 - 解析的・厳密にとくことは一般には困難 → 数値的に解く
 - 求めたいものは非常に複雑な積分
 →「区分求積」= 有限の格子上で解き、連続極限をとる。

■ スカラー場

● 連続理論 (Euclidean) の作用 (φ⁴理論)

$$S_{\text{cont}} = \int d^4 x \left[\frac{1}{2} \partial_\mu \phi \partial_\mu \phi + \frac{1}{2} m^2 \phi^2 + \frac{1}{4!} \lambda \phi^4 \right]$$

◎ 格子上の作用

- ◆連続極限でS_{cont}に一致
- ◆ S_{cont} とできるだけ同じ対称性を持つ

$$S_{\text{lat}} = -\frac{a^4}{2} \sum_{n,\mu} \phi(n) \frac{\phi(n+\hat{\mu}) + \phi(n-\hat{\mu}) - 2\phi(n)}{a^2} + a^4 \sum_n \left[\frac{1}{2} m^2 \phi^2(n) + \frac{\lambda}{4!} \phi^4(n) \right]$$

強結合領域の格子 QCD とクォーク物質の相図(大西)

Φ

格子上の作用:スカラー場理論 $S_{\text{lat}} = -\frac{a^4}{2} \sum \phi(n) \frac{\phi(n+\hat{\mu}) + \phi(n-\hat{\mu}) - 2\phi(n)}{a^2}$ $+a^{4}\sum\left|\frac{1}{2}m^{2}\phi^{2}(n)+\frac{\lambda}{4!}\phi^{4}(n)\right|$ $n = (n_x, n_y, n_z)$: spacetime point on the lattice

 $\hat{\mu}$: unit vector in the positive μ direction.

a→0の極限で、連続理論の作用と一致 $S_{\text{lat}} \rightarrow a^4 \sum_{n} \left| -\frac{1}{2} \phi(n) \sum_{n} \frac{\partial^2 \phi}{\partial x_n^2} + \frac{m^2}{2} \phi(n)^2 + \frac{\lambda}{4!} \phi(n)^4 \right| + O(a^6)$ $= \int d^4x \left| -\frac{1}{2} \phi(x) \partial^{\mu} \partial_{\mu} \phi(x) + \frac{m^2}{2} \phi(x)^2 + \frac{\lambda}{4!} \phi(x)^4 \right|$

Gauge field

Gauge action (Euclidean)

$$S_{G} = \frac{1}{2g^{2}} \int d^{4}x \operatorname{tr} F_{\mu\nu} F^{\mu\nu}, \quad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}],$$

$$A_{\mu} = A_{\mu}^{a} t^{a} ([t^{a}, t^{b}] = i f_{abc} t^{c}, \operatorname{tr}(t^{a} t^{b}) = \frac{1}{2} \delta_{ab})$$

(経路積分では変数が c 数なので、 $gA \rightarrow A$ とスケール)

Gauge transformation

 $A_{\mu}(x) \to V(x)(A_{\mu}(x) - i\partial_{\mu})V^{+}(x), \quad F_{\mu\nu}(x) \to V(x)F_{\mu\nu}V^{+}(x)$

ゲージ不変性をもつ格子上の作用をどのように作るか? →リンク変数

 $U(x, y) \equiv P \exp\left[i \int_{x}^{y} dz_{\mu} A_{\mu}(z)\right]$ (*P*: path ordered product)

リンク変数は両端の点でのゲージ変換を受ける

 $U(x, y) \rightarrow U'(x, y) = V(x) U(x, y) V^{+}(y)$

強結合領域の格子 QCD とクォーク物質の相図(大西)

X

Appendix: Gauge transformation of U

Proof of U(x,y) \rightarrow V(x)U(x,y)V⁺(y)

(multiply (1+i A Δx) to the right !) By using the gauge transformation of A, $A_{\mu}(x) \rightarrow V(x)(A_{\mu}(x) - i \partial_{\mu})V^{+}(x)$

and the unitarity of V, V(x) V⁺(x)=1, we get

$$\begin{aligned} 1 + iA'_{\mu}(x_{n})\Delta x_{\mu} \\ &= 1 + iV(x_{n})A_{\mu}(x_{n})V^{+}(x_{n})\Delta x_{\mu} + V(x_{n})\partial_{\mu}V^{+}(x_{n})\Delta x_{\mu} \\ &= V(x_{n})V^{+}(x_{n+1}) + iV(x_{n})A_{\mu}(x_{n})V^{+}(x_{n+1})\Delta x_{\mu} + O((\Delta x)^{2}) \\ &= V(x_{n})[1 + iA_{\mu}(x_{n})\Delta x_{\mu}]V^{+}(x_{n+1}) + O((\Delta x)^{2}) \\ &\to U'(x, y) = V(x)U(x, y)V^{+}(y) \end{aligned}$$

 \mathbf{X}_2

 $\mathbf{X} = \mathbf{X}_{\mathbf{A}}$
Gauge action

■ リンク変数

 $U_{n,\mu} \equiv U(n, n+\hat{\mu}) = \exp[ia A_{\mu}(n)] \in SU(N)$

リンク変数は両端の点でのゲージ変換を 受けるので、「閉じた経路」にそって積を とると、その trace はゲージ不変。

$$\prod_{n \in C} U \to V(n) (\prod_{n \in C} U) V^+(n)$$

Plaquette
 Lattice 上で最も小さな loop は
 単位正方形

 $n \to n + \hat{\mu} \to n + \hat{\mu} + \hat{\nu} \to n$ $U_{\mu\nu}(n) \equiv U_{n,\mu} U_{n+\hat{\mu},\nu} U_{n+\nu,\mu}^+ U_{n,\nu}^+$

Gauge action (plaquette action)

 $S_G = \beta$

$$g \sum_{plaq.} \left[1 - \frac{1}{N_c} \operatorname{Re} \operatorname{tr} U_{\mu\nu}(n) \right] \left(\beta_g = 2 N_c / g^2 \right)$$

強結合領域の格子 QCD とクォーク物質の相図(大西)

 $U_{n} = U(n, n+\hat{\mu})$ $n+\hat{\mu}$ n $U_{n,\mu}^+ = U(n + \hat{\mu}, n)$ n $n + \hat{\mu}$ C $\hat{} n + \hat{\mu} + \hat{\nu}$ $U_{\nu}(n + \hat{\mu})$ $U_{\nu}^{+}(n)$ $U_{\mu}(n) \quad n + \hat{\mu}$

37

Appendix: Plaquette and continuum action

-ジ場の格子作用 $n+\hat{\nu} \quad U_{\mu}^{+}(n+\nu)$ $n+\hat{\mu}+\hat{\nu}$ $S_{G} = \beta_{g} \sum_{plaq.} \left[1 - \frac{1}{N_{c}} \operatorname{Re} \operatorname{tr} U_{\mu\nu}(n) \right] \quad U_{\nu}^{+}(n) \quad U_{\nu}(n+\hat{\mu})$ ■ ゲージ場の格子作用 • U(1)(電磁場)の場合: 周積分 = rotation の面積分 $\rightarrow^{\mu} \mathbf{F}_{\mu\nu} \mathbf{F}_{\mu\nu}$ $e^{A}e^{B} = e^{A+B+\frac{1}{2}[A,B]+\cdots}$ 非可換ゲージ場の場合:Hausdorff 公式の利用 $\operatorname{tr} U_{\mu\nu}(x) = \operatorname{tr} e^{ia\{A_{\mu}(x) + A_{\nu}(x+\hat{\mu}) + ia[A_{\mu}, A_{\nu}]/2 + \cdots\}} \times e^{-ia\{A_{\mu}(x+\hat{\nu}) + A_{\nu}(x) - ia[A_{\mu}, A_{\nu}]/2 + \cdots\}}$ $= \operatorname{tr} e^{ia[(A_{\nu}(x+\hat{\mu})-A_{\nu}(x))-(A_{\mu}(x+\hat{\nu})-A_{\mu}(x))+ia[A_{\mu},A_{\nu}]+O(a^{3})]}$ = tr $[1 + ia^2 F_{\mu\nu} + a^4 X_4 - a^4 F_{\mu\nu}^2/2 + O(a^6)]$ $\lim_{a \to 0} S_G = \sum_{n, \mu \neq \nu} \beta_g \operatorname{tr} \left[1 - \frac{a^4}{2} F_{\mu\nu}^2 \right]$ S. Aoki, Text

Link Integral

■ ゲージ場の経路積分

$$Z_{G} = \int \prod_{n,\mu} dU_{n,\mu} \exp(-S_{G}) = \int \prod_{n,\mu} dU_{n,\mu} \exp[\beta_{g} \sum_{P \in \text{plaq.}} \text{tr}(U_{P} + U_{P}^{+})]$$

dU は群上の不変測度(Haar measure)
 → ゲージ変換

 $U_{n,\mu} \rightarrow V(n) U_{n,\mu} V^+(n+\hat{\mu})$

に対して不変な積分の測度が必要

■ リンク積分 SU(N)

● ゲージ不変性のみで、リンク変数の多項式の積分はほぼ決まる。

$$\int dU 1=1 \text{ (normalization)}, \int dU U_{ab}=0$$

$$\int dU U_{ab} U_{ij}^{+} = \frac{1}{N} \delta_{aj} \delta_{bi}$$

$$\int dU U_{ai} U_{bj} U_{ck} = \frac{1}{N!} \varepsilon_{abc} \varepsilon_{ijk} \quad (N=3)$$
TP では、 (M=3)

強結合領域の格子 QCD とクオーク物質の相図

(大西)

Proof of the one-link integral formulae

• LHS=T^{aj}_{bi} とおく。U, U⁺ が LU, U⁺L⁺と変換するようL, L⁺をかける。 LHS= $\int dU (LU)_{ab} (LU)_{ij}^{+} = \int d (LU) (LU)_{ab} (LU)_{ij}^{+} = T_{bi}^{aj}$ RHS= $L_{ac} T_{bi}^{ck} L_{kj}^{+} \rightarrow L T_{bi} = T_{bi} L \rightarrow T_{bi}^{aj} = S_{bi} \delta^{aj}$ 任意の SU(N) の元と交換するので上添字について T は単位行列。 同様に右変換して S も単位行列に比例。

a=j とおいて和をとると、比例係数が 1/N と分かる。

Proof of the one-link integral formulae

$$\int dU U_{ai} U_{bj} U_{ck} = \frac{1}{N!} \varepsilon_{abc} \varepsilon_{ijk} \quad (N=3)$$

- 左辺を T^{abc}_{ijk} とおく。U を左変換。 任意のLに対して不変な3階のテンソルは完全反対称テンソルのみ。 右変換も同様。 $T^{abc}_{ijk} = c \epsilon^{abc} \epsilon_{ijk}$
- 両辺に abc をかけて和をとり、det U=1 を使うと c=1/N!

Wilson Loop

- One link integral formulae の応用として、 強結合領域での Wilson loop の期待値を求めてみます。
- Wilson loop

$$W(C = L \times N_{\tau}) = \operatorname{tr}\left[\prod_{i \in C} U_{i}\right]$$

- 空間方向 L、時間方向 N₁のループにそって、 リンク変数を掛け合わせたもの。
- 意味づけ ある時刻に両端が重いクォークからなり、 しだけ伸びたストリングを作る。
 虚時間 Nr の後に同じ位置で観測する 確率。

 $\langle O_L(N_{\tau})O_L^+(0)\rangle \propto \exp(-V(L)N_{\tau})$ (for large N_{τ}) V(L)=Interquark potential

Wilson loop (cont.)

■ 強結合極限での評価

$$\langle W(C = L \times N_{\tau}) \rangle = \int DU W(C) \exp \left| -\frac{1}{2} \right|$$

- リンク変数が残っていると積分して0。
 → Wilson loop に含まれるすべての リンクを plaquette からのリンクと 組み合わせて消す必要がある。
- 結合が強いとき、できるだけ少ない数の plaq. で消すには、Wilson loop を 平面的に plaq. で埋めればよい。

$$\langle W(C) \rangle = N \left(\frac{1}{g^2 N} \right)^{LN_{\tau}} \rightarrow V(L) = L \log(g^2 N)$$

強結合極限では面積則

→ クォークの閉じ込め

K.G.Wilson, PRD10('74),2445

Strong Coupling Lattice QCD: Pure Gauge

- Quarks are confined in Strong Coupling QCD
 - Strong Coupling Limit (SCL)
 - → Fill Wilson Loop with Min. # of Plaquettes
 - → Area Law (Wilson, 1974)

$$S_{\rm LQCD} = -\frac{1}{g^2} \sum_{\Box} \operatorname{tr} \left[U_{\Box} + U_{\Box}^{\dagger} \right]$$

 Smooth Transition from SCL to pQCD in MC (Creutz, 1980; Munster 1980)

N_t

OQ.

K. G. Wilson, PRD10(1974),2445 M. Creutz, PRD21(1980), 2308. G. Munster, (1980, 1981)

 $= 1/N_{c} g^{2}$

Fermions on the Lattice

Fermion action (Euclidean)

$$S_{q,cont} = \int d^4 x \,\overline{q} \left(-i \gamma_{\mu} D_{\mu} + m\right) q, \quad D_{\mu} = \partial_{\mu} + i A_{\mu}$$

■ 格子上の action → Link 変数の利用

$$S_{F, \text{lat}} = a^{4} \sum_{x} \bar{q}(x) \left[\sum_{\mu} \Gamma_{\mu} \frac{U_{x, \mu} q(x + \hat{\mu}) - U_{x, \mu}^{+} q(x - \hat{\mu})}{2a} + m q(x) \right]$$

■ q, U の変換性からゲージ不変

 $q(x) \to V(x)q(x), \quad U_{x,\mu} \to V(x)U_{x,\mu}V^{+}(x+\hat{\mu})$

◎ 連続極限で S_{q, cont} へ

$$U = 1 + iA_{\mu}a, \quad S_{F, \text{lat}} \to a^{4} \sum_{x} \overline{q}(x) \left[\Gamma_{\mu} \left(\frac{\partial}{\partial x_{\mu}} + iA_{\mu}q \right) + m \right] q(x)$$
$$\Gamma_{\mu} = -i \gamma_{\mu}$$

強結合領域の格子 QCD とクォーク物質の相図(大西)

これ以降、 Γe_{γ} 、 $x_{4} \rightarrow x_{0}$ とします。

Fermions on the Lattice (cont.)

■ 一見よさそうだが、問題点が ... → ダブラー 自由場の場合、Fermion の hopping matrix を Fourier 変換すると $D=i\Gamma_{\mu}\frac{\sin(p_{\mu}a)}{a} (p_{\mu}=2\pi n_{\mu}/La, n_{\mu}=0, 1, ..., L-1)$

(3+1) 次元格子上で、D は 16 回 0 となる。 (p₁=0, π/a)

→ 低エネルギーで現れる Fermion の種類が16倍増える。

■ Nielsen-Ninomiya の定理

「適当な仮定(平行移動不変性、カイラル対称性、局所性、エルミート 性、双線形性)を満たす格子 Fermion にはダブラーが存在する」

■ 解決方法

- Wilson Fermion : a → ∞ でダブラーが無限に重くなるように 2 階微分に 対応する項を加える。(カイラル対称性がない)
- Domain wall Fermion, Overlap Fermion,
- Staggered (Kogut-Susskind) Fermion
 TP V

Staggered Fermion

- **Staggered Fermion**: Spinor 構造・ γ 行列を数因子 η で表せる。 $\chi = \chi_3^{x_3} \chi_2^{x_2} \chi_1^{x_1} \chi_0^{x_0} q$
 - $\rightarrow \overline{q}(x) \gamma_{\mu} q(x+\hat{\mu}) = \overline{X}(x) \gamma_{3}^{x_{3}} \gamma_{2}^{x_{2}} \gamma_{1}^{x_{1}} \gamma_{0}^{x_{0}} \gamma_{\mu} \gamma_{0}^{x_{0}} \cdots \gamma_{\mu}^{x_{\mu+1}} \cdots \gamma_{3}^{x_{3}} \chi(x+\hat{\mu})$ $= \eta_{\mu}(x) \overline{X}(x) \gamma_{3}^{x_{3}} \cdots \gamma_{\mu+1}^{x_{\mu+1}} \gamma_{\mu}^{2x_{\mu}+2} \gamma_{\mu+1}^{x_{\mu+1}} \cdots \gamma_{3}^{x_{3}} \chi(x+\hat{\mu}) = \eta_{\mu}(x) \overline{X}(x) \chi(x+\hat{\mu})$ $\eta_{\mu}(x) = (-1)^{x_{0}+x_{1}+\dots+x_{\mu-1}}$
 - Lattice action with staggered Fermion

$$S_{F} = \frac{1}{2} \sum_{x,\mu} \eta_{\mu}(x) \Big[\bar{X}_{x} U_{x,\mu} X_{x+\hat{\mu}} - \bar{X}_{x+\hat{\mu}} U_{x,\mu}^{+} X_{x} \Big] + \sum_{x} m \bar{X}_{x} X_{x}$$

Fermion の 4 成分が全て等価。1 成分のみを考えてよい。 → 16 個のダブラーが、(Dirac Fermion で)4 つのダブラーとなる。

• カイラル変換: χ, χ^{bar} について同じ、隣り合った χ で逆の位相

 $\chi_x \to \exp(i\theta \varepsilon(x))\chi_x, \ \bar{\chi}_x \to \exp(i\theta \varepsilon(x))\bar{\chi}_x, \ \varepsilon(x) = (-1)^{x_0 + x_1 + x_2 + x_3}$ → 厳密なカイラル対称性をもつ

Lattice QCD with staggered Fermion

Lattice QCD action with (unrooted) staggered Fermion

$$S_{LQCD} = S_{F} + S_{G}$$

$$S_{F} = \frac{1}{2} \sum_{x,\mu} \eta_{\mu}(x) \left[\bar{X}_{x} U_{x,\mu} X_{x+\hat{\mu}} - \bar{X}_{x+\hat{\mu}} U_{x,\mu}^{+} X_{x} \right] + \sum_{x} m \bar{X}_{x} X_{x}$$

$$S_{G} = -\frac{1}{g^{2}} \sum_{plaq.} tr \left[U_{P} + U_{P}^{+} \right]$$

- Spinor 構造が simple(無い) → 解析的・数値的な計算が簡単
- *m*=0 (chiral limit) で厳密な chiral 対称性をもつ
 → カイラル相転移の議論が可能
- 連続領域 $(g \rightarrow 0, a \rightarrow 0)$ では $N_f = 4$ だが、有限の *a* ではフレーバー対称性は破れている。
- Chiral anomaly $(U(1)_A)$ については controversial

Monte-Carlo simulation in Lattice QCD

■ 分配関数(or 生成汎関数)

DAPQS

$$S = S_G(U) + \bar{q} D q, \quad Z[J] = \int DU \det D(U) \exp[-S_G(U) + J\hat{O}]$$

$$\rightarrow \langle O \rangle = \frac{\int DU \det D(U) O(U) \exp[-S_G(U)]}{\int DU \det D(U) \exp[-S_G(U)]} = \frac{\delta Z[J]}{\delta J}$$

 Monte-Carlo 法では、通常先に Fermion determinant を評価し、 リンク変数の配位を MC 法で求める。クォークを含む演算子の場合には、 propagator をあらわに評価。

BMW collaboration, Sceience 322(2008)1224

強結合領域の格子 QCD とクォーク物質の相図(大西)

格子上の場の理論 Short Summary

- 格子 QCD
 - リンク変数の導入により、完全なゲージ対称性を保持。
 - グルーオン作用: Plaquette (プラケット) 作用 (or its improved ver.)
 → 連続極限 (a → 0) で連続理論のゲージ作用
 - クォーク作用:リンク変数を用いてゲージ対称性を保てる。
- Monte-Carlo simulation
 - 非摂動論的 QCD を厳密に解く第一原理計算。
 - 大きな成功: クォークの閉じ込め、ハドロン質量、QCD 相転移 (μ=0)
 - カイラル対称性には多少の問題あり
 - ◆ Staggered fermion: Fast, but ugly (N_f =4 → quarter root, anomaly, ...)
 - Wilson fermion: Explicit chiral symmetry breaking at finite a.
 - DW/Overlap fermion: large numerical cost.

■ 有限密度での格子 QCD MC simulation は残された大きな問題。

「大学院生や postdoc に与えてはいけないテーマ」(青木さん)

アウトライン

- 講義(6コマ)
 - 有限温度の場の理論入門(1コマ目)
 - ◆ 経路積分表示、ユークリッド時空、松原和、自由場の分配関数
 - カイラル相転移とNJL 模型(2コマ目)
 - ◆ カイラル対称性、Nambu-Jona-Lasinio (NJL) 模型、カイラル相転移
 - 格子上の場の理論入門(3コマ目)
 - ◆格子 QCD、Plaquette 作用、リンク積分、格子 Fermion
 - 強結合格子 QCD(4,5コマ目)
 - ◆ 強結合極限での string tension と有効ポテンシャル、 強結合展開、ポリアコフ・ループ
 - 高密度物質のQCD 有効模型(6コマ目)
 - ◆ Bag 模型、Quark-Meson 模型、Polyakov loop extended Quark-Meson (PQM) 模型、Polyakov loop extended NJL (PNJL) 模型
- セミナー (1.5 h, 4 コマ目と5コマ目の間)

● 強結合格子 QCD から物質の相図と状態方程式へ--現状と展望 -

強結合領域の格子 QCD とクォーク物質の相図(大西)

Lattice QCD (1)

QCD Lagrangian

$$L = \bar{\psi} (i \gamma^{\mu} D_{\mu} - m_0) \psi - \frac{1}{2} tr(F_{\mu\nu} F^{\mu\nu})$$

 ψ = Quark, *F* = Gluon tensor, m₀ = (small) quark mass

Lattice Action

$$S_{\text{QCD}} = S_G + S_F + m_0 \overline{X} X$$

$$S_{G} = -\frac{1}{g^{2}} \sum_{P=(x, \mu > v)} \operatorname{Tr} \left[U_{P}(x) + U_{P}^{+}(x) \right]$$

$$U_{\nu}^{+} \underbrace{U_{\mu}}_{U_{\mu}}^{+} U_{\nu} \qquad \overbrace{\chi}_{\mu} \underbrace{U_{\mu}}_{\mu} \chi \qquad \overbrace{\chi}_{\mu} \underbrace{U_{\mu}}_{\mu} \chi \qquad \overbrace{\chi}_{\mu} \underbrace{U_{\mu}}_{\mu} \underbrace{\chi}_{\mu} \underbrace{M = \overline{\chi}}_{\chi} \chi \qquad \overbrace{Q \leftarrow \Box}_{\mu} \underbrace{X}_{\mu} \underbrace{U_{\mu}}_{\mu} \underbrace{X}_{\mu} \underbrace{X}_{\mu} \underbrace{U_{\mu}}_{\mu} \underbrace{X}_{\mu} \underbrace{X}$$

$$S_{F} = \frac{1}{2} \sum_{x,\mu} \left[\eta_{\mu}(x) \overline{X}_{x} U_{j}(x) X_{x+\hat{j}} - \eta_{\mu}^{-1}(x) \overline{X}_{x+\hat{j}} U_{j}^{+}(x) X_{x} \right]$$

 $\eta_{\mu}(x) = (-1)^{x_0 + x_1 + \dots + x_{\mu-1}} (\mu > 0), \exp(\mu)(\mu = 0)$

 $\chi = \text{starggered fermion (quark)}$ $U = \text{link variable} \in SU(N_c)$ (gluon),

u = quark chemical potential

Lattice QCD (2)

Full QCD MC Simulation

→ Monte-Carlo Integral of Det (Fermion Matrix) over links (U)

Big Task !

Matrix Size= 4 (spinor) x (Color) x (Space-Time Points) Eigen Values are widely distributed

Complex Weight with finite μ

$$d \,\overline{X} \, dX \, dU \exp(-S_G + \overline{X} \, AX) = \int dU$$

$$4 N_c N_\tau N_s^3$$

Quenched QCD

- Assuming Det = 1 ~ Ignoring Fermion Loops
- Works very well for hadron masses
- Strong Coupling Lattice QCD (g >> 1)
 - Pure gluonic action becomes perturbative

 Approximate but Analytic evaluation of Fermion Det.

Strong Coupling Expansion

- 強結合展開=1/g²での展開= プラケット数での展開
 - 作用の中で、プラケットに 1/g² の因子がつく。
 → 強結合領域 (g>>1) では gluon の hopping が抑えられる。
 - 強結合展開の手順
 - ◆ 展開の次数を与える、
 - ◆ プラケットの(つながった)配位を与える、
 - クォーク作用を展開し、リンク積分後に残るプラケットとクォーク・ホップ (χ^{bar}Uχ)
 の組み合わせを与える、
 - ◆ リンク積分を実行

→ クォークの有効作用(ゼロ温度の取扱い) 空間リンクの積分を実行

→ クォークと時間リンクの有効作用(有限温度の取扱い)

- ◆ 必要に応じてクォーク間相互作用項をボソン化し、 Fermion 行列式を計算、
- ◆時間リンク積分を実行(有限温度の取扱い)、
- ◆ 導入した補助場について平衡条件を解く。

Strong Coupling Limit

- 強結合極限 $(g \rightarrow \infty)$
 - プラケット項が 0 → それぞれのリンクを独立に積分可能 $Z_{x,\mu} \equiv \int DU_{x,\mu} \exp \left\{ -\frac{1}{2} \left[\eta_{\mu} \bar{X}_{x} U_{\mu} X_{x+\hat{\mu}} - \eta_{\mu}^{-1} \bar{X}_{x+\hat{\mu}} U_{\mu}^{+} X_{x} \right] \right\}$

- $= \int DU \left[1 \frac{1}{4} (\bar{\chi}_{x} U_{\mu} \chi_{x+\hat{\mu}}) (\bar{\chi}_{x+\hat{\mu}} U_{\mu}^{+} \chi_{x}) \frac{\eta_{\mu}^{3}}{48} (\bar{\chi}_{x} U_{\mu} \chi_{x+\hat{\mu}})^{3} + \cdots \right]$
- 4 クォーク項 → 2 体力、6 クォーク項 → 3 体力
 → クォーク数の少ない項を選ぶ (1/d 展開)

$$= \left[1 - \frac{1}{4N_c} (\bar{\chi}^a_x \chi^b_{x+\hat{\mu}}) (\bar{\chi}^b_{x+\hat{\mu}} \chi^a_x) + \cdots\right]$$

$$= \begin{bmatrix} 1 + \frac{1}{4N_c} M_x M_{x+\hat{\mu}} + \cdots \end{bmatrix} (M_x = \overline{X}_x X_x)$$
$$\simeq \exp \left[\frac{1}{4N_c} M_x M_{x+\hat{\mu}} + \cdots \right]$$

ンク積分によりハドロンの有効作用へ 強結合領域の格子 QCD とクォーク物質の相図(大西)

Strong Coupling Limit (cont.)

分配関数

$$Z_{SCL} = \int D X D \bar{X} \exp(-S_{eff})$$

$$S_{eff} = m \sum_{x} M_{x} - \frac{1}{4N_{c}} \sum_{x,\mu} M_{x} M_{x+\hat{\mu}} = -\frac{1}{2} \sum_{x,y} M_{x} V_{x,y} M_{y} + m \sum_{x} M_{x}$$

$$V_{x,y} = \frac{1}{4N_{c}} \sum_{\mu} (\delta_{y,x+\hat{\mu}} + \delta_{y,x-\hat{\mu}})$$

Hubbard-Stratonovich transf.(補助場の導入)

$$e^{\frac{1}{2}MVM} = \int D\sigma e^{-\frac{1}{2}(\sigma+M)V(\sigma+M) + \frac{1}{2}MVM} = \int D\sigma e^{-\frac{1}{2}\sigma V\sigma - \sigma VM}$$
$$S_{\text{eff}} = \frac{1}{2}\sum_{x,y}\sigma_{x}V_{x,y}\sigma_{y} + \sum_{x,y}\sigma_{x}V_{x,y}M_{y} + m_{0}\sum_{x}M_{x}$$

■ 平均場近似 σ = const. → Fermion 行列式が定数に。

$$F_{\text{eff}} = \frac{1}{2} b_{\sigma} \sigma^{2} - \frac{T}{V} \log \det(m_{q} \mathbf{1}) = \frac{1}{2} b_{\sigma} \sigma^{2} - N_{c} \log(b_{\sigma} \sigma + m_{0})$$

$$(m_{q} = b_{\sigma} \sigma + m_{0}, b_{\sigma} = (d+1)/2N_{c})$$

TP 通結合領域の格子 QCD とクォーク物質の相図(大西)

SCL-LQCD: Tools (1) --- One-Link Integral

Group Integral Formulae

$$\int dU U_{ab} U_{cd}^{+} = \frac{1}{N_c} \delta_{ad} \delta_{bc}$$
$$\int dU U_{ab} U_{cd} U_{ef} = \frac{1}{6} \epsilon_{ace} \epsilon_{bdf}$$

$$\int dUU_{ab}U_{cd}^{+} = \frac{1}{6}\epsilon_{ace}\epsilon_{bdf}$$

$$(U_{j})^{3}$$

$$(U_{j})^{3}$$

$$(U_{j})^{3}$$

$$(U_{j})^{3}$$

$$\overline{B} = \epsilon \overline{X} \overline{X} \overline{X} / 6 \quad B = \epsilon X X X / 6$$

$$\int dU \exp(-a\overline{X}(x)UX(y) + b\overline{X}(y)U^{+}X(x))$$

= $\int dU \Big[1 - ab\overline{X}(a)^{a}U_{ab}X^{b}(y)\overline{X}^{c}(y)U_{cd}^{+}X^{d}(x) + \cdots \Big]$
= $1 + ab(X\overline{X})(x)(X\overline{X})(y) + \cdots = 1 + abM(x)M(y) + \cdots$
= $\exp[abM(x)M(y) + \cdots]$

Quarks and Gluons \rightarrow One-Link integral \rightarrow Mesonic and Baryonic Composites

SCL-LQCD: Tools (2) --- 1/d Expansion

■ Keep mesonic action to be indep. from spatial dimension d → Higher order terms are suppressed at large d.

$$\sum_{j} (\bar{X} U_{j} X) (\bar{X} U_{j}^{\dagger} X) \rightarrow -\frac{1}{N_{c}} \sum_{j} M(x) M(x + \hat{j}) = O(1)$$
$$\rightarrow M \propto 1/\sqrt{d}, X \propto d^{-1/4}$$

$$\sum_{j} (\bar{X} U_{j} X) (\bar{X} U_{j} X) (\bar{X} U_{j} X) \rightarrow N_{c}! \sum_{j} B(x) B(x + \hat{j}) = O(1/\sqrt{d})$$

$$\sum_{j} (\overline{X} U_{j} X)^{2} (\overline{X} U_{j}^{+} X)^{2} \rightarrow \sum_{j} M^{2}(x) M^{2}(x+\hat{j}) = O(1/d)$$

We can stop the expansion in U, since higher order terms are suppressed !

SCL-LQCD: Tools (3) --- Bosonization

We can reduce the power in χ by introducing bosons

$$\exp\left(\frac{1}{2}M^2\right) = \int d\sigma \exp\left(-\frac{1}{2}\sigma^2 - \sigma M\right)$$

Nuclear MFA:
$$V = -\frac{1}{2}(\bar{\psi}\psi)(\bar{\psi}\psi) \simeq -U(\bar{\psi}\psi) + \frac{1}{2}U^2$$

$$\exp\left[-\frac{1}{2}M^2\right] = \int d\varphi \exp\left[-\frac{1}{2}\varphi^2 - i\varphi M\right]$$

Reduction of the power of \chi \rightarrow **Bi-Linear form in \chi** \rightarrow **Fermion Determinant**

SCL-LQCD: Tools (4) --- Grassman Integral

Bi-linear Fermion action leads to -log(det A) effective action $\int dX \, d\bar{X} \exp[\bar{X} \, AX] = \det A = \exp[-(-\log \det A)]$ $\int dX \cdot 1 = \text{anti-comm. constant} = 0 \quad , \quad \int dX \cdot X = \text{comm. constant} \equiv 1$ $\int dX \, d\bar{X} \exp[\bar{X} \, AX] = \int dX \, d\bar{X} \frac{1}{N!} (\bar{X} \, AX)^N = \cdots = \det A$

Constant $\sigma \rightarrow$ - log σ type potential

Effecitve Potential in SCL-LQCD

Effective potential

$$F_{\rm eff} = \frac{1}{2} b_{\sigma} \sigma^2 - N_c \log(b_{\sigma} \sigma + m_0)$$

ギャップ方程式 (カイラル極限 $m_0=0$)

$$\frac{\partial F_{\text{eff}}}{\partial \sigma} = b_{\sigma} \sigma - \frac{N_c}{\sigma} = 0 \rightarrow \sigma = N_c \sqrt{\frac{2}{d+1}}$$

 強結合極限の簡単な取扱い (1/d 展開、zero T treatment、 平均場近似)において、カイラル対称性が 自発的に破れることが示された。

Kawamoto, Smit, 1981

Strong coupling limit lattice QCD は、 クォークの閉じ込め、カイラル対称性の自発的破れ という非摂動的 QCD の 2 大側面を解析的に説明する

Effective Potential in SCL-LQCD (Zero T)

 $F_{\text{eff}}(\sigma)$

б

Effective Pot. at Zero T

Kawamoto, Smit, 1981 Kluberg-Stern, Morel, Napoly, Petersson, 1981

$$F_{eff}(\sigma) = \frac{1}{2} b_{\sigma} \sigma^2 - N_c \log \sigma$$

Spontaneous Chiral Symmetry breaking at T=0 is naturally explained !

No Phase Transition ?

強結合領域の格子 QCD とクォーク物質の相図(大西)

σ

Strong Coupling Lattice QCD: Finite T treatment

本原振動数和の性質から分かるように、時間方向の境界条件 (Bosonの周期境界条件、Fermionについての反周期境界条件) は大切だが、Zero T treatment では取り入れられない。

Finite T treatment

Damgaard, Kawamoto, Shigemoto, 1984; Bilic et al., 1992; Nishida, '04; Fukushima, '04; Kawamoto, Miura, AO, Ohnuma, '07;

- 時間方向のリンクを残し、反周期境界条件を取り入れてフェルミオン行列式 を評価する。
- 空間リンク積分、ボソン化後の有効作用

$$S_{F}^{(t)} = \frac{1}{2} \sum_{x} \left(e^{\mu} \overline{X}_{x} U_{0}(x) X_{x+\hat{0}} - e^{-\mu} \overline{X}_{x+\hat{0}} U_{0}^{+}(x) X_{x} \right) = \overline{X} V^{(t)} X$$

$$S_{\text{eff}} = \frac{1}{2} \sum_{x,y} \sigma_{x} V_{M}(x,y) \sigma_{y} + \sum_{x,\tau,\tau'} \overline{X}_{x,\tau} \left(\underbrace{V^{(t)} + m_{q}}_{\equiv D} X_{x,\tau'} \right) = \overline{X} V^{(t)} X_{x,\tau'}$$

$$m_q = V_M \sigma + m_0$$

N_xN_f行列の行列式を求める必要がある。

強結合領域の格子 QCD とクォーク物質の相図(大西)

SC-LQCD: Finite T (cont.)

Fermion determinant (Temporal gauge)

For constant σ , X_N is obtained as

$$X_{N} = \exp(E_{q}/T) + (-1)^{N_{\tau}} \exp(-E_{q}/T)$$

$$E_{q} = \operatorname{arcsinh}(m_{q})$$

$$\rightarrow \det D = \frac{\sinh((N_{c}+1)E_{q}/T)}{\sinh(E_{q}/T)} + 2\cosh(N_{c}\mu/T)$$

Effecitve Potential in SCL-LQCD: Finite T treatment

Effective potential Damgaard, Kawamoto, Shigemoto ('84); Faldt, Petersson ('86); Bilic, Karsch, Redlich ('92); Fukushima ('04); Nishida ('04)

$$\begin{split} F_{\text{eff}} &= F_{\text{eff}}^{Aux.} - \frac{T}{V} \log \det D = \frac{1}{2} b_{\sigma} \sigma^2 + V_q(m_q; \mu, T) \\ V_q &= -T \log \left[\frac{\sinh \left((N_c + 1) E_q / T \right)}{\sinh \left(E_q / T \right)} + 2 \cosh \left(N_c \mu / T \right) \right] \\ E_q &= \operatorname{arcsinh}(m_q), \quad m_q = b_{\sigma} \sigma + m_{0,} = b_{\sigma} = d/2 N_c \end{split}$$

- 強結合極限の有限温度の取扱い(1/d 展開、平均場近似)において、
 - ◆ 低温・低密度でカイラル対称性が自発的に破れ、
 - ◆高温 or 高密度で回復する

ことが示された。

Strong coupling limit lattice QCD(Finite T treatment) \rightarrow QCD に基づくQCD 相図研究を可能にした。

Eff. Pot. in SCL-LQCD (Finite T) (cont.)

T/T_c=0,0.2, ... 1.2

1

0.5

-1

0.0 0 -0.5 -0.5

What can we discuss by using \mathbf{F}_{\text{off}}?

- Behavior of F_{eff} at finite T and μ
- Phase diagram

Note: These are the results with staggered fermion !

強結合領域の格子 QCD とクォーク物質の相図(大西)

μ=0

Effective Potential in SCL-LQCD (Time dependence...)

Zero T, no Baryon Kawamoto, Smit, 1981

AWA INSTITUTE FOR

202

$$\mathcal{F}_{eff}^{(0)} = \frac{1}{2} b_{\sigma}^{(0)} \sigma^2 - N_c \log(b_{\sigma}^{(0)} \sigma + m_0)$$

$$\textbf{Zero T, with Baryon}$$

$$Damgaad, Hochberg, Kawamoto, 1985$$

$$\mathcal{F}_{eff}^{(0b)} = \frac{1}{2} b_{\sigma}^{(0)} \sigma^2 + F_{eff}^{(b\mu)}(4m_q^3; T, \mu)$$

$$\textbf{Finite T, no Baryon}$$

$$Fukushima, 2004; Nishida, 2004$$

$$\mathcal{F}_{eff}^{(T)} = \frac{1}{2} b_{\sigma}^{(T)} \sigma^2 + F_{eff}^{(q)}(m_q)$$

$$\textbf{Finite T, with Baryon}$$

$$Kawamoto, Miura, AO. Ohnuma. 2007$$

$$\mathcal{F}_{eff} = \frac{b_{\sigma}}{2} \sigma^2 + F_{eff}^{(q)}(m_q) + \Delta F_{eff}^{(b)}(g_{\sigma}\sigma)$$

$$F_{eff}^{(q)} = -T \log\left(\frac{\sinh((N_c+1)E_q(m_q)/T)}{\sinh(E_q(m_q)/T)} + 2\cosh(N_c\mu/T)\right)$$

強結合領域の格子 QCD とクォーク物質の相図(大西)

Evolution of Phase Diagram

- Phase Diagram "Shape" becomes closer to that of Real World, R=3 μ_c/T_c ~ (6-12)
 - $1985 \rightarrow R=0.79$ (Zero T / Finite T)
 - 1992 \rightarrow R=0.83 (Finite T & μ)
 - 2004 \rightarrow R= 0.99 (Finite T& μ)

• 2007
$$\rightarrow$$
 R=1.34 (Baryon)

T Damgaad, Kawamoto, Finite T
Shigemoto, 1984
$$T_c=1.1$$
 GeV
Conjecture !
Damgaad, Hochberg,
Kawamoto, 1985
 μ_q Finite μ
1985 $\mu_c=290$ MeV

強結合極限格子QCD: Short Summary

Strong coupling limit of lattice QCD (SCL-LQCD)

SCL-LQCD describes "confinement of quarks"

and

"Spontaneous breaking and restoration of chiral symmetry" analytically based on QCD (with staggered fermion).

- しかしながら、多くの問題を孕んでいる。
 - 連続領域で $N_f = 4$ となる staggered Fermion による記述。
 - 有限結合効果は無視。また 1/d 展開の主要項のみ、かつ一様・静的な平均 場近似。
 - 現象論的な立場からは、 $N_c \mu_c / T_c \sim 1$ 程度と小さいことは大きな問題。 (Tc = 200 MeV とすると、 $N_c \mu_c = 200 MeV << M_N$

→ 原子核が作れない。(Baryon mass puzzle))

→ 有限結合効果

集中講義レポート問題

- 単位は出席とレポートで認定します。
 - 2/3 (4コマ) 以上出席した人は1 問以上
 - それ以外の人は2問以上
 - レポート問題を解いて提出してください。〆切は1月14日。
 - ボソン化した NJL 模型の作用から出発して、ゼロ温度(T=0)での有効ポ テンシャルを求めよ。
 - リンク積分を利用して、Wilson ループの期待値を強結合領域で求めよ。強結合極限での結果に加えて、1/g²補正がどのように与えられるか考察せよ。
 - bag 模型状態方程式において相転移が起こる温度を bag constant B を用 いて表せ。ハドロン相は 3 つのパイオンを考え、クォーク・グルーオン相では クォークのフレーバー数を3とする。

Towards the Real Phase Diagram

When we increase "Reality" variable, Phase diagram "Shape" may be approximately explained. Real World: R=3 $\mu_c/T_c \sim (6-12)$ SCL-LQCD: R=0.79-1.34 SC-LQCD with finite β (=6/g²)~5 \rightarrow R ~ 4.5 **Expectation before Calc.** Calc. with $1/g^2$ effects 2nd order Т Strong Coupling Limit NLO(NLO-A) TCP 1st order 1.5 T **Baryonic Effects** 1 Т 0.5 0Q CEP $4 \beta = 2N_c/g^2$ 0.6cross over Fodor-Katz Forcrand-Philipsen MC / Real World Miura, Nakano, AO, Kawamoto ('09) Reality (1/g², m₀, N_f, ...) Kawamoto, Miura, **Gluon Contribution is AO, Ohnuma, 2007** important at High T

強結合領域の格子 QCD とクォーク物質の相図(大西)
YUKAWA INSTITUTE FOR YUKAWA INSTITUTE FOR THEORETICAL PHYSICS

Backup

Effective Potential in SCL-LQCD (Zero T)

QCD Lattice Action (Zero T treatment)

$$S = \sum_{k}^{Kawamoto, Smit, 1981} Strong Coupling Limit
\rightarrow -\frac{1}{2} (\bar{X}X) V_{M} (\bar{X}X) + m_{0} \bar{X}X One-link integral
(1/d expansion*)
\rightarrow \frac{1}{2} \sigma V_{M} \sigma + \bar{X} (V_{M} \sigma + m_{0}) X Bosonization
\rightarrow \frac{1}{2} \sigma V_{M} \sigma - N_{c} \sum_{x} \log(V_{M} \sigma(x) + m_{0}) Fermion
Integral
= L^{d} N_{\tau} \left[\frac{1}{2} b_{\sigma} \sigma^{2} - N_{c} \log(b_{\sigma} \sigma + m_{0}) \right]$$

$$\overline{\chi} \chi \overset{\mathbf{V}_{\mu}}{\overset{\mathbf{V}}{\overset{\mathbf{V}}}}{\overset{\mathbf{V}_{\mu}}{\overset{\mathbf{V}}}}}}}}}}}}}}}}$$

* d = Spatial dim.

Effective Potential

<u></u>

Fermion Matrix = Just a number \rightarrow Simple Logarithmic Effective Potential for σ $V_{\sigma} = \frac{1}{2} b_{\sigma} \sigma^2 - N_c \log(b_{\sigma} \sigma + m_0) \quad (b_{\sigma} = (d+1)/2 N_c)$

Effective Potential in SCL-LQCD (Finite T)

アウトライン

- 講義(6コマ)
 - 有限温度の場の理論入門(1コマ目)
 - ◆ 経路積分表示、ユークリッド時空、松原和、自由場の分配関数
 - カイラル相転移とNJL 模型(2コマ目)
 - ◆ カイラル対称性、Nambu-Jona-Lasinio (NJL) 模型、カイラル相転移
 - 格子上の場の理論入門(3コマ目)
 - ◆格子 QCD、Plaquette 作用、リンク積分、格子 Fermion
 - 強結合格子 QCD(4,5コマ目)
 - ◆ 強結合極限での string tension と有効ポテンシャル、 強結合展開、ポリアコフ・ループ
 - 高密度物質のQCD 有効模型(6コマ目)
 - ◆ Bag 模型、Quark-Meson 模型、Polyakov loop extended Quark-Meson (PQM) 模型、Polyakov loop extended NJL (PNJL) 模型
- セミナー (1.5 h, 4 コマ目と5コマ目の間)

● 強結合格子 QCD から物質の相図と状態方程式へ--現状と展望 -

Finite Coupling and Polyakov loop Effects on the QCD Phase Diagram

QCD Phase diagram

- Phase transition at high T → Lattice MC, RHIC, LHC
- High μ transition has rich physics
 - → Various phases, CEP, Astrophysical applications, ... but Lattice MC has sign problem at finite density.

Experimental & Observational Approaches

- FAIR / Low E prog. of RHIC aim at searching for baryon rich QGP and Critical End Point.
- Neutron Star observation of radius & mass (simultaneously) reveals EOS of dense matter.

el<mark>, <u>Bay</u>més</mark> Guver, arXiv: 1002.3153 [astro-ph.HE]

RHIC

YUKAWA INSTITUTE FOR HEORETICAL PHYSICS

How can we attack QCD phase diagram ?

Lattice QCD Monte-Carlo simulation with some prescriptions

- Taylor expansion, Analytic cont., Reweighting methodd, Canonical ensemble, ...
 - → 符号問題を避ける様々な 方法が提案されている。 but 異なるグループで異なる結果
- Effective models of QCD
 - Nambu-Jona-Lasinio (NJL), Polyakov NJL (PNJL), Random matrix,
 - → MC-LQCD で計算可能な領域や 実験データを再現し、信頼性を 高めた有効模型 but まだ大きな模型依存性

Z.Fodor, S.D.Katz, JHEP 0203, 014

K.Fukushima, PRD77('08)114028.

Another Approach: Strong Coupling Lattice QCD

- 強結合領域ではグルーオンの伝播項は小さい
 - → Plaquette (グルーオンループ)の少ない配位が支配的
 - → 1/g2 の次数を決めて、グルーオンの積分を解析的に実行
- Pure Yang-Mills / 強結合極限での大きな成功
 - ◎ クォークの閉じ込め
 - カイラル対称性の破れと回復
 - MC 計算による相図

Y TP VUKAWA INSTITUTE FOR THEORETICAL PHYSICS

強結合領域の格子 QCD とクォーク物質の相図(大西)

SC-LQCD

MC

Wilson('74), Munster ('81)

Towards the phase diagram in the real world

- Fermion を含む場合、強結合極限 (Strong coupling limit; SCL) では 大きな成功を収めたが ...
 - 強結合極限 $(g \rightarrow \infty)$
 - Staggered fermion (連続領域で $N_f \rightarrow 4$)
 - ◎ 解析的な計算では Large d 近似 (1/d 展開の LO) + 平均場近似
 - Polyakov loop (非閉じ込め相転移の秩序変数)を含まない
 → 非閉じ込め相転移が記述できない
 - バリオン質量問題 ($N_{\mu} \mu_{N} < M_{N}$; 核物質ができる前に相転移)

■ 有限結合効果・ポリアコフループ効果を含む強結合格子 QCD

NLO (1/g²): Miura, Nakano, AO, Kawamoto, PRD80('09),074034. NNLO (1/g⁴): Nakano, Miura, AO, PTP123('10)825. Polyakov loop: Nakano, Miura, AO, arXiv:1009.1518 Miura, Nakano, AO, Kawamoto (LAT10)

→ 現実の QCD 相図の理解に向けた研究の進展

Strong Coupling Lattice QCD

Lattice QCD action

Mesonic composites

$$M_{x} = \overline{X}_{x} X_{x}, \quad V_{x}^{+} = e^{\mu} \overline{X}_{x} U_{0,x} X_{x+\hat{0}}, \quad V_{x}^{-} = e^{-\mu} \overline{X}_{x+\hat{0}} U_{0,x}^{+} X_{x}$$

Effective Action & Effective Potential (free energy density) $Z = \int D[X, \overline{X}, U_{0}, U_{j}] \exp(-S_{LQCD})$ $= \int D[X, \overline{X}, U_{0}] \exp(-S_{SCL}) \langle \exp(-S_{G}) \rangle \qquad (U_{j} \text{ integral})$ $\approx \int D[X, \overline{X}, U_{0}] \exp(-S_{eff}[X, \overline{X}, U_{0}, \Phi_{stat.}]) \qquad (bosonization)$ $\approx \exp(-VF_{eff}(\Phi; T, \mu)/T) \qquad (fermion + U_{0} \text{ integral})$

Finite Coupling Effects

Effective Action with finite coupling corrections Integral of $exp(-S_G)$ over spatial links with $exp(-S_F)$ weight $\rightarrow S_{eff}$

$$S_{\text{eff}} = S_{\text{SCL}} - \log \langle \exp(-S_G) \rangle = S_{\text{SCL}} - \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \langle S_G^n \rangle_c$$

 $<S_{G}^{n}>_{c}=$ Cumulant (connected diagram contr.) *c.f. R.Kubo('62*)

$$S_{\text{eff}} = \frac{1}{2} \sum_{x} (V_{x}^{+} - V_{x}^{-}) - \frac{b_{\sigma}}{2d} \sum_{x,j>0} [MM]_{j,x} \qquad SCL \ (Kawamoto-Smit, \ '81)$$

$$+ \frac{1}{2} \frac{\beta_{\tau}}{2d} \sum_{x,j>0} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} - \frac{1}{2} \frac{\beta_{s}}{d(d-1)} \sum_{x,j>0,k>0,k\neq j} [MMMM]_{jk,x} \qquad NLO \ (Faldt-Petersson, \ '86)$$

$$- \frac{\beta_{\tau\tau}}{2d} \sum_{x,j>0} [W^{+}W^{-} + W^{-}W^{+}]_{j,x} - \frac{\beta_{ss}}{4d(d-1)(d-2)} \sum_{\substack{x,j>0, |k|>0, |l|>0\\ |k|\neq j, |l|\neq |k|}} [MMMM]_{jk,x} [MM]_{j,x+\hat{l}}$$

$$+ \frac{\beta_{\tau s}}{8d(d-1)} \sum_{x,j>0,|k|\neq j} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} \left([MM]_{j,x+\hat{k}} + [MM]_{j,x+\hat{k}+\hat{0}} \right) \qquad NNLO \ (Nakano, Miura, AO, \ '09]$$

Cumulant 展開

$$\left\langle e^{-S_G} \right\rangle = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left\langle S_G^n \right\rangle = \exp\left[\sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \left\langle S_G^n \right\rangle_c\right]$$

Connected diagrams での展開

 $\left\langle S_G^n \right\rangle = \sum_{\text{partition}} \prod_{\alpha} \left\langle S_G^{n_\alpha} \right\rangle_{\epsilon} = \left\langle S_G \right\rangle_c^n + \frac{n!}{2!(n-2)!} \left\langle S_G \right\rangle_c^{n-2} \left\langle S_G^2 \right\rangle_c + \dots + \left\langle S_G^n \right\rangle_c$

● 第一項 → (Volume)ⁿ → exp の肩に乗せると NLO 項

● 最後の項 → (Volume)¹ → 他の項にくらべて小さい
 → 強結合展開 ~ クラスター展開

$$\frac{1}{n!} \langle S_G^n \rangle = \sum_{k_1+2} \sum_{k_2+\dots+n} \frac{1}{k_1! k_2! \cdots k_n!} \langle S_G \rangle^{k_1} \frac{\langle S_G^2 \rangle_c^{k_2}}{2!} \frac{\langle S_G^3 \rangle_c^{k_3}}{3!} \cdots \frac{\langle S_G^n \rangle_c^{k_n}}{n!}$$
$$\langle \exp(S_G^n) \rangle = \sum \frac{1}{k_1! k_2! \cdots k_n!} \langle S_G \rangle^{k_1} \frac{\langle S_G^2 \rangle_c^{k_2}}{2!} \frac{\langle S_G^3 \rangle_c^{k_3}}{3!} \cdots \frac{\langle S_G^n \rangle_c^{k_n}}{n!} = \exp\left[\sum_k \frac{\langle S_G^k \rangle_c}{k!}\right]$$

Finite Coupling Effects (cont.)

- 拡張された Hubbard-Stratonovich (EHS) 変換
 - 異なる Composite の積の分解が可能 Miura, Nakano, AO (09), Miura, Nakano, AO, Kawamoto (09) exp(α A B) = $\int d \varphi d \phi \exp[-\alpha(\varphi^2 - (A+B)\varphi + \phi^2 - i(A-B)\phi)]$ ≈ $\exp[-\alpha(\bar{\psi}\psi - A\psi - \bar{\psi}B)]_{stationary}$
- 有限結合定数効果
 - ・ 波動関数繰り込み定数の変化(時間方向の hopping が変化)
 - 有効クォーク質量の変化 (4 Fermi + 8 Fermi + 12 Fermi)
 - 有効化学ポテンシャルの変化(ベクトル的な平均場)
 - ◎ ベクトル・スカラー結合

Effective Potential in SC-LQCD with Finite Couplings

Effective Potential in NLO/NNLO SC-LQCD

Miura,Nakano,AO,Kawamoto,PRD80('09),074034;Nakano,Miura,AO,PTP123('10)825.

$$F_{\text{eff}} = F_{\text{eff}}^{(X)}(\sigma, \omega_{\tau}) + V_{q}(\tilde{m}_{q}; \tilde{\mu}, T) - N_{c} \log Z_{\chi}$$

$$\sigma \approx \langle M \rangle \text{ (chiral condensate), } \omega_{\tau} \approx -\partial F_{\text{eff}} / \partial \mu = \rho_{q} \text{ (quark number density)}$$

$$\tilde{m}_{q} = \frac{\tilde{b}_{\sigma} \sigma + m_{0}}{Z_{\chi}(1 + 4\beta_{\tau\tau} \varphi_{\tau})} \approx \frac{d}{2N_{c}} \sigma \times \left(1 + \beta_{\sigma\sigma}^{(m)} \sigma^{2} - \beta_{\sigma\omega}^{(m)} \sigma^{2} \omega_{\tau}^{2} + ...\right)$$

$$\delta \mu = \mu - \tilde{\mu} = \log(Z_{+}/Z_{-}) \approx \beta_{\tau} \omega_{\tau} \times \left(1 + \beta_{\omega\sigma}^{(\mu)} \sigma^{2} + ...\right)$$

$$V_{q}(m, \mu, T) = -\frac{T}{L^{d}} \log \left\{ \int D[U_{0}] det(G^{-1}) \right\}$$

$$= -T \log \left[\frac{\sinh((N_{c} + 1) E_{q}(m)/T)}{\sinh(E_{q}(m)/T)} + 2 \cosh(N_{c} \mu/T) \right]$$

$$E_{q}(m) = \operatorname{arcsinh} m \quad (\text{quark excitation energy})$$

NLO/NNLO SC-LQCD $\approx \sigma \omega$ model of quarks non-linear couplings

Polyakov loop effects in SC-LQCD

Polyakov Loop

$$P = \frac{1}{N_c} \operatorname{tr} L, \quad L = T \exp\left[-i \int_0^\beta dx_4 A_4\right] = T \prod_{\tau=1}^{N_\tau} U_0(\tau, \mathbf{x})$$

Order parameter of the deconfinement transition in the heavy quark mass limit.

A.M. Polyakov, PLB72('78),477; L. Susskind, PRD20('79)2610; B. Svetitsky, Phys.Rept.132('86),1.

Interplay between PL and χ cond. is known to be important in effective models

A. Gocksch, M. Ogilvie, PRD31(85)877; K. Fukushima, PLB591('04),277.

Polyakov loop will definitely affect QCD phase transition. \rightarrow Let's evaluate its effects in SC-LQCD

Effective action with Polyakov loop

Polyakov Loop action in the leading order of 1/g²

× N7

After integrating out plaquette action over spatial links, we get

$$\Delta S_p = -\left(\frac{1}{g^2 N_c}\right)^{N_\tau} N_c^2 \sum_{x,j>0} \left[\overline{P}_x P_{x+\hat{j}} + \text{h.c.}\right] \quad (\text{LO in SC expansion})$$

Polyakov loop coupling with fermion $Z \sim \prod_{x} \int dL(x) e^{-\Delta S_{p}} \det_{c} \left[1 + L e^{-(E_{q} - \tilde{\mu})/T} \right] \left[1 + L^{+} e^{-(E_{q} + \tilde{\mu})/T} \right]$ $= \prod_{x} \int dP \, d\bar{P} \, H(P, \bar{P}) e^{-\Delta S_{p}} \left[1 + N_{c} P \, e^{-(E_{q} - \tilde{\mu})/T} + N_{c} \bar{P} \, e^{-2(E_{q} - \tilde{\mu})/T} + e^{-3(E_{q} - \tilde{\mu})/T} \right]$ $\times \left[1 + N_{c} \bar{P} \, e^{-(E_{q} + \tilde{\mu})/T} + N_{c} P \, e^{-2(E_{q} + \tilde{\mu})/T} + e^{-3(E_{q} - \tilde{\mu})/T} \right]$

Finite Polyakov loop l enables one- and two-quark excitation

Polyakov loop とクオークの結合

化学ポテンシャル・グルーオンと Fermion の結合 $\bar{q} \gamma^0 (igA_0 + \mu)q$

■ ボルツマン・ファクターへの影響

$$\begin{split} L &= \operatorname{diag}\left(\exp\left(i\,\theta_{1}\right), \exp\left(i\,\theta_{2}\right), \exp\left(i\,\theta_{3}\right)\right) \quad \left(\theta_{1} + \theta_{2} + \theta_{3} = 0\right) \\ &\rightarrow \operatorname{det}\left(1 + L\exp\left(-(E - \mu)/T\right)\right) \\ &= \int_{k=1}^{3} \left[1 + \exp\left(-X + i\,\theta_{k}\right)\right] = 1 + N_{c} l e^{-X} + N_{c} \overline{l} e^{-2X} + e^{-3X} \\ &\quad \left(X = (E - \mu)/T\right) \end{split}$$

→ 有限のポリアコフ・ループは1クォーク、2クォークの励起を許す

Effective potential with Polyakov loop

Haar measure method

Replace the Polyakov loop P with its representative value l, and Haar measure is included in the potential.

$$\begin{split} \mathcal{F}_{\mathbf{q}} &= -N_{c}E - T\log\left[1 + N_{c}\ell e^{-(E-\tilde{\mu})/T} + N_{c}\bar{\ell}e^{-2(E-\tilde{\mu})/T} + e^{-3(E-\tilde{\mu})/T}\right] \\ &- T\log\left[1 + N_{c}\bar{\ell}e^{-(E+\tilde{\mu})/T} + N_{c}\ell e^{-2(E+\tilde{\mu})/T} + e^{-3(E+\tilde{\mu})/T}\right] - N_{c}\log Z_{\chi} ,\\ U_{g} &= -2T\beta_{p}\bar{\ell}\ell - T\log\left[1 - 6\ell\bar{\ell} + 4\left(\ell^{3} + \bar{\ell}^{3}\right) - 3\left(\ell\bar{\ell}\right)^{2}\right] ,\end{split}$$

E. M. Ilgenfritz, J. Kripfganz, ZPC29('85)79; A. Gocksch, M. Ogilvie, PRD31('85)877; K. Fukushima, PLB 553, 38 (2003); PRD 68('03)045004;K. Fukushima, PLB591('04)277.

Bosonization method

• Introduce the auxiliary field $l = \langle P \rangle$, and integrate out $U_0 = L$.

$$\Delta S_p \approx \left(\frac{1}{g^2 N_c}\right)^{N_\tau} N_c^2 \sum_{\mathbf{x}, j>0} 2\left(\bar{\ell}\ell - \bar{P}_{\mathbf{x}}\ell - \bar{\ell}P_{\mathbf{x}}\right) \simeq 2\beta_p L^d \bar{\ell}\ell - 2\beta_p \sum_{\mathbf{x}} \left(\bar{P}_{\mathbf{x}}\ell + \bar{\ell}P_{\mathbf{x}}\right)$$

\rightarrow Weise mean field approximation

c.f. J. B. Kogut, M. Snow and M. Stone, NPB 200('82)211 (no quarks)

Polyakov loop potential

- Deconf. phase transition *l* = 0 at low T → *l* ~ 1 at high T is mainly governed by U_g
- Integral over U₀
 in Bosonization method
 - Fluctuation of PL
 → smooth potential
 - No singularity at *l* = 1
 - Correlation of *l* and *l*^{bar}

$$\langle l_p \overline{l}_p \rangle = 1$$
 even at $l = \overline{l} = 0$

 \rightarrow meson excitation is favored

Chiral condensate and Polyakov loop

Polyakov Loop

- Chiral and Deconf. transition correlate !
- SC-LQCD w/o PL: quarks are confined.
 → PL promote quarks to deconfine ! (cf. Quarks are *not* confined in NJL → PL *confines* quarks in PNJL.)
- Tc is suppressed with PL

Order Parameters

Chiral Condensate

Critical Temperature at $\mu=0$

- SC-LQCD w PL seems to be qualitatively promising. Is it *quantitatively* good ?
 - Improved from SC-LQCD w/o Polyakov loop.
 - Polyakov loop suppresses T_c.
 (cf. PNJL)
 - Quantitately, not bad for β < 4 in T_c (β_c)
 - In the "scaling" region (β>5), we do not see further bending of T_c in SC-LQCD.

Nakano, Miura, AO, LAT10 & in prep. MC Results: Ph. de Forcrand, M. Fromm ('09), Ph. de Forcrand, private comm., S.A.Gottlieb et al. ('87), D'Elia, Lombardo ('03), Z.Fodor, S. D. Katz ('02), R.V.Gavaiet al. ('90)

Quarkyonic matter

McLerran, Pisarski ('07), Hidaka, McLerran, Pisarski ('08), Kojo, Hidaka, McLerran, Pisarski ('10), Glozman et al('08), Fukushima ('08), Abuki, .., Ruggieri ('08), McLerran, Redlich, Sasaki ('09), Miųra, Nakano, AO('09),

Quarkyonic matter

T_d is governed by gluons at large N_c,
 while high density matter is realized at μ~m_q
 → deviation of deconf. and chiral transitions

SC-LQCD with PL (Haar measure method) shows large region of "quarkyonic" matter

Comparison with Other Models

Fukushima, Hatsuda ('10)

Abuki et al. (08)

Fukushima (08)

Deconfinement Crossover

s- Chiral Crossover

Miura, Nakano, AO, LAT10, in prep.

強結合展開、ポリアコフ・ループ Summary

- Strong coupling lattice QCD (SC-LQCD) has been developed to describe the QCD phase diagram at finite T and μ.
 - Approximations: double expansion (1/g², 1/d) and mean field.
 - Recent development: NLO and NNLO in 1/g², Polyakov loop effects

cf. Jolicoeur, Kluberg-Stern, Morel, Lev, Petersson ('84) \rightarrow NNLO at T=0 treatment (no phase diagram study) Gocksch-Ogilvie model \rightarrow SCL-LQCD + phen. string tension

- SC-LQCD may serve a qualitatively competitive framework to effective models such as PNJL in some aspects of the QCD phase diagram.
 - NNLO w/ PL (bosonization method) roughly (i.e. 10-20 % precision) explains T_c in MC simulations for β < 4.</p>
 - NLO w/ PL (Haar measure method) predicts the existence of the quarkyonic matter.
 TP VOS

アウトライン

- 講義(6コマ)
 - 有限温度の場の理論入門(1コマ目)
 - ◆ 経路積分表示、ユークリッド時空、松原和、自由場の分配関数
 - カイラル相転移とNJL 模型(2コマ目)
 - ◆ カイラル対称性、Nambu-Jona-Lasinio (NJL) 模型、カイラル相転移
 - 格子上の場の理論入門(3コマ目)
 - ◆格子 QCD、Plaquette 作用、リンク積分、格子 Fermion
 - 強結合格子 QCD(4,5コマ目)
 - ◆ 強結合極限での string tension と有効ポテンシャル、 強結合展開、ポリアコフ・ループ
 - 高密度物質のQCD有効模型(6コマ目)
 - ◆ Bag 模型、Quark-Meson 模型、Polyakov loop extended Quark-Meson (PQM) 模型、Polyakov loop extended NJL (PNJL) 模型
- セミナー (1.5 h, 4 コマ目と5コマ目の間)

・ 強結合格子 QCD から物質の相図と状態方程式へ-- 現状と展望 -

Effective Models of QCD at High Density

Effective Models of QCD

- Effective model とは?
 - 厳密には…

注目する自由度以外を積分し、元の理論と同じ観測量を与える模型

- 緩やかな意味では… 元の理論の対称性などを尊重し、着目する物理量・現象を 説明する模型
- Effective models of QCD
 - Quark 模型:構成子クォークとクォーク間の相互作用により、 ハドロンのスペクトル・静的な性質を説明
 - Bag 模型:内側で摂動論的真空が実現していると考え、 current quark によりハドロンのスペクトル・静的な性質を説明
 - NJL 模型:クォーク間のカイラル対称な相互作用 → χ SSB とその回復
 - Quark-Meson 模型: クォークと中間子 → χSSB とその回復
 - Polyakov loop extended Quark-Meson (PQM) 模型、Polyakov loop extended NJL (PNJL) 模型 → NJL, QM 模型 + ポリアコフループ

Bag model

- 球形の bag の中でクォークの Dirac eq. を 解いた結果: x = 2.04 ...
- B: カイラル対称性が破れることにより 得られるエネルギー密度: B~(220 MeV)⁴

カイラル対称性が 自発的に破れた真空

Chodos, Jaffe, Johnson, Thorn, Weisskopf ('74)

Bag model EOS

Bag 模型 (cont.)

$$L = L_{\text{particle}} - B \rightarrow T^{\mu\nu} = T^{\mu\nu}_{\text{particle}} + g^{\mu\nu}B$$

◎ 粒子からの圧力 (Stefan-Boltzmann 則)

$$-P = \Omega/V = -\frac{\pi^2}{90}T^4 \left(\sum_B g_B + \frac{7}{8}\sum_F g_F\right)$$

◎ クォーク・グルーオン・プラズマ:クォーク、グルーオンと摂動論的真空

$$P_{QGP} = \frac{37\pi^2}{90}T^4 - B, \quad \epsilon_{QGP} = \frac{37\pi^2}{30}T^4 + B$$

• ハドロン相:軽い自由度 = 3種類の π 粒子 $P_H = \frac{3\pi^2}{90}T^4$, $\epsilon_H = \frac{3\pi^2}{30}T^4$

Bag 模型 (cont.)

■ 相転移:圧力の大きな相が全体を占める

クォーク・グルーオン・プラズマ

- ◆ 粒子が存在しなければ、摂動論的真空は 物理的真空よりも不利=負の真空
- ◆ 温度が大きくなれば、大きな自由度の ため、圧力は増える
- $DOF = 2(spin) \times 2(q, \overline{q}) \times 3(color) \\ \times 2(flavor) \times 7/8(Fermion) \\ + 2(spin) \times 8(color)$

◎ ハドロン相

- ◆物理的真空が圧力の基準 (粒子以外の圧力は0)
- ◆ 軽い粒子の自由度は小さい
- → 低温 = ハドロン相、高温 = QGP 圧力が等しくなったとき相転移 エネルギー密度は大きく変化

Polyakov loop extended NJL model (PNJL)

NJL model + Polyakov loop

K. Fukushima, PLB591('04)277;PRD77('08)114028.

$$\Omega_{\rm NJL}/V = \frac{1}{2G} (M - m_q)^2 - 2N_{\rm c} N_{\rm f} \int \frac{{\rm d}^3 p}{(2\pi)^3} \Big\{ E_p + T \ln \big[1 + {\rm e}^{-(E_p - \mu)/T} \big] + T \ln \big[1 + {\rm e}^{-(E_p + \mu)/T} \big] \Big\}$$

化学ポテンシャル・グルーオンと Fermion の結合
$$\bar{q} \gamma^0 (igA_0 + \mu) q$$

PNJL model (cont.)

■ 1クォーク、2クォークの励起

YUKAWA INSTITUTE FOR

$$\begin{split} L &= \operatorname{diag}\left(\exp\left(i\,\theta_{1}\right), \exp\left(i\,\theta_{2}\right), \exp\left(i\,\theta_{3}\right)\right) \quad \left(\theta_{1} + \theta_{2} + \theta_{3} = 0\right) \\ &\rightarrow \operatorname{det}\left(1 + L\exp\left(-(E - \mu)/T\right)\right) \\ &= \int_{k=1}^{3} \left[1 + \exp\left(-X + i\,\theta_{k}\right)\right] = 1 + N_{c}l\,e^{-X} + N_{c}\overline{l}\,e^{-2X} + e^{-3X} \\ &\quad \left(X = (E - \mu)/T\right) \end{split}$$

106

Polyakov Loop

Chiral Condensate

Quark Meson Model

 クォークと中間子を注目する自由度として取り入れる模型 (~ボソン化した NJL 模型 + ボソンの kinetic term)
 B.-J. Schaefer, J. Wambach, NPA757('05)479

$$\Gamma_{\Lambda}[\Phi] = \int d^4x \left\{ \bar{q} [\gamma^{\mu} \partial_{\mu} + g(\sigma + i\vec{\tau}\vec{\pi}\gamma_5)] q + \frac{1}{2} (\partial_{\mu}\sigma)^2 + \frac{1}{2} (\partial_{\mu}\vec{\pi})^2 + V_{\Lambda}(\sigma^2 + \vec{\pi}^2) \right\}$$
$$V_{\Lambda}(\sigma^2 + \vec{\pi}^2) = \frac{m_{\Lambda}^2}{2} (\sigma^2 + \vec{\pi}^2) + \frac{\lambda_{\Lambda}}{4} (\sigma^2 + \vec{\pi}^2)^2$$

- ◎ 繰り込み可能。
- 繰り込み群方程式の 初期条件として利用される。

Polyakov Quark Meson model

■ Quark Meson model と Polyakov loop を結合した模型

B.-J. Schaefer, J.M.Pawlowski, J. Wambach, PRD76('07)074023 V. Skokov, B. Friman, E. Nakano, K. Redlich, B.-J. Schaefer, PRD82('10)034029.

$$\mathcal{L} = \bar{q} \left(i \not\!\!D - g(\sigma + i\gamma_5 \vec{\tau} \vec{\pi}) \right) q + \frac{1}{2} (\partial_\mu \sigma)^2 + \frac{1}{2} (\partial_\mu \vec{\pi})^2 - U(\sigma, \vec{\pi}) - \mathcal{U}(\Phi, \bar{\Phi})$$

$$U(\sigma, \vec{\pi}) = \frac{\lambda}{4} (\sigma^2 + \vec{\pi}^2 - v^2)^2 - c\sigma \qquad \not\!\!D(\Phi) = \gamma_\mu \partial_\mu - i\gamma_0 A_0(\Phi)$$

$$\frac{\mathcal{U}(\Phi, \bar{\Phi})}{T^4} = -\frac{b_2}{4} \left(|\Phi|^2 + |\bar{\Phi}|^2 \right) - \frac{b_3}{6} (\Phi^3 + \bar{\Phi}^3) + \frac{b_4}{16} \left(|\Phi|^2 + |\bar{\Phi}|^2 \right)^2$$

- ゼロ点エネルギーを取り入れない取り扱い (B.-J. Schaefer et al. ('07)) では、
 2 flavor のカイラル極限でも1次相転移。
- ゼロ点エネルギーを取り入れると 相転移の次数が QCD からの予想と一致。 (V. Skokov et al. ('10))

Model dependence of the critical point

- Bag model
 - ハドロン相とQGP 相を別の自由度で記述
 → OCD 相転移はいつでも一次
- Chiral Effective models (NJL, PNJL, QM, PQM)
 - カイラル対称性を尊重
 → クロスオーバー (μ=0) から1次相転移へ。
- 模型依存性はまだまだ大きい

高密度物質のQCD 有効模型 Short Summary

- 高密度物質の相図は未解明 → 多くの模型が提案され、試されている。
- Bag 模型
 - QCD 真空の変化を取り入れた最初のシンプルな模型
 - 相転移は常に1次
- カイラル有効模型
 - ●「カイラル対称性の自発的破れ」 SU(N_f)_L x SU(N_f)_R → SU(N_f)_V を尊重
 - クォーク質量による相転移次数の 移り変わりを説明
 - 臨界点については模型依存性は大

強結合領域の格子 QCD とクォーク物質の相図

- 講義内容のおさらい
 - 有限温度の場の理論入門
 - ◆ 経路積分表示、ユークリッド時空、松原和、自由場の分配関数
 - カイラル相転移とNJL 模型
 - ◆ カイラル対称性、Nambu-Jona-Lasinio (NJL) 模型、カイラル相転移
 - 格子上の場の理論入門
 - ◆格子 QCD、Plaquette 作用、リンク積分、格子 Fermion
 - ◎ 強結合格子 QCD
 - ◆ 強結合極限での string tension と有効ポテンシャル、 強結合展開、ポリアコフ・ループ
 - セミナー
 - 強結合格子 QCD から物質の相図と状態方程式へ-現状と展望 -
 - 高密度物質のQCD 有効模型
- 強調したこと:経路積分、松原振動数和、ゼロ点エネルギー、 リンク変数、カイラル対称性、ボソン化、ポリアコフループ、等。

Report

- Credit is given according to participation & report. Solve the problems below. The required number of problems to be solved are,
 - Those who attended 4 lectures or more \rightarrow one or more
 - Others → two or more

Deadline: Jan. 14.

- Derive the effective potential in NJL model at T=0, starting from the bosonized NJL action.
- Obtain the Wilson loop expectation value at strong coupling by using the one link integral formulae. Also discuss the 1/g² corrections.
- Obtain the transition temperature as a function of the bag constant in the bag model EOS. Assume that hadronic matter consists of 3 species of pions, and that the number of quark flavors is 3.

アウトライン

- 講義(6コマ)
 - 有限温度の場の理論入門(1コマ目)
 - ◆ 経路積分表示、ユークリッド時空、松原和、自由場の分配関数
 - カイラル相転移とNJL 模型(2コマ目)
 - ◆ カイラル対称性、Nambu-Jona-Lasinio (NJL) 模型、カイラル相転移
 - 格子上の場の理論入門(3コマ目)
 - ◆格子 QCD、Plaquette 作用、リンク積分、格子 Fermion
 - 強結合格子 QCD(4,5コマ目)
 - ◆ 強結合極限での string tension と有効ポテンシャル、 強結合展開、ポリアコフ・ループ
 - ◎ 高密度物質の QCD 有効模型 (6 コマ目)
 - ◆ Bag 模型、Quark-Meson 模型、Polyakov loop extended Quark-Meson (PQM) 模型、Polyakov loop extended NJL (PNJL) 模型
- セミナー (1.5 h, 4 コマ目と5コマ目の間)

・ 強結合格子 QCD から物質の相図と状態方程式へ--現状と展望 -

強結合領域の格子 QCD とクォーク物質の相図(大西)

追加:

コンパクト天体現象で

QCD 相転移はみえるか

Can we see QCD phase transition in Compact Stars ?

◙ 中性子星

- Cold -dense (~ 5 ρ_0) matter (static, v-less)
- Many new forms of matter have been proposed !
- 超新星
 - Warm (T ~ 20 MeV), dense (~ 1.6 ρ_0), dynamical, non-eq. v
 - Important site of nucleosynthesis
- ブラックホール形成過程
 - Hot (T ~ 70 MeV), dense (~ 5 ρ0), dynamical, non-eq. v
- BH-BH, NS-BH, NS-NS 融合 → 数値相対論

Nuclear matter at various densities and temperatures is realized in nature !

Neutron Stars

- 高密度物質はどのような状態か?
 - ◎ 核子の超流動状態 (³S₁, ³P₂)
 - π 凝縮、K 凝縮、QGP、カラー超伝導、Quarkyonic 物質、....

● ハイペロン混合

Tsuruta, Cameron (66); Langer, Rosen (70) Pandharipande (71); Itoh(75); Glendenning; Weber, Weigel; Sugahara, Toki; Schaffner, Mishustin; Balberg, Gal; Baldo et al.;Vidana et al.; Nishizaki,Yamamoto, Takatsuka; Kohno,Fujiwara et al.; Sahu,AO; Ishizuka, AO, Tsubakihara, Sumiyoshi, Yamada; ...

→ Nobody says "Hyperons do not appeaı in Neutron Stars !

F. Weber, Prog. Part. Nucl. Phys. 54 (2005) 193

強結合領域の格子 QCD とクォーク物質の相図(大西)

X-ray measurements of Neutron Stars

- Neutron star mass (M)-radius (R) curve *uniquely*(*) determines NS matter EOS.
 - Radius measurement: flux + temperature → apparent radius

- Eddington flux would give another info.
- Bayesian TOV inversion \rightarrow EOS

2

Mass (M_o)

Thermonuclear Burst

in X-ray Binaries

4U 1608-248

4U 1820-30

EXO 1745-248

A. W. Steiner, J. M. Lattimer, Ed. Brown, arXiv:1005.0811

5

強結合領域の格子 QCD とクォーク物質の相図(大西)

MPA1

MS1

15

AP4

GSI

10

Radius (km)

SQM

Tolman-Oppenheimer-Volkoff (TOV) equation

TOV Eq. = General Relativistic Balance of pressure and gravity

Neutron Star Mass = M(R) where P(R)=0

When you make a new EOS, please check the NS mass !

Some Results shown in NFQCD10

- Bayesian TOV conversion (Lattimer, Brown, ...)
 - Some NS observation of M&R
 - Determine "Plausile" NS EOS

. E 10

10

- 牧島さんのコメント
- Quark-Hadron admixture (Sagert, Pagliara; Schaffner-Bielich)
 - Small B
 → Larger NS Mass

Y ILP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS

強結合領域の格子 QCD とクォーク物質の相図(大西)

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

Neutron stars are composed of the densest form of matter known to exist in our Universe, the composition and properties of which are still theoretically uncertain. Measurements of the masses or radii of these objects can strongly constrain the neutron star matter equation of state and rule out theoretical models of their composition^{1,2}. The observed range of neutron star masses, however, has hitherto been too narrow to rule out many predictions of 'exotic' non-nucleonic components3-6. The Shapiro delay is a general-relativistic increase in light travel time through the curved space-time near a massive body7. For highly inclined (nearly edge-on) binary millisecond radio pulsar systems, this effect allows us to infer the

signature. We calculate the pulsar mass to be $(1.97 \pm 0.04)M_{\odot}$, which rules out almost all currently proposed²⁻⁵ hyperon or boson condensate equations of state (M_{\odot} , solar mass). Quark matter can support a star this massive only if the quarks are strongly interacting and are therefore not 'free' quarks¹².

are therefore not 'free' quarks12.

Numerical Simulation of Supernova Explosion

- v radiation hydrodynamics
 - Baryons, Electons, Photons (Hydro) + neutrinos (Boltzmann)
 - I-dim. (Spherical Sym.) \rightarrow Exact v transport leads to failed supernova explosion failure (Sumiyoshi et al., 2005)
 - 2-dim. Hydrodynamics → merginal (Janka et al., 2002)

S. Chiba, H. Toki, ApJ629(05)922

øQS

R. Buras, M. Rampp, H.-Th. Janka, K. Kifonidis, PRL90(03)241101

Numerical Simulation of Supernova Explosion

- Recent developments (approximate v transport)
 - Light progenitor (8-10 Msun)
 - \rightarrow Successful explosion with simultaneous calc. of nucleosynthesis
 - Heavy progenitor (15 Msun)
 - \rightarrow Standing accretion shock instability (SASI) causes late expl.

There are some successful examples, but not conclusive yet.

Can we detect Quark Matter ?

- Supernova EOS with Quark-Hadron Coexistence
 - Quark matter=Bag model, Hadronic matter= RMF with free pions
 - → Earlier Collapse to Black Hole (Nakazato, Sumiyoshi, Yamada, 2008)
 - Transition to Strange Quark Star → Second Shock (Hatsuda, 1987; Sagert et al., 2009)

Black Hole Formation (Failed Supernova)

"Hot" rather than "Dense" in BH formation process !
 T ~ 70 MeV (~ 1/3 of QCD phase transition T.)

Nuclear Matter Phase Diagram

Thank you !

