3rd RIKEN-INFN, Oct. 13, 1997

Quantum Fluctuation Effects on Nuclear Multi-Fragmentation

A. Ohnishi Hokkaido U.

- 1. Introduction
- 2. Basic idea to include Quantum Fluctuation
 - * Quantum Langevin Model
- 3. Quantum Fluctuation Effects on Nuclear Statistical Properties
 - ***** Caloric Curve and Fragment Distribution
- 4. Quantum Fluctuation Effects on Nuclear Multi-Fragmentation
 - ***** IMF formation from Au+Au Collision
 - * Twin Hyperfragment Formation from Ξ^- Absorption at Rest
- 5. Summary and Outlook

- A.O. and J. Randrup, PRL 75('95), 596
- A.O. and J. Randrup, AP 253('97), 279
- A.O. and J. Randrup, PL B394('97), 260
- A.O. and J. Randrup, PRA 55('97), 3315R
- A.O. et al., NN97 Proc, NPA ('97), in press
- Y.Hirata, Y.Nara, A.O., T.Harada, and J.Randrup, in preparation

Nuclear Liquid-Gas Phase Transition

<u>Microscopic Approaches</u> to Nuclear Multi-Fragmentation

- ··· Statistical Property is Essential.
- (Semi-)Classical M.D.-type Models
 - * $\mathcal{Z} = \int d\Gamma \exp(-\beta \mathcal{H}) \rightarrow E^* \propto T$ even at low T
 - * Too Small T (\simeq Strength of Flucts.) at a given E
- Transport Models with Fluctuations
 - 1. Boltzmann-Langevin (c.f. Maria Colonna)
 - 2. AMD-V (Ono-Horiuchi)
 - 3. Quantum Langevin Model

Quantum Stat. Mech. of Wave Packets

Energy Fluctuation of Wave Packets $\sigma_E^2 = \langle \hat{H}^2 \rangle - \langle \hat{H} \rangle^2 \neq 0$ modifies Statisitcal Weight !

• Partition Function

$$\mathcal{Z}_{\beta} \equiv \operatorname{Tr}\left(\exp(-\beta\hat{H})\right) = \int d\Gamma \ \mathcal{W}_{\beta}(\mathbf{Z})$$
$$\mathcal{W}_{\beta}(\mathbf{Z}) \equiv \langle \mathbf{Z} | \exp(-\beta\hat{H}) | \mathbf{Z} \rangle \neq \exp(-\beta \langle \hat{H} \rangle)$$

• Thermal Average

$$\prec \hat{O} \succ_{\beta} \equiv \frac{1}{\mathcal{Z}_{\beta}} \operatorname{Tr} \left(\hat{O} \exp(-\beta \hat{H}) \right) = \frac{1}{\mathcal{Z}_{\beta}} \int d\Gamma \mathcal{W}_{\beta}(\mathbf{Z}) \mathcal{O}_{\beta}(\mathbf{Z})$$
$$\mathcal{O}_{\beta}(\mathbf{Z}) \equiv \frac{\langle \mathbf{Z}_{\beta/2} | \hat{O} | \mathbf{Z}_{\beta/2} \rangle}{\langle \mathbf{Z}_{\beta/2} | \mathbf{Z}_{\beta/2} \rangle} \neq \langle \hat{O} \rangle$$
$$|\mathbf{Z}_{\beta/2} \rangle \equiv \exp(-\beta \hat{H}/2) | \mathbf{Z} \rangle \neq | \mathbf{Z} \rangle$$

• Harmonic Approximation

$$\mathcal{W}_{\beta}(\mathbf{Z}) \approx \exp\left[-\frac{\mathcal{H}}{D}\left(1-e^{-\beta D}\right)\right] = \exp(-\beta \mathcal{H} + \beta^{2} \sigma_{E}^{2}/2 + \cdots)$$
$$D(\mathbf{Z}) \equiv \sigma_{E}^{2}/\mathcal{H}$$
$$\mathcal{H}_{\beta}(\mathbf{Z}) \equiv -\frac{\partial \log \mathcal{W}_{\beta}(\mathbf{Z})}{\partial \beta} \approx \mathcal{H}(\mathbf{Z}) \ e^{-\beta D}$$

 \rightarrow Improved β Expansion

Statistical Properties of Nuclei

• Caloric Curve

(A.O. and J.Randrup, PRL 75('95), 596;A.O. et al., Proc. NN97, NPA, in press.)AMD-H.A., Volkov

• Thermal Fragmentation

(A.O. and J. Randrup, PL B394('97), 260) QMD-QL, Gogny+Pauli pot.

From Quantum Statistics

to Dynamics with Fluctuation

• Equilibrium Distribution · · · Q. Microcan.

$$\phi_{\rm eq}(\mathbf{Z}) \equiv \exp(-\mathcal{F}(\mathbf{Z})) \propto \langle \mathbf{Z} | \delta(E - \hat{H}) | \mathbf{Z} \rangle$$

• Fokker-Planck Equation: $\phi_{eq} =$ Static Solution

$$\frac{D\phi(\mathbf{Z};t)}{Dt} = \frac{\partial}{\partial \mathbf{q}} \cdot \left(\mathbf{M} \cdot \frac{\partial \mathcal{F}}{\partial \mathbf{q}} + \mathbf{M} \cdot \frac{\partial}{\partial \mathbf{q}} \right) \phi , \quad \{\mathbf{q}\} = \{\mathbf{r}, \mathbf{p}\}$$

• Equivalent Langevin Equation at Fixed E

$$\begin{split} \dot{\mathbf{p}} &= \mathbf{f} - \beta_{\mathcal{H}} \mathbf{M}^{p} \cdot (\mathbf{v} - \mathbf{u}) + \mathbf{g}^{p} \cdot \zeta^{p} , \\ \dot{\mathbf{r}} &= \mathbf{v} + \beta_{\mathcal{H}} \mathbf{M}^{r} \cdot \mathbf{f} + \mathbf{g}^{r} \cdot \zeta^{r} , \\ \mathbf{Drift} & \mathbf{Diffusion} \end{split}$$

$$\begin{split} \mathbf{v} &= \partial \mathcal{H} / \partial \mathbf{p} , \quad \mathbf{f} = -\partial \mathcal{H} / \partial \mathbf{r} \\ \mathbf{u} : \text{Local Collective Velocity} = \text{Classical} \\ \mathbf{M} &= \mathbf{g} \cdot \mathbf{g} : \text{Mobility Tensor} \end{split}$$

***** Effective Inverse Temperature:

$$\beta_{\mathcal{H}} \equiv \frac{\partial \mathcal{F}}{\partial \mathcal{H}} = \frac{\mathcal{H} - E}{\sigma_E^2}$$

··· Drift Term Acts as a Energy Recovering Force

- * Classical Limit = Classical Canonical Eq. $\cdots \phi_{eq} = \delta(\mathcal{H} - E) \quad \leftrightarrow \dot{\mathbf{p}} = \mathbf{f}, \ \dot{\mathbf{r}} = \mathbf{v}$
- Intrinsic Distortion of Wave Packets

$$\frac{d\mathbf{p}}{d\tau} = -\frac{2\Delta p^2}{\hbar} \left(\mathbf{v} - \mathbf{u}\right) , \quad \frac{d\mathbf{r}}{d\tau} = \frac{2\Delta r^2}{\hbar} \mathbf{f}$$

until $\mathcal{H} = E$ before making an observation

• Example of Energy Fluctuation

Multifragmentation from Au+Au

• MSU/ALADIN Data

M.B.Tsang et al., PRL 71 ('93), 1502. A.O. and J. Randrup, PL B394('97), 260.

• Cluster-Cluster Scattering

Danielewicz and Bertsch, NP A533 ('91), 712: (d, t, h) Ono et al., PRC 47 ('91), 2652: (N α) Y. Nara et al. PL B346 ('95), 217: ($K^-\alpha \to \pi_{\Lambda}^4 H$)

• Light Charged Particle Multiplicity ... Large underestimate for A=3

SUMMARY & OUTLOOK

- Quantal Langevin Model
 - * Based on the energy fluctuations of wave packets, which are not energy eigen states.
 - ***** Dynamical Relaxation to Quantum Stat. Equil.
 - ★ Larger Fluctuations (Quantum & Statistical)
 +Intrinsic Distortion (Smaller Excitation Energy)
 → Enhancement of Stable Dynamical Fragments
- Achievements
 - a. Caloric Curve (Liquid \rightarrow Gas)
 - b. Thermal Fragmentation (Critical behavior)
 - c. Dynamical Fragmentation (Au+Au, Ξ^- Absorption)
- Remaining Problems
 - * Mobility Tensor M cannot be determined only from stat. requirements.
 - * Light Charged Particle (LCP) formation $(d, t, {}^{3}\text{He}, \alpha)$ Underesitmate by a factor of $4 \sim 10$ for A = 3 \rightarrow Coalescence ?