Jan. 24-26, Hadrons under Extreme Condition @ JAERI

On a Possible Importance of Nuclear Liquid-Gas Phase Transition in Supernova Nucleosynthesis

A. Ohnishi, C. Ishizuka (Hokkaido U.)

- 1. Heavy Element Synthesis — When, Where and How ?
 - \star s- and r-processes
 - \star A-distribution in the Universe
 - ***** Phase Diagram of Nuclear Matter
 - ***** Possible Importance of LG-process
- 2. Simple Model Calculation
 - ***** Adiabatic Path of "Neutron" Matter Evolution
 - ***** Does it hit Spinodal Region ?
- **3.** Summary and Discussion

Synthesis of Heavy Elements

– When, Where and How ?

- Slow Neutron Capture process (s-process)
 - * Stable Nuclei upto ²⁰⁹Bi
 - ***** Neutron Flux in Stars: Understanding is not complete
- Rapid Neutron Capture process (r-process)
 - * Heavy Neutron Rich Nuclei
 - Most Probable Site
 Hot bubble region of Massive Supernovae
 - * Requires Very High Entropy/Baryon, $S/B \simeq (110-400)$ (Woosley et al. 1994, Meyer and Brown 1997, Terasawa and Kajino 1999)

SOMETHING ELSE ?

• Hints ?

- ***** Background *A*-distribution in the Universe:
 - ··· Power Law Behavior in addition to Exponential
- \star Phase Diagram of Nuclear Matter
 - ··· Unstable (L-G coexistence) Region

Fragm. through LG Phase Tr. may be important

Simple Model Calculation at High Densities ($\rho_B/\rho_0 > 0.05$)

Assumption:

* Lepton to Baryon ratio is conserved. (ν s are still trapped.)

 \star Entropy per Baryon is conserved.

• Adiabatic Path in "Supernova" Matter Evolution

***** Important Parameters:

- Lepton to Baryon Ratio: $Y_l \equiv N_l/B = (0.3 0.4)$ (Takatsuka)
- Entropy per Baryon: S/B \leftarrow Initial (ρ_B, T) in Supernova Simulation Example: $\rho_B/\rho_0 = (5-8)\rho_0, T = (50-80)$ MeV

 \star Constituents

```
\circ n, p, e, \nu_e, \mu, \nu_\mu, \dots
```

 $\circ \pi$

Does it hit Spinodal Region ?

Neutral Matter Adiabatic Path (Y_L=0.4)

Neutral Matter Adiabatic Path (Y_L=0.4)

Neutral Matter Adiabatic Path (Y_L=0.3)

Neutral Matter Adiabatic Path (Y_L=0.3)

Summary and Discussion

• Summary

- 1. Heavy Elements production through Nuclear Liquid-Gas phase transition at around the surface of Supernova Core (LG process) may be important.
 - \star A Distribution in the Universe
 - ***** Phase Diagram of Nuclear Matter
- 2. Simple Model Calculation
 - $\star Y_l, S/B$ are constant along the path
 - * Critical Temperature of Nuclear LGpt $T_c \simeq 16 \text{ MeV}$
 - \rightarrow Adiabatic Path hits Spinodal Region for $Y_l > 0.35$, S/B < 3.5
 - (c.f. S/B = (110 400) in standard scenarios)

• Discussion

- 1. Asymmetry dependence of T_c :
 - * Weak in the range $Y \equiv (N Z)/A < 0.4$ (Chomaz and Gulminelli 1999)
- 2. T_c : How High ?
 - * Skyrme int.: $T_c \simeq 16$ MeV for Symmetric Matter
 - * GSI-Aladin: $T_c \simeq 5$ MeV for Finite Nuclei
 - * Instability from α boiling (Ohta and Abe)
 - * Microcan. AMD-MF (Sugawa and Horiuchi)
 - * Canonical QL (Ohnishi and Randrup)

* ...

- 3. Importance of Density Fluctuation
 - * Static: Negele-Vautherin (1973), Oyamatsu(1993), Maruyama et al.(1998)
 - * Non-Static: Kajino-Mathews-Boyd (QCD)
- To do...(\rightarrow Chikako Ishizuka)
 - 1. Dynamics: Supernova Simulation
 - 2. Mean Field Effects
 - 3. Fragmentation and Entropy Production
 - 4. After burner: Combination with the Standard r-process