SNP99, Feb. 19-22, 1999, Seoul, Korea

 Λ - Λ interferometry in (K^-, K^+) and AA reactions

A. Ohnishi^A, Y. Hirata^A, Y. Nara^B, S. Shinmura^C, Y. Akaishi^D Hokkaido U.^A, JAERI^B, Gifu U.^C, KEK-IPNS^D

1. $\Lambda\Lambda$ Interaction: How can we get it ?

2. $\Lambda\Lambda$ Inv. Mass Spec. $\rightarrow \Lambda\Lambda$ Int.

* IntraNuclear Cascade model + Correlation

***** Comparison with Nijmegen Models

3. Do Two Lambdas Bound ?

***** Double-well Structure

 \star $\Lambda\Lambda$ Correlation at AGS, SPS, and RHIC

4. Summary

Refs. of Ours	
(K^-,K^+)	Nara, Ohnishi, Harada, Engel, NPA614 (97), 433
AA	Nara, NPA638 ('98), 555c; nucl-th/9802016
	Nara et al., to be submitted.
Corr. to nn Int.	Slaus, Akaishi, Tanaka, PRep. 173, ('89), 257.
$\Lambda\Lambda$ Int.	Ohnishi, Hirata, Nara, Shinmura, Akaishi, in preparation
	Hirata, Ohnishi, Ohtsuka, Nara, in preparation

$\Lambda\Lambda$ Interaction: How can we get it ?

*** IMPORTANT**

Baryon-Baryon Int. with $SU_f(3)$,

Double Hypernuclei, H particle, Neutron Star, ...

***** but **DIFFICULT** to measure

 \circ Double Hypernuclei \rightarrow 3 events/35 years, Only 1S_0

 \circ Scattering Exp. \rightarrow Compact Collider

• Enh. of Λ - Λ Inv. Mass Spec. at Low E.

Ahn et al. (KEK E224 coll.), KEK Preprint 98-24, 1998; PRL, in press

K⁺ momentum (GeV/c)

<u>Source Func. = IntraNuclear Cascade</u>

Nara, Ohnishi, Harada, Engel, NPA614 (97), 433.

• K^+ Production Mech.

Quasi Free	$K^-N ightarrow K^+ \Xi^{(*)}$
Heavy-Meson	$K^-N ightarrow MY, M ightarrow K^-K^+$
$({ m Gobbi-Dover-Gal})$	$MN \to K^+\Lambda$
	$(M=\phi,f_0,a_0)$
Two-Step	$K^-N \to MY^{(*)}, MN \to K^+Y^{(*)}$
	$(M=\pi,\eta, ho,\omega,\eta')$

• Baryon-Baryon Collision

$$\star \ NN \to NN, \ NY \to NY' \ (\text{ND})$$

- $\star \Xi N \to \Lambda \Lambda \text{ (ND, } r_c = 0.5 \text{ fm})$
- Mean Field Effects

*
$$U_{\Lambda} = -30 \text{ MeV}, U_{\Sigma} = -10 \text{ MeV}$$

 $U_{\Xi} = -16 \text{ MeV}$ (Fukuda et al. PRC58 (98) 1306)

K^+ Spectrum in ${}^{12}\mathbf{C}(K^-, K^+)$

• INC results of $(K^-, K^+\Lambda\Lambda)$

- * Underestimate of around 3 μb ($P(K^+) > 0.95 \text{ GeV/c}$)
- ***** Two-Step Processes are dominant even in QF region.

Λ - Λ Inv. Mass Spectrum

- INC results
 - * Underestimate (~ $3\mu b$) at Low $M_{\Lambda\Lambda}$
 - * Reproduces at $E_{\Lambda\Lambda} > 50$ MeV \cdots Source Size \leq 3 fm
- INC+Corr. results
 - * Attr. $\Lambda\Lambda$ Int. \rightarrow Fast Growth of W.F. \rightarrow Enh. of Inv. Mass Spec.

Extracted Λ - Λ Interaction

• χ^2 -Fit within Two-Range Gauss Interaction

	$oldsymbol{\mu}_l$	μ_s	v_l	v_s	a	$r_{ m eff}$	$ ilde{\chi}^2$	B.E.
		(fm)	(]	MeV)	(fm)		(MeV)
trg06a	0.6	0.45	-900	1440	-4.4	1.6	0.34	U.B.
trg08a	0.8	0.45	-230	470	-5.0	1.8	0.36	U.B.
trg10a	1.0	0.45	-105	200	-6.2	2.0	0.39	U.B.
trg06b	0.6	0.45	-950	1310	7.5	1.2	0.37	0.72
trg08b	0.8	0.45	-270	410	8.5	1.3	0.40	0.56
trg10b	1.0	0.45	-135	210	11.5	1.6	0.43	0.29

Comparison with Nijmegen Models

- * ND with $r_c = 0.5 \sim 0.52 \text{ fm} \leftrightarrow \text{trg10a}$
- * NF with $r_c = 0.46$ fm \leftrightarrow trg06a
- * NSC98 with $M_{cut} = 920$ MeV

Does Λ - Λ **System Bound** ?

• How to Distinguish Them ?

 $\label{eq:covering} \begin{array}{l} \rightarrow \text{ Use Reactions with } \textbf{Different Source Size,} \\ \text{ covering the region around } \textbf{Scattering Length.} \end{array}$

JAM: Y.Nara, NPA638 ('98), 555c; nucl-th/9802016 Y.Nara et al., to be submitted.

Summary

- 1. Source Func. (INC) + Λ - Λ Corr. (Inv. Mass Spec.) $\rightarrow \Lambda$ - Λ Interaction (We can use HBT INVERSELY)
- **2.** Extracted Λ - Λ Int. at χ^2 Local Min.
 - * Best Fit Parameters: No Bound State. $\rightarrow a \simeq -5$ fm, $r_{eff} \simeq 1.8$ fm
 - \star Double well structure
 - \rightarrow We cannot exclude a > 0 (bound)
 - * χ^2 /DOF \simeq 0.4: Large Error Bar of Data
- 3. A-A Interferometry in (K^-, K^+) and AA Reaction

	Source	Corr.
$\boxed{(K^-,K^+)}$	Small, Dyn. Corr.	Large
AA	Large, Indep.	Small

- \star (K⁻, K⁺) Reaction
 - One-Dim. Prod. Mech. + Small Source Size \rightarrow Large Enh.
- ***** Relativistic Heavy-Ion Collision
 - Indep. Prod. Mech. + Large Source Size
 - \rightarrow Corr. Func. is Available through Exp.
 - \rightarrow Covers Scat. Length Region of Small B.E.

• Remaining Problems

- 1. Resonance of $\Lambda\Lambda$ - ΞN Coupling or ${}^{3}\mathbf{P}_{2}(\Lambda\Lambda)$ c.f. Oka-Yazaki '84, Shinmura et al.
- 2. Assumption in this work
 - (a) Spin Singlet dominance
 - (b) Only the L = 0 partial waves are distorted.
 - \cdots Odd partial waves \leftarrow Spin dist. in ${}^{12}C$
- 3. Other Hyperon-Hyperon Interaction $\dots \Lambda \Sigma^-, \Sigma^+ \Sigma^-$ (BNL-E906)
- 4. Mean Field Effects in AA Collision \cdots Flow at AGS and SPS energies (P.K. Sahu et al.)
- **5. Small Yield of Low Energy** $\Lambda\Lambda$ in AA
- Evaporation from Hypernuclei in (K⁻, K⁺) Reaction.
