Branching ratio change in K^- absorption at rest and the nature of the $\Lambda(1405)$

> A. Ohnishi (Hokkaido U.) Y. Nara (JAERI) V. Koch (LBNL)

- **1.** $\bar{K}N$ interaction $\leftrightarrow \Lambda(1405)$ puzzle
 - ***** Repulsive
 - \cdots Experimental data
 - (Scattering & Kaonic Hydrogen)
 - * Attractive
 - $\cdots K^- A$ optical potential
 - \cdots Boundstate picture of $\Lambda(1405)$ may solve it.
- **2.** Mass shift of $\Lambda(1405)$ in Medium
 - **\star Boundstate Picture of** $\Lambda(1405)$
 - * Mass shift of $\Lambda(1405)$ from Pauli blocking
 - ★ I = 0 ($\Lambda(1405)$ channel) and I = 1 interference → Branching Ratio Change
- **3.** Comparison of Two Scenarios of $\Lambda(1405)$
 - * Stopped K^- Reaction
 - $\star~(K^-,\pi^-)$ and (K^-,π^+) Spectrum
- 4. Summary

\overline{KN} Interaction: Attractive or Repulsive ?

- Repulsive (Exp. in $\bar{K}N$)
 - * Low Energy Scattering $\rightarrow a_{K^-p} \simeq -0.15$ fm (Martin, NP B179 ('81), 33)
 - * 1s Energy Shift of Kaonic Hydrogen $\rightarrow -323 \text{ eV}$ (Iwasaki et al., PRL 78 ('97), 3067)
- Attractive (Theory, $\bar{K}A$)
 - * Kaonic Atom (not hydrogen)

 $U_N(K^-A) = lpha
ho + eta
ho^2
eq - rac{2\pi\hbar^2}{\mu_{KN}} a_{K^-N}
ho$

(Friedman et al., PL B308 ('93), 6)

··· How can we solve this problem ? \rightarrow Boundstate Picture of $\Lambda(1405)$ May Help it.

$\Lambda(1405)$ **Puzzle**

- $\Lambda(1405)$ **Resonance**
 - * $I = 0, J^{\pi} = 1/2^{-}$ (S-wave)
 - * Just below $\bar{K}N$ threshold (1432 MeV) \rightarrow Repulsive contribution to Scattering Length
- **Two Pictures of** $\Lambda(1405)$
 - 1. $\Lambda(1405) \simeq 3q$
 - 2. $|\Lambda(1405)\rangle >= |\bar{K}N\rangle + |\Sigma\pi\rangle >=$ Boundstate of $\bar{K}N$ (Dalitz et al., PR 153 ('67),617, Siegel and Weise, PR C38 ('88),2221) \leftrightarrow Difficulty in "pure" quark model for $\Lambda(1405)$ (c.f. Hamaie,Arima,Masutani, NP A591 ('95), 675)

Two Scenarios of $\Lambda(1405)$

- 1. Model MF: $\Lambda(1405) \simeq 3q$
 - * Martin's Amp. w. Fermi ave.+B.E. Corr.
 - **\star No Medium Effects on** $\Lambda(1405)$
 - * Br. Rat. in ¹²C(Stopped K^-, π): $\Sigma^-\pi^+ > \Sigma^+\pi^-$
- **2. Model KF:** $\Lambda(1405) \simeq$ **Bound State of** $\bar{K}N$
 - *** Koch's Amp. with Pauli blocking in** Λ(1405)
 (Koch, PL B337 ('94), 7, Waas et al., PL B365 ('94), 12
 Staronski et al., J.Phys.G13('87),1361, Masutani, NPA483('88),565)
 - * Density Dependent $\Lambda(1405)$ Mass
 - * Br. Rat. in ¹²C(Stopped K^-, π): $\Sigma^-\pi^+ < \Sigma^+\pi^-$

Stopped K^- Reaction

(Exp: Tamura et al., PR C40('89),R479, Kubota et al. NP A602('96),327 Theor: Nara et al., PL B346('95), 217; INS 23,

Staronski et al., J.Phys.G13('87),1361, Masutani, NPA483('88),565)

• Advantages

- **1.** I = 0 Branches are dominant $\cdots \Lambda(1405)$ Tail
- 2. A lot of Exp. Data (K^-, π^{\pm}) on various nuclear targets
- 3. Spectrum is sensitive to B.R.
- 4. Slow $\Lambda(1405)$ is produced.

• Disadvantages

1. Reaction processes are complex.

- Σ conversion to Λ , π rescattering
- \rightarrow Monte Carlo Simulation

(K⁻, π⁻) Spectrum (Exp: Tamura et al., PR C40('89),R479)

 \star Components of (K^-,π^-) Spectrum

* Comparison of Two Scenarios ... Model KF is slightly better.

• (K^-, π^+) **Spectrum** (Exp: Kubota et al. NP A602('96),327)

$$\pi^+ \text{ comes from} \ \mathbf{QF} \ (K^-p \to \Sigma^-\pi^+) \ \mathbf{or} \ \mathbf{WD} \ (K^-p \to \Sigma^+\pi^-, \Sigma^+ \to \pi^+n)$$

\star Components of (K^-, π^-) Spectrum

* Comparison of Two Scenarios ... Model KF is much better.

Summary and Future Work

- Summary
 - 1. $\Lambda(1405)$ mass shift induces LARGE Branching Ratio Change at finite ρ ($\Sigma^+\pi^- \leftrightarrow \Sigma^-\pi^+$).
 - **2.** Stopped K^- Reaction
 - $\begin{array}{l} \star \ (K^{-},\pi^{-}); \\ \quad \text{Various QF} \ (K^{-}N \to Y\pi^{-}) \\ + \ \text{Various WD} \ (K^{-}N \to Y\pi, Y \to \pi^{-}N) \\ \star \ (K^{-},\pi^{+}); \ \textbf{Clean Reaction} \\ \quad \textbf{QF} \ (K^{-}p \to \Sigma^{-}\pi^{+}) \\ + \ \textbf{WD} \ (K^{-}p \to \Sigma^{+}\pi^{-}, \Sigma^{+} \to \pi^{+}n) \end{array}$
 - 3. Boundstate picture gives better description, especially of (K^-, π^+) spectrum.

• Future Work

- 1. Remaining differences from data
 - * Final state interaction ?
 - $\cdots \Sigma$ conversion, π absorption ?
 - \star More mass shift ?
 - **\star B. E. corr., or** $\Lambda(1405)$ **potential** ?
- 2. Direct measurement of mass shift $K^-A \rightarrow \pi \Lambda(1405)$ (Magic momentum)