日本物理学会 Oct. 4, 1998 @ 秋田大学

2粒子運動量相関から Λ-Λ 相互作用は決められるか?

大西 明^{*A*}, 奈良 寧^{*B*}, 新村 昌治^{*C*}, 赤石 義紀^{*D*} 北大理^{*A*}, 原研^{*B*}, 岐阜大工^{*C*}, **KEK** 田無^{*D*}

1. Introducition

 $\star S \leq -2$ 系と YY 相互作用の探索の歴史

*2 粒子相関の利用方法

2. 核間カスケード模型 (INC) による分析

* $(K^-, K^+), (K^-, K^+\Lambda\Lambda)$ スペクトル

* 粒子源関数

3. A-A 相互作用による相関

4. Λ-Λ 相互作用

* Nijmegen models との比較

* Λ-Λ は束縛するか?

5. 今後の展望

^{*&}quot;粒子源関数 + 相関"による分析

$S \le -2$ 系と YY 相互作用の探索の歴史

● ダブル Λ ハイパー核 → Λ-Λ 間相互作用が引力で無矛盾
 静止 Ξ⁻ 反応 ··· 3 events / 35 years

- (K^-, K^+) 反応点 ··· Several @ E176
- 重イオン反応 ··· No Clear Candidate
- ツイン Λ ハイパー核 → Λ-Λ 間相互作用との関連は不明確
 静止 Ξ⁻ 反応 · · · 2 events @ KEK E176
- K^+ Spectrum による Ξ 核分光学 \rightarrow $V(\Xi A) \simeq -16$ MeV

● Λ-Λ 不変質量分布における低エネルギー成分の増大

Ahn et al. (KEK E224 coll.), KEK Preprint 98-24, 1998

		<u> </u>		2
P(p₁	,p ₂):	=∖dx₁c	x ₂ S	ΨĹ
· · · ·	~ ~ /	·	-	

S: Source function ψ : Relative w.f.

2 粒子相関	=	粒子源関数	S	←	生成機構	
	+	相対波動関数	$ \psi ^2$	\leftarrow	対称性、相互作	用

★ Realistic な粒子源関数があれば、Λ-Λ 相互作用が引き出せる
 → IntraNuclear Cascade 計算

Nara, Ohnishi, Harada, Engel, NPA614 (97), 433.

理論的模型 (I) — Source 関数 = 核間カスケード 模型

● 考慮されている K⁺ 生成機構

(Nara-Ohnishi-Harada-Engel)

- * 準自由衝突過程: $K^{-}N \to K^{+}\Xi^{(*)}$
- * 重い中間子の崩壊: (Gobbi-Dover-Gal) $K^-N \to MY, M \to K^-K^+$ $(M = \phi, f_0, a_0)$
- * 2 段階過程: $K^{-}N \rightarrow MY^{(*)}, MN \rightarrow K^{+}Y^{(*)}$ $(M = \pi, \eta, \rho, \omega, \phi, f_0, a_0)$
- バリオン間衝突過程
 - $\star NN \to NN, NY \to NY'$ (ND), $\Xi N \to \Lambda\Lambda$ (ND)

● 平均場効果

 \star $U_{\Lambda} = -30$ MeV, $U_{\Sigma} = -10$ MeV, $U_{\Xi} = -16$ MeV

実験との比較 (I) — INC (終状態相互作用を無視)

• K^+ Spectrum (Inclusive and Exclusive)

★ (K⁻, K⁺ΛΛ) 断面積の過小評価 ≃ 3 μb (P(K⁺) > 0.95 GeV/c)
★ 2 段階過程からの寄与が dominant

● Λ-Λ 不変質量スペクトル

* $\mathbf{3} \ \mu \mathbf{b}$ 程度の過小評価~ $(K^-, K^+\Lambda\Lambda)$ での不足 * $E_{\Lambda\Lambda} > 50$ MeV での一致・・・ 粒子源サイズ $\leq \mathbf{3}$ fm を示唆

● 粒子源分布 ・・・ 強い 1 次元的粒子生成機構

<u>理論的模型 (II)</u> — Source 関数 + Correlation Formulae

W. G. Gong et al., PRC 43 ('91), 781. Slaus, Akaishi, Tanaka, PRep. 173, ('89), 257.

•
$$\Lambda$$
- Λ Coincidence Probability
 $P(\vec{p}_1, \vec{p}_2) = \int d^4x_1 d^4x_2 S(\vec{p}_1, x_1, \vec{p}_2, x_2) \left| \psi^{(-)}(\vec{k}, \vec{r}_{12}) \right|^2$
 $\psi^{(-)}(\vec{r}) \simeq \sqrt{2} \left[\cos(kr\cos\theta) - j_0(kr) + e^{-i\delta_0}u_0(r) \right]$
 $S: 粒子源関数 \leftarrow INC$
 $u_0: s$ -wave 相対波動関数 \leftarrow 相互作用

$$\vec{r}_{12} = \vec{r}_1 - \vec{r}_2 + \vec{P}(t_2 - t_1)/2m$$
, $\vec{P} = \vec{p}_1 + \vec{p}_2$, $\vec{k} = \frac{1}{2}(\vec{p}_1 - \vec{p}_2)$,

- 仮定 1: 2 体相関は、2 体間の相互作用により決められる (平均場の寄与が少ない)
- 仮定 2: Source 関数は運動量とともにゆっくりと変化する関数
- 仮定 3: Λ - Λ 系の全スピンは 0 が dominant
- 仮定 4: 相互作用の影響は L=0 のみに現れる

● 長波長近似 → Enhancement Factor

$$\begin{aligned} P(\vec{p}_1, \vec{p}_2) &= 2 \ F(k) \ P_c(\vec{p}_1, \vec{p}_2) \ , \\ P_c(\vec{p}_1, \vec{p}_2) &= \int d^4 x_1 \ d^4 x_2 \ S(\vec{p}_1, x_1, \vec{p}_2, x_2) \ , \\ F(k) &= \left| \frac{\sin(kb + \delta_0)}{\sin kb} \right|^2 \xrightarrow{k \to 0} \ \left(1 - \frac{a}{b} \right)^2 - ck^2 \ , \end{aligned}$$

a: scattering length, b: intrinsic range

<u>実験との比較 (II)</u> — INC+Corr. (終状態相互作用を考慮)

• Example of FSI Effect on Λ - Λ Invariant Mass Spectrum TRG10a: Two-range Gauss, $\mu_s = 0.45$ fm, $\mu_l = 1.0$ fm. $\rightarrow a = -6.3$ fm (No Bound State), $r_{\text{eff}}=2.0$ fm, b = 1.8 fm

• Enhancement of Reltative Wave Function

[★] 引力 → 波動関数の早い立上り → 不変質量分布の増加

Λ-Λ 相互作用

 χ^2 Fit により得られた相互作用と Nijmegen 模型との比較

	μ_l	v_l	v_s	a	$r_{ m eff}$	χ^2	B.E.
	(fm)	(MeV)	(MeV)	(fm)	(fm)	$/\mathrm{DOF}$	(MeV)
TRG06	0.6	-900	1440	-4.4	1.6	0.32	U.B.
TRG07	0.7	-400	750	-4.6	1.7	0.33	U.B.
TRG08	0.8	-230	470	-5.0	1.8	0.34	U.B.
TRG09	0.9	-150	310	-5.6	1.9	0.36	U.B.
TRG10a	1.0	-110	240	-6.3	2.0	0.38	U.B.
TRG10b	1.0	-140	260	13.1	1.7	0.40	0.22

 $\mu_s = 0.45$ fm is fixed for simplicity.)

- ***** Strongly attractive and short range
- * TRG10a \simeq ND with $r_c = 0.5 \sim 0.52$ fm.
- * TRG06 \simeq NF with $r_c = 0.46$ fm.

● Λ-Λ は束縛するか?

Double-well structure: $F(0) \sim (1 - a/b)^2 \longrightarrow a \simeq b \pm \sqrt{F(0)}$ … 弱い束縛状態の存在は否定できない。

→ 解決方法

- 1. 共鳴状態 $(E_{\Lambda\Lambda} \simeq 25 \text{ MeV}, \Lambda\Lambda + \Xi N(+\Sigma\Sigma)$ の結合状態) と しての H 粒子の確立 $\cdots (K^{-}, K^{+}\Lambda\Lambda)$ の統計のよい実験
- 2. 低エネルギー ($E_{\Lambda\Lambda} \sim 5$ MeV) でも長波長近似が成り立たないほどに、粒子源関数を広げる
 - \cdots RHIC での Λ - Λ 相関の測定 (50 Λ particles / event)

 Λ rapidity distribution at RHIC