INPC98, Aug. 24-28, 1998 @ Paris

Are Fragments Produced in Supercooled Nuclear Gas Phase ?

A. OhnishiHokkaido U.Y. HirataHokkaido U.J. RandrupLBL

- 1. Introduction
- 2. Basic idea to include Quantum Fluctuation
 - ***** Quantum Langevin Model
- 3. Nuclear Statistical Properties
 - ***** Caloric Curve and Fragment Distribution
- 4. Nuclear Reaction
 - \star Proton-induced Reaction
 - * Hyperfragment Formation from Ξ^- Absorption at Rest
 - ***** IMF formation from Au+Au Collision
- 5. Densities and Temperatures at Fragment Formation
- 6. Summary and Outlook

A.O. and J. Randrup,

PRL 75('95), 596; AP 253('97), 279; PL B394('97), 260; PRA 55('97), 3315R

A.O. et al., NP A630 ('98), 223c

A.O. and J. Randrup, Proc. INFN-RIKEN Symp., in press

Y.Hirata, Y.Nara, A.O., T.Harada, and J.Randrup, submitted to PTP

Nuclear Caloric Curve and L.-G. Phase Transition

• Caloric Curve

J.Pochadzalla et al., PRL75('95), 1040.

Low-T: $E^*/A = aT^2 \leftrightarrow \text{High-}T$: $E^* = 1.5T + c$

Quantum Stat. \leftrightarrow Classical Stat.

• Expected Scenario

First Order Phase Transition

 \rightarrow SuperCooled Gas Phase \rightarrow MultiFragmentation

• Problems...

- ***** Competition with Other Mechanism
- * Equilibrium is reached ?
- \rightarrow We need Microscopic Dynamics without any assumption on the Reaction Mechanism

Quantal Langevin Model

= 1. Wave packet statistics with Quantal Fluctuations

2. Wave packet dynamics with Quantal Fluctuations on the same footing.

• Wave Packet Statistics

$$\mathcal{Z}_{\beta} \equiv \operatorname{Tr}\left(\exp(-\beta\hat{H})\right) = \int d\Gamma \ \mathcal{W}_{\beta}(\mathbf{Z})$$
$$\mathcal{W}_{\beta}(\mathbf{Z}) \approx \exp\left[-\frac{\mathcal{H}}{D}\left(1-e^{-\beta D}\right)\right] = \exp(-\beta\mathcal{H}+\beta^{2}\sigma_{E}^{2}/2+\cdots)$$
$$(\text{Harmonic Approximation})$$
$$\prec \hat{O} \succ_{\beta} \equiv \frac{1}{\mathcal{Z}_{\beta}}\operatorname{Tr}\left(\hat{O}\exp(-\beta\hat{H})\right) = \frac{1}{\mathcal{Z}_{\beta}}\int d\Gamma \ \mathcal{W}_{\beta}(\mathbf{Z}) \ \frac{\langle \mathbf{Z}_{\beta/2}|\hat{O}|\mathbf{Z}_{\beta/2}\rangle}{\langle \mathbf{Z}_{\beta/2}|\mathbf{Z}_{\beta/2}\rangle}$$
$$(\text{Thermal Distortion})$$

• Wave Packet Dynamics with Quantum Fluctuation

 $= \textbf{Fluctuation-Dissipation Dynamics} \ \left(\rightarrow \text{ensemble with } \mathcal{W}_{\beta}(\mathbf{Z}) \right)$

$$egin{array}{rll} \dot{\mathbf{p}} &=& \mathbf{f} &-& eta_{\mathcal{H}} \mathbf{M}^p \cdot (\mathbf{v}-\mathbf{u}) &+& \mathbf{g}^p \cdot oldsymbol{\zeta}^p \;, \ \dot{\mathbf{r}} &=& \mathbf{v} \;+& eta_{\mathcal{H}} \mathbf{M}^r \cdot \mathbf{f} &&+& \mathbf{g}^r \cdot oldsymbol{\zeta}^r \;, \ \mathbf{Drift} && \mathbf{Diffusion} \end{array}$$

+ Intrinsic Distortion (\rightarrow Recover on-shell condition)

$$\frac{d\mathbf{p}}{d\tau} = -\frac{2\Delta p^2}{\hbar} \left(\mathbf{v} - \mathbf{u}\right) \ , \quad \frac{d\mathbf{r}}{d\tau} = \frac{2\Delta r^2}{\hbar} \mathbf{f}$$

until $\mathcal{H} = E$ before making an observation

Quantum Stat. Mech. of Wave Packets

Energy Fluctuation of Wave Packets $\sigma_E^2 = \langle \hat{H}^2 \rangle - \langle \hat{H} \rangle^2 \neq 0$ modifies Statisitcal Weight !

• Partition Function

$$\begin{aligned} \mathcal{Z}_{\beta} &\equiv \operatorname{Tr}\left(\exp(-\beta\hat{H})\right) &= \int d\Gamma \ \mathcal{W}_{\beta}(\mathbf{Z}) \\ \mathcal{W}_{\beta}(\mathbf{Z}) &\equiv \langle \mathbf{Z} | \exp(-\beta\hat{H}) | \mathbf{Z} \rangle \ \neq \exp(-\beta \langle \hat{H} \rangle) \end{aligned}$$

• Thermal Average

$$\prec \hat{O} \succ_{\beta} \equiv \frac{1}{\mathcal{Z}_{\beta}} \operatorname{Tr} \left(\hat{O} \exp(-\beta \hat{H}) \right) = \frac{1}{\mathcal{Z}_{\beta}} \int d\Gamma \, \mathcal{W}_{\beta}(\mathbf{Z}) \, \mathcal{O}_{\beta}(\mathbf{Z})$$
$$\mathcal{O}_{\beta}(\mathbf{Z}) \equiv \frac{\langle \mathbf{Z}_{\beta/2} | \hat{O} | \mathbf{Z}_{\beta/2} \rangle}{\langle \mathbf{Z}_{\beta/2} | \mathbf{Z}_{\beta/2} \rangle} \neq \langle \hat{O} \rangle$$
$$|\mathbf{Z}_{\beta/2} \rangle \equiv \exp(-\beta \hat{H}/2) | \mathbf{Z} \rangle \neq | \mathbf{Z} \rangle$$

• Harmonic Approximation

$$\mathcal{W}_{\beta}(\mathbf{Z}) \approx \exp\left[-\frac{\mathcal{H}}{D}\left(1-e^{-\beta D}\right)\right] = \exp(-\beta \mathcal{H} + \beta^{2} \sigma_{E}^{2}/2 + \cdots)$$
$$D(\mathbf{Z}) \equiv \sigma_{E}^{2}/\mathcal{H}$$
$$\mathcal{H}_{\beta}(\mathbf{Z}) \equiv -\frac{\partial \log \mathcal{W}_{\beta}(\mathbf{Z})}{\partial \beta} \approx \mathcal{H}(\mathbf{Z}) \ e^{-\beta D}$$

 \rightarrow Improved β Expansion

From Quantum Statistics

to Dynamics with Fluctuation

• Equilibrium Distribution · · · Q. Microcan.

$$\phi_{\rm eq}(\mathbf{Z}) \equiv \exp(-\mathcal{F}(\mathbf{Z})) \propto \langle \mathbf{Z} | \delta(E - \hat{H}) | \mathbf{Z} \rangle$$

• Fokker-Planck Equation: $\phi_{eq} =$ Static Solution

$$\frac{D\phi(\mathbf{Z};t)}{Dt} = \frac{\partial}{\partial \mathbf{q}} \cdot \left(\mathbf{M} \cdot \frac{\partial \mathcal{F}}{\partial \mathbf{q}} + \mathbf{M} \cdot \frac{\partial}{\partial \mathbf{q}} \right) \phi , \quad \{\mathbf{q}\} = \{\mathbf{r}, \mathbf{p}\}$$

• Equivalent Langevin Equation at Fixed E

$$egin{array}{rll} \dot{\mathbf{p}} &=& \mathbf{f} &-& eta_{\mathcal{H}} \mathbf{M}^p \cdot (\mathbf{v}-\mathbf{u}) &+& \mathbf{g}^p \cdot oldsymbol{\zeta}^p \;, \ \dot{\mathbf{r}} &=& \mathbf{v} \;+& eta_{\mathcal{H}} \mathbf{M}^r \cdot \mathbf{f} &&+& \mathbf{g}^r \cdot oldsymbol{\zeta}^r \;, \ \mathbf{Drift} && \mathbf{Diffusion} \end{array}$$

$$\begin{split} \mathbf{v} &= \partial \mathcal{H} / \partial \mathbf{p} , \quad \mathbf{f} &= -\partial \mathcal{H} / \partial \mathbf{r} \\ \mathbf{u} : \text{Local Collective Velocity} = \text{Classical} \\ \mathbf{M} &= \mathbf{g} \cdot \mathbf{g} : \text{Mobility Tensor} \end{split}$$

★ Effective Inverse Temperature:

$$\beta_{\mathcal{H}} \equiv \frac{\partial \mathcal{F}}{\partial \mathcal{H}} = \frac{\mathcal{H} - E}{\sigma_E^2}$$

 \cdots Drift Term Acts as a Energy Recovering Force

* Classical Limit = Classical Canonical Eq. $\cdots \phi_{eq} = \delta(\mathcal{H} - E) \iff \dot{\mathbf{p}} = \mathbf{f}, \ \dot{\mathbf{r}} = \mathbf{v}$

• Intrinsic Distortion of Wave Packets

$$rac{d\mathbf{p}}{d au} = -rac{2\Delta p^2}{\hbar} \left(\mathbf{v} - \mathbf{u}
ight), \quad rac{d\mathbf{r}}{d au} = rac{2\Delta r^2}{\hbar} \mathbf{f}$$

until $\mathcal{H} = E$ before making an observation

Statistical Properties of Nuclei

A.O. and J.Randrup, PRL 75('95),596;AOP 253('97),279; A.O. et al., Proc. NN97, NPA, in press.

- * Equilibrium in a Sphere $R = r_0 A^{1/3}$ ($r_0 = 2.0 \text{ fm}$)
- \star AMD w.f. and $\mathcal H$ (Volkov)
- \star Harmonic Approx.
- \star Metropolis Sampling

Thermal Fragmentation of Nuclei

A.O. and J. Randrup, PL B394('97), 260

- \star Equilibrium in a Box with Periodic B.C.
- \star Time-Average by using QMD (Gogny) +Q.L.

Light Ion Induced Reaction — AMD-QL

Hirata, Nara, Ohnishi, Harada, Randrup, submitted

• Proton Induced Reaction at 45 MeV

• Ξ^- Absorption at Rest

 \star Sufficient Fluctuation Strength

 \rightarrow Fragments are produced at low excitation DYNAMICALLY

Multifragmentation from Au+Au (I)

- IMF Multiplicity

• MSU/ALADIN Data — E_{inc} and b-dependence

M.B.Tsang et al., PRL 71 ('93), 1502.

A.O. and J. Randrup, PL B394('97), 260.

c.f. Maruyama et al. PTP 98('97),87, Barz et al. PLB 359('96),261.

- * Exp.: b_{imp} sort = PM, $3 \le Z_{imf} \le 30$
- \star Calc.: QMD, Gogny+Pauli, No Det. Eff. is incl.
- \rightarrow Dynamically Produced Fragments are cool enough to Survive Statistical Decay in QMD-QL !

Multifragmentation from Au+Au (II) – Comparison with New Data

W. Reisdorf et al., NP A612 ('97), 493 $\cdots b_{imp}$ sort = PM, $3 \leq Z_{imf} \leq 15$

• IMF Multiplicity

IMF Multiplicities, Au(400 MeV/A)+Au

• Charge and Mass Distribution

 \rightarrow Are fragments produced after equilibrium is reached ?

• Cluster-Cluster Scattering

Danielewicz and Bertsch, NP A533 ('91), 712: (d, t, h) Ono et al., PRC 47 ('91), 2652: (N α) Y. Nara et al. PL B346 ('95), 217: ($K^- \alpha \to \pi_{\Lambda}^4 H$)

- Light Charged Particle Multiplicity
- \cdots Large underestimate for A=3

Density Evolution in Au+Au Collision

Au(150 MeV/A)+Au, QMD

Au(150 MeV/A)+Au, QL

t=0 fm/c	t=20	t=40	
00	\bigcirc	Ø	
t=60	t=80 °.°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	t=100 ***********************************	
t=120, °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	t=140° ° [©] °©	t=160°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	

Au(400 MeV/A)+Au, QMD

t=0 fm/c	t=10	t=20		
00	Ôô	\bigcirc		
t=30	t=40	t=50		
	<u> <u>A</u></u>			
t=60	t=70	t=80		
	<i>گ</i> نهه ۵ که که ۵ گ	°°°°°° °°°°°°°°°		

Au(400 MeV/A)+Au, QL

t=0 fm/c	t=10	t=20		
\bigcirc \bigcirc				
		. = 0		
t=30	t=40	t=50		
	ŝ	20°		
	Ves	°		
Ŵ		° () a o		
	0.02	• 00		
t_60	t_70	t_90 *		
ι=00 . °		l=00,		
	. Ś	. 00		
° g V	° ° ° °	°°,		
(V)	Les a	ದ್ದರು		
0000	0 00	o @ °		
	o			

Densities and Temperatures at IMF formation

• Average ρ -T at Fragment Formation

E_{inc}			$\prec \rho \succ$	$\prec T\succ$	$\prec T' \succ$
			(fm^{-3})	(MeV)	(MeV)
$150 \mathrm{MeV/A}$	QMD	LCP	0.08	9.3	5.8
		IMF	0.06	5.3	1.9
	QL	LCP	0.09	11.0	7.4
		IMF	0.07	3.2	0.6
400 MeV/A	QMD	LCP	0.11	16.3	12.4
		IMF	0.06	5.1	1.7
	QL	LCP	0.09	12.3	8.7
		IMF	0.07	3.9	1.0

In Average, IMF's are seems to be made in the spinodal region...

$\rho\text{-}T$ Evolution in Au+Au Collision

 \star IMF's are mainly formed

during re-compression stage in Unstable Region of Nuclear Matter if Quantum Fluctuation is incorporated.

SUMMARY & OUTLOOK

Quantal Langevin Model

- \star Based on the energy fluctuations of wave packets, which are not energy eigen states.
- \star Dynamical Relaxation to Quantum Stat. Equil.

• Achievements

- a. Caloric Curve (Liquid \rightarrow Gas)
- b. Thermal Fragmentation (Critical behavior)
- c. Dynamical Fragmentation in Light-Ion Induced Reactions (Proton-Induced, Ξ^- Absorption)
- d. Dynamical Fragmentation in Heavy-Ion Collisions (Au+Au, 150 \sim 400 MeV/A)

• ρ -T at Fragment Formation

- * LCP \cdots all the region of ρ -T
- ★ IMF · · · mainly formed during the re-compression stage in Unstable Region of Nuclear Matter Exception: 400 MeV/A w.o. Quantum Fluctuation