高エネルギー重イオン反応のシミュレーション

北海道大学·大学院理学研究院·物理学部門 大学院理学研究科·宇宙理学専攻 大西明

Abstract

Relativistic Heavy-Ion Collider (RHIC) 実験に代表される高エネルギー 重イオン反応は、初期宇宙を擬似的に実験室で再現することが できる等、様々な温度・密度のクォーク・ハドロン・核物質を 実験室で探るほぼ唯一の手段であり、また高温・高密度状態に おけるQCD相転移の研究も近年大きく進展している。 この講義では、高エネルギー重イオン反応研究について 概観した後、原子核衝突を理論的に記述するために用いられてきた シミュレーションの方法について解説する。

Contents

- Over view of QGP Hunting at RHIC (1 コマ)
- Basic Ingredients in Heavy-Ion Collision Theory (2-3 コマ)
 - Nuclear Mean Field Dynamics
 - NN two-body (residual) interaction and Cascade Processes
 - Partonic Interaction and String Decay
 - Relativistic Hydrodynamics
- Collective Flows in Heavy-Ion Collisions from AGS to RHIC (1-2 コマ)
 - Nuclear MF Effects / Hadronic cascade at RHIC /
 - Jet-Fluid String formation and decay at RHIC
- Insolved Problems at RHIC (1 コマ)
- (If I have time) Phase diagram and hadron properties in the strong coupling limit of lattice QCD (1 コマ)

Overview of QGP Hunting at RHIC

地上で作る小さなビッグバン ー クォーク・グルーオン・プラズマの探索 –

Abstract

この世界を構成している「最小」の粒子はクォークであり、クォークが3つ集まって 陽子・中性子、そしてさらにこれらが集まって原子核を作っている。

これまではクォークは核子の中に閉じ込められ、単独でみることができなかったが、近年の実験において、クォークがばらばらになった状態、「クォーク・グルーオン・プラズマ(QGP)」が生成された。

初期宇宙では、このQGP状態を経て現在の宇宙の「真空」が作られており、人類 は実験室で「小さなビッグバン」を作ったことになる。

本公演では、現在急速に実験研究が進行しているQGP生成研究と、そこで必要とされているシミュレーション計算の現状について紹介する。

Contents

Introduction

◆ クォーク・グルーオン・プラズマ(QGP)とは何か?

- QGPは見つかったか?
 - ◆ ジェット抑制
 - ◆ 楕円型フロー
- QGP物性の探求へ向けて
 - ◆ 格子QCD計算、流体力学計算、ジェット生成、 流体と速いパートンの相互作用
- まとめ

Introduction

原子 → 原子核 → 核子
 → クォーク(=現時点で「最小」と考えられている粒子)

高エネルギー重イオン反応

QGPからハドロン相への相転移(QCD 相転移)
 =この宇宙最後の「真空相転移」である!

Experimentally Estimated Phase Diagram

J. Stachel et al., 1998

Braun-Munzinger et al., 2002

Chem. Freeze-Out Points are very Close to Expected QCD Phase Transition Boundary

Theoretically Expected QCD Phase Diagram

Zero Chem. Pot.

Finite Chem. Pot.

JLQCD Collab. (S. Aoki et al.), Nucl. Phys. Proc. Suppl. 73 (1999) 459.

Finite µ: *Fodor* & *Katz, JHEP* 0203 (2002), 014.

Zero Chem. Pot. : *Cross Over* Finite Chem. Pot.: *Critical End Point*

- 色の閉じ込め:クォーク間には「ひも」のようなカが働く
 - ◆ クォーク間の電場はひも状に絞られている(⇔超伝導体での磁場)
 - ◆ 引き離そうとするとクォーク対が生成されて色は閉じ込められたまま。
- 質量の獲得: 核子は「モーゼの道」の中の3クォーク状態
 - ◆ QCD 真空ではクォーク・反クォーク対が凝縮 → 凝縮体を「押しのける」のにエネルギーが必要
 - → 5 MeVの質量のクォークが3つで1000 MeVの大きな質量

QCD真空には「カラー単磁子」と「クォーク・反クォーク対」の凝縮体

高エネルギー重イオン反応

なぜ高温でQGPへの相転移がおこるか?(1)

- ・ハドロン物質を熱する/圧縮するとどうなるか?
 - ハドロン(核子や中間子)は、 1 fm 程度の大きさをもち、 クォークと力を媒介するグルーオンからできている。(クォーク3つか、 クォーク・反クォーク対)
 - > 温度の増加により、
 多くの中間子が作られる
 → クォーク・反クォークの数が 増えて、ハドロンが「重なる」

温度・密度を十分上げれば、 大きな体積でクォークが自由に動き回るはず

なぜ高温でQGPへの相転移がおこるか? (2)

 $DOF = 2(spin) \times 2(q, \overline{q}) \times 3(color) \times 2(flavor) \times 7/8(Fermion) + 2(spin) \times 8(color) = 37$

- QCDに基づく第一原理計算=格子QCD シミュレーション
 - ▼ T⁴ で規格化したエネルギー密度と圧力 → T = 150-200 MeV で エネルギー密度は急激に変化、圧力はやや滑らかに増加 → QGP への相転移

クォーク・グルーオン・プラズマを作るには?

- クォーク・グルーオン・プラズマ (QGP)
 - ◆ 大きな体積中をクォークとグルーオンが閉じ込めから解放され、 凝縮のない単純な真空を動き回っている状態
 - ◆ 初期宇宙等の「超高温状態」(~10¹² K)や、 中性子星中心部などの「超高密度状態」(~10¹⁵ g/cc)で実現
 - ◆実験室でのQGP生成 → 高エネルギーの重イオン反応

高エネルギー原子核反応での QGP生成 =地上の "Big Bang" 再現実験

High Energy Heavy-Ion Collision Experiments

- ランダウの昔から核物理屋は 重イオン反応で QGPを作りたかった!
 - LBL-Bevalac: 800 A MeV
 - GSI-SIS: 1-2 A GeV
 - BNL-AGS (1987-): 10 A GeV
 - CERN-SPS (1987-): 160 A GeV
 - BNL-RHIC (2000-): 100+100 A GeV
 - CERN-LHC (2008(?)-): 3 + 3 A TeV

<u>QGP生成のシグナル</u>

- QGP が作られると何が起こるか?
 - ◆ 初期の核子内のパートン (クォーク、グルーオン)の激しい散乱
 - → QGPが生成されると、カラー電荷 (クォーク、グルーオン)が熱的に分布
 - → クォークやグルーオンが エネルギーを損失 (ジェット抑制、Jet Quenching) c.f.荷電粒子は電子と散乱して エネルギーを損失)
 - ◆ 早い段階で熱平衡化
 - → (熱平衡が仮定される)
 流体力学的振る舞い

<u>QGP生成の実験的証拠:ジェット抑制(1)</u>

・原子核抑制因子
$$R_{_{AB}}$$

=核子衝突と比べた粒子生成率
 $R_{_{AB}} \ge 1$ (抑制なし)
 $R_{_{AB}} < 1$ (抑制あり)
 $R_{_{AB}}(p_T) = \frac{d^2N/dp_T d\eta}{T_{AB} d^2 \sigma^{pp}/dp_T d\eta}$

- 本当にジェット抑制は見えるか?
 - ◆ d+Au **衝突**では No!
 - ◆ 大きな原子核衝突ではYes!
- エネルギー密度が大きくなったときに だけ、ジェット抑制が起こる
 → QGP の形成

d + Au: Initial State Effects

Au + Au: Initial State + Final State Effects

- 楕円型フロー=運動量の方位角異方性
 - ◆ 反応初期の「空間異方性」が起源
 →圧力勾配が作られる熱平衡化の速さに依存
 Out-of-Plane Flow

Low Momentum : Hydrodynamical calc. with Early Thermalization High Momentum : Reduction from Hydro. calc. QGP生成の実験的証拠:強い楕円型フロー(3)

- RHICエネルギーでは強い楕円型フローが見られる
 - Au+Au: v_2 (Casc.) < v_2 (hydro) ~ v_2 (data)
 - > 完全流体のQGP生成を仮定した流体力学模型と無矛盾 → 非常に小さい shear viscosity (η/s ~ 1/4π) は AdS/CFT 対応の示唆と一致
 - ◆ 低いエネルギーを説明するハドロン模型とは矛盾

高エネルギー重イオン反応

QGP生成の実験的証拠:強い楕円型フロー(4)

Coalescence (Recombination) Picture

Slide by Esumi

$$v_2^{Hadron}(P_T) = n v_2^{Parton}(P_T/n)$$

QGP物性の探求へ向けて

「QGP 生成の証拠」のまとめ

- 強いジェット抑制 → 色電荷を持つ粒子の分布
 - ◆ Nucl. Mod. Factor (R_{AA})、ハドロン方位角相関でともに観測
 - ◆ pp 衝突、d+Au 衝突、SPS までの重イオン衝突で見られず、 *RHIC エネルギーの重イオン衝突でのみ観測*
 - ◆ 中心衝突に近いほど強い抑制
- 大きな楕円フロー $(v_2) \rightarrow 早い熱平衡化$
 - 非常に早い(τ<1 fm/c) 段階での熱平衡化が必要 (ハドロンの formation time (τ_f~1 fm/c) と同等の時間での平衡化)
 - SPS までの v₂ を説明するハドロン-ストリング輸送模型で足りず、
 早い熱平衡化 (τ~ 0.6 fm/c) を仮定したQGP 流体模型で説明可
 - ◆ Constituent Quark Number Scaling (v2^h(pT)= n v2^q(pT/n)) が成立
 → クォーク段階でのフロー生成
- 化学凍結の温度・化学ポテンシャルが Lattice QCD の予言に近い

簡単な仮定のもとで"大雑把な性質"の解明はすすんだが....

多くのパズルが残されている....

- 例1: 相対論的な「粘性流体方程式」
 → 共変な定式化さえ、きちんとできていない
- 例3: J/ψは cold nuclear matter からの評価より多い (J/ψ enhancement ?)
 → 重い quark についても再結合を考慮する必要性
- 例4: Ridge 構造、Mach Cone など、生成機構の分からない相関が 多く観測されている。
 - → Jet は流体中でエネルギーを失うだけではない!

粘性(非完全流体)、非平衡過程、重いクォーク、.... → LHC (2008稼働)ではより重要 **Summary**

- 高エネルギー原子核衝突におけるクォーク・グルーオン・プラズマ (OGP)生成
 - ≈ 地上における小さなビッグバン(Little Bang)≈ 宇宙最後の真空相転移のシミュレーション
 - ◆ 2000年6月稼動のRHICで人類は(おそらく)初めて生成 (21世紀に間に合いました!)
- QGP生成のシグナル
 - ◆「ジェット抑制」と「強い楕円型フロー」はハドロン模型で説明不可
 - ◆ 他にも楕円型フローのクォーク数スケーリング等のシグナルあり
- QGP物性の理解へ向けて
 - 「QGP 生成の証拠」を超える様々なデータが出てきている
 → high pT v2 問題、J/ψ 問題、Mach Cone、baryon 問題(Part V へ)
 - ◆ 第一原理計算 (Lattice QCD, perturbative QCD)
 + 現象論 (Hydro, Jet, String, Cascade, Color Glass Condensate, ...)
 の両面からの追求が今後も必要

Backups

多くのパズルが残されている....

- 例1: 相対論的な「粘性流体方程式」 → 共変な定式化さえ、きちんとできていない
- 例2: 高い運動量領域での楕円型フローのデータ → 幾何学的な「極限」を越えている!
 - ◆「極限越え」の例:ジェットと流体パートンの融合によるストリング生成

FIG. 4 (color online). v_2 at $3 \le p_t \le 6 \text{ GeV}/c$ versus impact parameter, b, compared to models of particle emission by a static source (see text).

Hirano, Isse, Nara, AO, Mizukawa, Yoshino, in prep.

STAR, PRL93, 252301('04)

Thermal Freeze-out Parameters from particle ratios

- Almost complete reconstruction of particle ratios by the statistical thermal model.
- Thermal model prediction in AuAu 200 GeV central. T_{ch} = 177 MeV, μ_B = 29 MeV

高エネルギー重イオン反応

Jet Energy Loss at RHIC (I)

2003/06/18 Press Release

Colored partons will lose energy in colored gas environment (=QGP)

Since High Energy Particles are expected to come from Jet Fragmentation, they are suppressed if QGP is formed.